]> git.sesse.net Git - bcachefs-tools-debian/blob - libbcachefs/btree_update.c
ac852310cba24007f3b19dcb31a1c7f4118119a8
[bcachefs-tools-debian] / libbcachefs / btree_update.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_update.h"
5 #include "btree_iter.h"
6 #include "btree_journal_iter.h"
7 #include "btree_locking.h"
8 #include "buckets.h"
9 #include "debug.h"
10 #include "errcode.h"
11 #include "error.h"
12 #include "extents.h"
13 #include "keylist.h"
14 #include "snapshot.h"
15 #include "trace.h"
16
17 #include <linux/darray.h>
18
19 static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l,
20                                          const struct btree_insert_entry *r)
21 {
22         return   cmp_int(l->btree_id,   r->btree_id) ?:
23                  cmp_int(l->cached,     r->cached) ?:
24                  -cmp_int(l->level,     r->level) ?:
25                  bpos_cmp(l->k->k.p,    r->k->k.p);
26 }
27
28 static int __must_check
29 bch2_trans_update_by_path(struct btree_trans *, btree_path_idx_t,
30                           struct bkey_i *, enum btree_update_flags,
31                           unsigned long ip);
32
33 static noinline int extent_front_merge(struct btree_trans *trans,
34                                        struct btree_iter *iter,
35                                        struct bkey_s_c k,
36                                        struct bkey_i **insert,
37                                        enum btree_update_flags flags)
38 {
39         struct bch_fs *c = trans->c;
40         struct bkey_i *update;
41         int ret;
42
43         update = bch2_bkey_make_mut_noupdate(trans, k);
44         ret = PTR_ERR_OR_ZERO(update);
45         if (ret)
46                 return ret;
47
48         if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert)))
49                 return 0;
50
51         ret =   bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p) ?:
52                 bch2_key_has_snapshot_overwrites(trans, iter->btree_id, (*insert)->k.p);
53         if (ret < 0)
54                 return ret;
55         if (ret)
56                 return 0;
57
58         ret = bch2_btree_delete_at(trans, iter, flags);
59         if (ret)
60                 return ret;
61
62         *insert = update;
63         return 0;
64 }
65
66 static noinline int extent_back_merge(struct btree_trans *trans,
67                                       struct btree_iter *iter,
68                                       struct bkey_i *insert,
69                                       struct bkey_s_c k)
70 {
71         struct bch_fs *c = trans->c;
72         int ret;
73
74         ret =   bch2_key_has_snapshot_overwrites(trans, iter->btree_id, insert->k.p) ?:
75                 bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p);
76         if (ret < 0)
77                 return ret;
78         if (ret)
79                 return 0;
80
81         bch2_bkey_merge(c, bkey_i_to_s(insert), k);
82         return 0;
83 }
84
85 static struct bkey_s_c peek_slot_including_whiteouts(struct btree_trans *trans, struct btree_iter *iter,
86                                                      enum btree_id btree, struct bpos pos)
87 {
88         struct bkey_s_c k;
89         int ret;
90
91         for_each_btree_key_norestart(trans, *iter, btree, pos,
92                            BTREE_ITER_ALL_SNAPSHOTS|
93                            BTREE_ITER_NOPRESERVE, k, ret) {
94                 if (!bkey_eq(k.k->p, pos))
95                         break;
96                 if (bch2_snapshot_is_ancestor(trans->c, pos.snapshot, k.k->p.snapshot))
97                         return k;
98         }
99         bch2_trans_iter_exit(trans, iter);
100
101         return ret ? bkey_s_c_err(ret) : bkey_s_c_null;
102 }
103
104 /*
105  * When deleting, check if we need to emit a whiteout (because we're overwriting
106  * something in an ancestor snapshot)
107  */
108 static int need_whiteout_for_snapshot(struct btree_trans *trans, enum btree_id btree, struct bpos pos)
109 {
110         pos.snapshot = bch2_snapshot_parent(trans->c, pos.snapshot);
111         if (!pos.snapshot)
112                 return 0;
113
114         struct btree_iter iter;
115         struct bkey_s_c k = peek_slot_including_whiteouts(trans, &iter, btree, pos);
116         int ret = bkey_err(k) ?: k.k && !bkey_whiteout(k.k);
117         bch2_trans_iter_exit(trans, &iter);
118
119         return ret;
120 }
121
122 /*
123  * We're overwriting a key at @pos in snapshot @snapshot, so we need to insert a
124  * whiteout: that might be in @snapshot, or if there are overwites in sibling
125  * snapshots, find the common ancestor where @pos is overwritten in every
126  * descendent and insert the whiteout there - which might be at @pos.
127  */
128 static int delete_interior_snapshot_key(struct btree_trans *trans,
129                                         enum btree_id btree,
130                                         struct bpos whiteout, bool deleting,
131                                         struct bpos overwrite, bool old_is_whiteout)
132 {
133         struct bch_fs *c = trans->c;
134         struct bpos orig_whiteout = whiteout, sib = whiteout;
135         struct btree_iter iter;
136         struct bkey_s_c k;
137         int ret;
138
139         sib.snapshot = bch2_snapshot_sibling(c, sib.snapshot);
140
141         for_each_btree_key_norestart(trans, iter, btree, sib,
142                                      BTREE_ITER_ALL_SNAPSHOTS|BTREE_ITER_INTENT, k, ret) {
143                 BUG_ON(bpos_gt(k.k->p, overwrite));
144
145                 if (bpos_lt(k.k->p, sib)) /* unrelated branch - skip */
146                         continue;
147                 if (bpos_gt(k.k->p, sib)) /* did not find @sib */
148                         break;
149
150                 /* @overwrite is also written in @sib, now check parent */
151                 whiteout.snapshot = bch2_snapshot_parent(c, whiteout.snapshot);
152                 if (bpos_eq(whiteout, overwrite))
153                         break;
154
155                 sib = whiteout;
156                 sib.snapshot = bch2_snapshot_sibling(c, sib.snapshot);
157         }
158
159         if (ret)
160                 goto err;
161
162         if (!deleting && bpos_eq(whiteout, orig_whiteout))
163                 goto out;
164
165         if (!bpos_eq(iter.pos, whiteout)) {
166                 bch2_trans_iter_exit(trans, &iter);
167                 bch2_trans_iter_init(trans, &iter, btree, whiteout, BTREE_ITER_INTENT);
168                 k = bch2_btree_iter_peek_slot(&iter);
169                 ret = bkey_err(k);
170                 if (ret)
171                         goto err;
172         }
173
174         iter.flags &= ~BTREE_ITER_ALL_SNAPSHOTS;
175         iter.flags |= BTREE_ITER_FILTER_SNAPSHOTS;
176
177         struct bkey_i *delete = bch2_trans_kmalloc(trans, sizeof(*delete));
178         ret = PTR_ERR_OR_ZERO(delete);
179         if (ret)
180                 goto err;
181
182         bkey_init(&delete->k);
183         delete->k.p = whiteout;
184
185         ret = !bpos_eq(whiteout, overwrite)
186                 ? !old_is_whiteout
187                 : need_whiteout_for_snapshot(trans, btree, whiteout);
188         if (ret < 0)
189                 goto err;
190         if (ret)
191                 delete->k.type = KEY_TYPE_whiteout;
192
193         ret = bch2_trans_update(trans, &iter, delete,
194                                 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
195                                 BTREE_UPDATE_SNAPSHOT_WHITEOUT_CHECKS_DONE);
196 out:
197 err:
198         bch2_trans_iter_exit(trans, &iter);
199         return ret;
200 }
201
202 /*
203  * We're overwriting a key in a snapshot that has ancestors: if we're
204  * overwriting a key in a different snapshot, we need to check if it is now
205  * fully overritten and can be deleted, and if we're deleting a key in the
206  * current snapshot we need to check if we need to leave a whiteout.
207  */
208 static noinline int
209 overwrite_interior_snapshot_key(struct btree_trans *trans,
210                                 struct btree_iter *iter,
211                                 struct bkey_i *k)
212 {
213         struct bkey_s_c old = bch2_btree_iter_peek_slot(iter);
214
215         int ret = bkey_err(old);
216         if (ret)
217                 return ret;
218
219         if (!bkey_deleted(old.k)) {
220                 if (btree_type_snapshots_unreffed(iter->btree_id) &&
221                     old.k->p.snapshot != k->k.p.snapshot) {
222                         /*
223                          * We're overwriting a key in a different snapshot:
224                          * check if it's also been overwritten in siblings
225                          */
226                         ret = delete_interior_snapshot_key(trans, iter->btree_id,
227                                                            k->k.p,   bkey_deleted(&k->k),
228                                                            old.k->p, bkey_whiteout(old.k));
229                         if (ret)
230                                 return ret;
231                         if (bkey_deleted(&k->k))
232                                 return 1;
233                 } else if (bkey_deleted(&k->k)) {
234                         /*
235                          * We're deleting a key in the current snapshot:
236                          * check if we need to leave a whiteout
237                          */
238                         ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p);
239                         if (unlikely(ret < 0))
240                                 return ret;
241                         if (ret)
242                                 k->k.type = KEY_TYPE_whiteout;
243                 }
244         }
245
246         return 0;
247 }
248
249 int __bch2_insert_snapshot_whiteouts(struct btree_trans *trans,
250                                    enum btree_id id,
251                                    struct bpos old_pos,
252                                    struct bpos new_pos)
253 {
254         struct bch_fs *c = trans->c;
255         struct btree_iter old_iter, new_iter = { NULL };
256         struct bkey_s_c old_k, new_k;
257         snapshot_id_list s;
258         struct bkey_i *update;
259         int ret = 0;
260
261         if (!bch2_snapshot_has_children(c, old_pos.snapshot))
262                 return 0;
263
264         darray_init(&s);
265
266         bch2_trans_iter_init(trans, &old_iter, id, old_pos,
267                              BTREE_ITER_NOT_EXTENTS|
268                              BTREE_ITER_ALL_SNAPSHOTS);
269         while ((old_k = bch2_btree_iter_prev(&old_iter)).k &&
270                !(ret = bkey_err(old_k)) &&
271                bkey_eq(old_pos, old_k.k->p)) {
272                 struct bpos whiteout_pos =
273                         SPOS(new_pos.inode, new_pos.offset, old_k.k->p.snapshot);;
274
275                 if (!bch2_snapshot_is_ancestor(c, old_k.k->p.snapshot, old_pos.snapshot) ||
276                     snapshot_list_has_ancestor(c, &s, old_k.k->p.snapshot))
277                         continue;
278
279                 new_k = bch2_bkey_get_iter(trans, &new_iter, id, whiteout_pos,
280                                            BTREE_ITER_NOT_EXTENTS|
281                                            BTREE_ITER_INTENT);
282                 ret = bkey_err(new_k);
283                 if (ret)
284                         break;
285
286                 if (new_k.k->type == KEY_TYPE_deleted) {
287                         update = bch2_trans_kmalloc(trans, sizeof(struct bkey_i));
288                         ret = PTR_ERR_OR_ZERO(update);
289                         if (ret)
290                                 break;
291
292                         bkey_init(&update->k);
293                         update->k.p             = whiteout_pos;
294                         update->k.type          = KEY_TYPE_whiteout;
295
296                         ret = bch2_trans_update(trans, &new_iter, update,
297                                                 BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE);
298                 }
299                 bch2_trans_iter_exit(trans, &new_iter);
300
301                 ret = snapshot_list_add(c, &s, old_k.k->p.snapshot);
302                 if (ret)
303                         break;
304         }
305         bch2_trans_iter_exit(trans, &new_iter);
306         bch2_trans_iter_exit(trans, &old_iter);
307         darray_exit(&s);
308
309         return ret;
310 }
311
312 int bch2_trans_update_extent_overwrite(struct btree_trans *trans,
313                                        struct btree_iter *iter,
314                                        enum btree_update_flags flags,
315                                        struct bkey_s_c old,
316                                        struct bkey_s_c new)
317 {
318         enum btree_id btree_id = iter->btree_id;
319         struct bkey_i *update;
320         struct bpos new_start = bkey_start_pos(new.k);
321         unsigned front_split = bkey_lt(bkey_start_pos(old.k), new_start);
322         unsigned back_split  = bkey_gt(old.k->p, new.k->p);
323         unsigned middle_split = (front_split || back_split) &&
324                 old.k->p.snapshot != new.k->p.snapshot;
325         unsigned nr_splits = front_split + back_split + middle_split;
326         int ret = 0, compressed_sectors;
327
328         /*
329          * If we're going to be splitting a compressed extent, note it
330          * so that __bch2_trans_commit() can increase our disk
331          * reservation:
332          */
333         if (nr_splits > 1 &&
334             (compressed_sectors = bch2_bkey_sectors_compressed(old)))
335                 trans->extra_disk_res += compressed_sectors * (nr_splits - 1);
336
337         if (front_split) {
338                 update = bch2_bkey_make_mut_noupdate(trans, old);
339                 if ((ret = PTR_ERR_OR_ZERO(update)))
340                         return ret;
341
342                 bch2_cut_back(new_start, update);
343
344                 ret =   bch2_insert_snapshot_whiteouts(trans, btree_id,
345                                         old.k->p, update->k.p) ?:
346                         bch2_btree_insert_nonextent(trans, btree_id, update,
347                                         BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
348                 if (ret)
349                         return ret;
350         }
351
352         /* If we're overwriting in a different snapshot - middle split: */
353         if (middle_split) {
354                 update = bch2_bkey_make_mut_noupdate(trans, old);
355                 if ((ret = PTR_ERR_OR_ZERO(update)))
356                         return ret;
357
358                 bch2_cut_front(new_start, update);
359                 bch2_cut_back(new.k->p, update);
360
361                 ret =   bch2_insert_snapshot_whiteouts(trans, btree_id,
362                                         old.k->p, update->k.p) ?:
363                         bch2_btree_insert_nonextent(trans, btree_id, update,
364                                           BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
365                 if (ret)
366                         return ret;
367         }
368
369         if (bkey_le(old.k->p, new.k->p)) {
370                 update = bch2_trans_kmalloc(trans, sizeof(*update));
371                 if ((ret = PTR_ERR_OR_ZERO(update)))
372                         return ret;
373
374                 bkey_init(&update->k);
375                 update->k.p = old.k->p;
376                 update->k.p.snapshot = new.k->p.snapshot;
377
378                 if (new.k->p.snapshot != old.k->p.snapshot) {
379                         update->k.type = KEY_TYPE_whiteout;
380                 } else if (btree_type_has_snapshots(btree_id)) {
381                         ret = need_whiteout_for_snapshot(trans, btree_id, update->k.p);
382                         if (ret < 0)
383                                 return ret;
384                         if (ret)
385                                 update->k.type = KEY_TYPE_whiteout;
386                 }
387
388                 ret = bch2_btree_insert_nonextent(trans, btree_id, update,
389                                           BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags);
390                 if (ret)
391                         return ret;
392         }
393
394         if (back_split) {
395                 update = bch2_bkey_make_mut_noupdate(trans, old);
396                 if ((ret = PTR_ERR_OR_ZERO(update)))
397                         return ret;
398
399                 bch2_cut_front(new.k->p, update);
400
401                 ret = bch2_trans_update_by_path(trans, iter->path, update,
402                                           BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|
403                                           flags, _RET_IP_);
404                 if (ret)
405                         return ret;
406         }
407
408         return 0;
409 }
410
411 static int bch2_trans_update_extent(struct btree_trans *trans,
412                                     struct btree_iter *orig_iter,
413                                     struct bkey_i *insert,
414                                     enum btree_update_flags flags)
415 {
416         struct btree_iter iter;
417         struct bkey_s_c k;
418         enum btree_id btree_id = orig_iter->btree_id;
419         int ret = 0;
420
421         bch2_trans_iter_init(trans, &iter, btree_id, bkey_start_pos(&insert->k),
422                              BTREE_ITER_INTENT|
423                              BTREE_ITER_WITH_UPDATES|
424                              BTREE_ITER_NOT_EXTENTS);
425         k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
426         if ((ret = bkey_err(k)))
427                 goto err;
428         if (!k.k)
429                 goto out;
430
431         if (bkey_eq(k.k->p, bkey_start_pos(&insert->k))) {
432                 if (bch2_bkey_maybe_mergable(k.k, &insert->k)) {
433                         ret = extent_front_merge(trans, &iter, k, &insert, flags);
434                         if (ret)
435                                 goto err;
436                 }
437
438                 goto next;
439         }
440
441         while (bkey_gt(insert->k.p, bkey_start_pos(k.k))) {
442                 bool done = bkey_lt(insert->k.p, k.k->p);
443
444                 ret = bch2_trans_update_extent_overwrite(trans, &iter, flags, k, bkey_i_to_s_c(insert));
445                 if (ret)
446                         goto err;
447
448                 if (done)
449                         goto out;
450 next:
451                 bch2_btree_iter_advance(&iter);
452                 k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX));
453                 if ((ret = bkey_err(k)))
454                         goto err;
455                 if (!k.k)
456                         goto out;
457         }
458
459         if (bch2_bkey_maybe_mergable(&insert->k, k.k)) {
460                 ret = extent_back_merge(trans, &iter, insert, k);
461                 if (ret)
462                         goto err;
463         }
464 out:
465         if (!bkey_deleted(&insert->k))
466                 ret = bch2_btree_insert_nonextent(trans, btree_id, insert, flags);
467 err:
468         bch2_trans_iter_exit(trans, &iter);
469
470         return ret;
471 }
472
473 static noinline int flush_new_cached_update(struct btree_trans *trans,
474                                             struct btree_insert_entry *i,
475                                             enum btree_update_flags flags,
476                                             unsigned long ip)
477 {
478         struct bkey k;
479         int ret;
480
481         btree_path_idx_t path_idx =
482                 bch2_path_get(trans, i->btree_id, i->old_k.p, 1, 0,
483                               BTREE_ITER_INTENT, _THIS_IP_);
484         ret = bch2_btree_path_traverse(trans, path_idx, 0);
485         if (ret)
486                 goto out;
487
488         struct btree_path *btree_path = trans->paths + path_idx;
489
490         /*
491          * The old key in the insert entry might actually refer to an existing
492          * key in the btree that has been deleted from cache and not yet
493          * flushed. Check for this and skip the flush so we don't run triggers
494          * against a stale key.
495          */
496         bch2_btree_path_peek_slot_exact(btree_path, &k);
497         if (!bkey_deleted(&k))
498                 goto out;
499
500         i->key_cache_already_flushed = true;
501         i->flags |= BTREE_TRIGGER_NORUN;
502
503         btree_path_set_should_be_locked(btree_path);
504         ret = bch2_trans_update_by_path(trans, path_idx, i->k, flags, ip);
505 out:
506         bch2_path_put(trans, path_idx, true);
507         return ret;
508 }
509
510 static int __must_check
511 bch2_trans_update_by_path(struct btree_trans *trans, btree_path_idx_t path_idx,
512                           struct bkey_i *k, enum btree_update_flags flags,
513                           unsigned long ip)
514 {
515         struct bch_fs *c = trans->c;
516         struct btree_insert_entry *i, n;
517         int cmp;
518
519         struct btree_path *path = trans->paths + path_idx;
520         EBUG_ON(!path->should_be_locked);
521         EBUG_ON(trans->nr_updates >= trans->nr_paths);
522         EBUG_ON(!bpos_eq(k->k.p, path->pos));
523
524         n = (struct btree_insert_entry) {
525                 .flags          = flags,
526                 .bkey_type      = __btree_node_type(path->level, path->btree_id),
527                 .btree_id       = path->btree_id,
528                 .level          = path->level,
529                 .cached         = path->cached,
530                 .path           = path_idx,
531                 .k              = k,
532                 .ip_allocated   = ip,
533         };
534
535 #ifdef CONFIG_BCACHEFS_DEBUG
536         trans_for_each_update(trans, i)
537                 BUG_ON(i != trans->updates &&
538                        btree_insert_entry_cmp(i - 1, i) >= 0);
539 #endif
540
541         /*
542          * Pending updates are kept sorted: first, find position of new update,
543          * then delete/trim any updates the new update overwrites:
544          */
545         for (i = trans->updates; i < trans->updates + trans->nr_updates; i++) {
546                 cmp = btree_insert_entry_cmp(&n, i);
547                 if (cmp <= 0)
548                         break;
549         }
550
551         if (!cmp && i < trans->updates + trans->nr_updates) {
552                 EBUG_ON(i->insert_trigger_run || i->overwrite_trigger_run);
553
554                 bch2_path_put(trans, i->path, true);
555                 i->flags        = n.flags;
556                 i->cached       = n.cached;
557                 i->k            = n.k;
558                 i->path         = n.path;
559                 i->ip_allocated = n.ip_allocated;
560         } else {
561                 array_insert_item(trans->updates, trans->nr_updates,
562                                   i - trans->updates, n);
563
564                 i->old_v = bch2_btree_path_peek_slot_exact(path, &i->old_k).v;
565                 i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0;
566
567                 if (unlikely(trans->journal_replay_not_finished)) {
568                         struct bkey_i *j_k =
569                                 bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p);
570
571                         if (j_k) {
572                                 i->old_k = j_k->k;
573                                 i->old_v = &j_k->v;
574                         }
575                 }
576         }
577
578         __btree_path_get(trans->paths + i->path, true);
579
580         /*
581          * If a key is present in the key cache, it must also exist in the
582          * btree - this is necessary for cache coherency. When iterating over
583          * a btree that's cached in the key cache, the btree iter code checks
584          * the key cache - but the key has to exist in the btree for that to
585          * work:
586          */
587         if (path->cached && bkey_deleted(&i->old_k))
588                 return flush_new_cached_update(trans, i, flags, ip);
589
590         return 0;
591 }
592
593 static noinline int bch2_trans_update_get_key_cache(struct btree_trans *trans,
594                                                     struct btree_iter *iter,
595                                                     struct btree_path *path)
596 {
597         struct btree_path *key_cache_path = btree_iter_key_cache_path(trans, iter);
598
599         if (!key_cache_path ||
600             !key_cache_path->should_be_locked ||
601             !bpos_eq(key_cache_path->pos, iter->pos)) {
602                 struct bkey_cached *ck;
603                 int ret;
604
605                 if (!iter->key_cache_path)
606                         iter->key_cache_path =
607                                 bch2_path_get(trans, path->btree_id, path->pos, 1, 0,
608                                               BTREE_ITER_INTENT|
609                                               BTREE_ITER_CACHED, _THIS_IP_);
610
611                 iter->key_cache_path =
612                         bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos,
613                                                 iter->flags & BTREE_ITER_INTENT,
614                                                 _THIS_IP_);
615
616                 ret = bch2_btree_path_traverse(trans, iter->key_cache_path, BTREE_ITER_CACHED);
617                 if (unlikely(ret))
618                         return ret;
619
620                 ck = (void *) trans->paths[iter->key_cache_path].l[0].b;
621
622                 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
623                         trace_and_count(trans->c, trans_restart_key_cache_raced, trans, _RET_IP_);
624                         return btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_raced);
625                 }
626
627                 btree_path_set_should_be_locked(trans->paths + iter->key_cache_path);
628         }
629
630         return 0;
631 }
632
633 int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter,
634                                    struct bkey_i *k, enum btree_update_flags flags)
635 {
636         if (iter->flags & BTREE_ITER_IS_EXTENTS)
637                 return bch2_trans_update_extent(trans, iter, k, flags);
638
639         if (!(flags & (BTREE_UPDATE_SNAPSHOT_WHITEOUT_CHECKS_DONE|
640                        BTREE_UPDATE_KEY_CACHE_RECLAIM)) &&
641             (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) &&
642             bch2_snapshot_parent(trans->c, k->k.p.snapshot)) {
643                 int ret = overwrite_interior_snapshot_key(trans, iter, k);
644                 if (ret)
645                         return ret < 0 ? ret : 0;
646         }
647
648         /*
649          * Ensure that updates to cached btrees go to the key cache:
650          */
651         btree_path_idx_t path_idx = iter->update_path ?: iter->path;
652         struct btree_path *path = trans->paths + path_idx;
653
654         if (!(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) &&
655             !path->cached &&
656             !path->level &&
657             btree_id_cached(trans->c, path->btree_id)) {
658                 int ret = bch2_trans_update_get_key_cache(trans, iter, path);
659                 if (ret)
660                         return ret;
661
662                 path_idx = iter->key_cache_path;
663         }
664
665         return bch2_trans_update_by_path(trans, path_idx, k, flags, _RET_IP_);
666 }
667
668 int bch2_btree_insert_clone_trans(struct btree_trans *trans,
669                                   enum btree_id btree,
670                                   struct bkey_i *k)
671 {
672         struct bkey_i *n = bch2_trans_kmalloc(trans, bkey_bytes(&k->k));
673         int ret = PTR_ERR_OR_ZERO(n);
674         if (ret)
675                 return ret;
676
677         bkey_copy(n, k);
678         return bch2_btree_insert_trans(trans, btree, n, 0);
679 }
680
681 struct jset_entry *__bch2_trans_jset_entry_alloc(struct btree_trans *trans, unsigned u64s)
682 {
683         unsigned new_top = trans->journal_entries_u64s + u64s;
684         unsigned old_size = trans->journal_entries_size;
685
686         if (new_top > trans->journal_entries_size) {
687                 trans->journal_entries_size = roundup_pow_of_two(new_top);
688
689                 btree_trans_stats(trans)->journal_entries_size = trans->journal_entries_size;
690         }
691
692         struct jset_entry *n =
693                 bch2_trans_kmalloc_nomemzero(trans,
694                                 trans->journal_entries_size * sizeof(u64));
695         if (IS_ERR(n))
696                 return ERR_CAST(n);
697
698         if (trans->journal_entries)
699                 memcpy(n, trans->journal_entries, old_size * sizeof(u64));
700         trans->journal_entries = n;
701
702         struct jset_entry *e = btree_trans_journal_entries_top(trans);
703         trans->journal_entries_u64s = new_top;
704         return e;
705 }
706
707 int bch2_bkey_get_empty_slot(struct btree_trans *trans, struct btree_iter *iter,
708                              enum btree_id btree, struct bpos end)
709 {
710         struct bkey_s_c k;
711         int ret = 0;
712
713         bch2_trans_iter_init(trans, iter, btree, POS_MAX, BTREE_ITER_INTENT);
714         k = bch2_btree_iter_prev(iter);
715         ret = bkey_err(k);
716         if (ret)
717                 goto err;
718
719         bch2_btree_iter_advance(iter);
720         k = bch2_btree_iter_peek_slot(iter);
721         ret = bkey_err(k);
722         if (ret)
723                 goto err;
724
725         BUG_ON(k.k->type != KEY_TYPE_deleted);
726
727         if (bkey_gt(k.k->p, end)) {
728                 ret = -BCH_ERR_ENOSPC_btree_slot;
729                 goto err;
730         }
731
732         return 0;
733 err:
734         bch2_trans_iter_exit(trans, iter);
735         return ret;
736 }
737
738 void bch2_trans_commit_hook(struct btree_trans *trans,
739                             struct btree_trans_commit_hook *h)
740 {
741         h->next = trans->hooks;
742         trans->hooks = h;
743 }
744
745 int bch2_btree_insert_nonextent(struct btree_trans *trans,
746                                 enum btree_id btree, struct bkey_i *k,
747                                 enum btree_update_flags flags)
748 {
749         struct btree_iter iter;
750         int ret;
751
752         bch2_trans_iter_init(trans, &iter, btree, k->k.p,
753                              BTREE_ITER_CACHED|
754                              BTREE_ITER_NOT_EXTENTS|
755                              BTREE_ITER_INTENT);
756         ret   = bch2_btree_iter_traverse(&iter) ?:
757                 bch2_trans_update(trans, &iter, k, flags);
758         bch2_trans_iter_exit(trans, &iter);
759         return ret;
760 }
761
762 int bch2_btree_insert_trans(struct btree_trans *trans, enum btree_id id,
763                             struct bkey_i *k, enum btree_update_flags flags)
764 {
765         struct btree_iter iter;
766         int ret;
767
768         bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k),
769                              BTREE_ITER_CACHED|
770                              BTREE_ITER_INTENT);
771         ret   = bch2_btree_iter_traverse(&iter) ?:
772                 bch2_trans_update(trans, &iter, k, flags);
773         bch2_trans_iter_exit(trans, &iter);
774         return ret;
775 }
776
777 /**
778  * bch2_btree_insert - insert keys into the extent btree
779  * @c:                  pointer to struct bch_fs
780  * @id:                 btree to insert into
781  * @k:                  key to insert
782  * @disk_res:           must be non-NULL whenever inserting or potentially
783  *                      splitting data extents
784  * @flags:              transaction commit flags
785  *
786  * Returns:             0 on success, error code on failure
787  */
788 int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k,
789                       struct disk_reservation *disk_res, int flags)
790 {
791         return bch2_trans_do(c, disk_res, NULL, flags,
792                              bch2_btree_insert_trans(trans, id, k, 0));
793 }
794
795 int bch2_btree_delete_extent_at(struct btree_trans *trans, struct btree_iter *iter,
796                                 unsigned len, unsigned update_flags)
797 {
798         struct bkey_i *k;
799
800         k = bch2_trans_kmalloc(trans, sizeof(*k));
801         if (IS_ERR(k))
802                 return PTR_ERR(k);
803
804         bkey_init(&k->k);
805         k->k.p = iter->pos;
806         bch2_key_resize(&k->k, len);
807         return bch2_trans_update(trans, iter, k, update_flags);
808 }
809
810 int bch2_btree_delete_at(struct btree_trans *trans,
811                          struct btree_iter *iter, unsigned update_flags)
812 {
813         return bch2_btree_delete_extent_at(trans, iter, 0, update_flags);
814 }
815
816 int bch2_btree_delete(struct btree_trans *trans,
817                       enum btree_id btree, struct bpos pos,
818                       unsigned update_flags)
819 {
820         struct btree_iter iter;
821         int ret;
822
823         bch2_trans_iter_init(trans, &iter, btree, pos,
824                              BTREE_ITER_CACHED|
825                              BTREE_ITER_INTENT);
826         ret   = bch2_btree_iter_traverse(&iter) ?:
827                 bch2_btree_delete_at(trans, &iter, update_flags);
828         bch2_trans_iter_exit(trans, &iter);
829
830         return ret;
831 }
832
833 int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id,
834                                   struct bpos start, struct bpos end,
835                                   unsigned update_flags,
836                                   u64 *journal_seq)
837 {
838         u32 restart_count = trans->restart_count;
839         struct btree_iter iter;
840         struct bkey_s_c k;
841         int ret = 0;
842
843         bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_INTENT);
844         while ((k = bch2_btree_iter_peek_upto(&iter, end)).k) {
845                 struct disk_reservation disk_res =
846                         bch2_disk_reservation_init(trans->c, 0);
847                 struct bkey_i delete;
848
849                 ret = bkey_err(k);
850                 if (ret)
851                         goto err;
852
853                 bkey_init(&delete.k);
854
855                 /*
856                  * This could probably be more efficient for extents:
857                  */
858
859                 /*
860                  * For extents, iter.pos won't necessarily be the same as
861                  * bkey_start_pos(k.k) (for non extents they always will be the
862                  * same). It's important that we delete starting from iter.pos
863                  * because the range we want to delete could start in the middle
864                  * of k.
865                  *
866                  * (bch2_btree_iter_peek() does guarantee that iter.pos >=
867                  * bkey_start_pos(k.k)).
868                  */
869                 delete.k.p = iter.pos;
870
871                 if (iter.flags & BTREE_ITER_IS_EXTENTS)
872                         bch2_key_resize(&delete.k,
873                                         bpos_min(end, k.k->p).offset -
874                                         iter.pos.offset);
875
876                 ret   = bch2_trans_update(trans, &iter, &delete, update_flags) ?:
877                         bch2_trans_commit(trans, &disk_res, journal_seq,
878                                           BCH_TRANS_COMMIT_no_enospc);
879                 bch2_disk_reservation_put(trans->c, &disk_res);
880 err:
881                 /*
882                  * the bch2_trans_begin() call is in a weird place because we
883                  * need to call it after every transaction commit, to avoid path
884                  * overflow, but don't want to call it if the delete operation
885                  * is a no-op and we have no work to do:
886                  */
887                 bch2_trans_begin(trans);
888
889                 if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
890                         ret = 0;
891                 if (ret)
892                         break;
893         }
894         bch2_trans_iter_exit(trans, &iter);
895
896         return ret ?: trans_was_restarted(trans, restart_count);
897 }
898
899 /*
900  * bch_btree_delete_range - delete everything within a given range
901  *
902  * Range is a half open interval - [start, end)
903  */
904 int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id,
905                             struct bpos start, struct bpos end,
906                             unsigned update_flags,
907                             u64 *journal_seq)
908 {
909         int ret = bch2_trans_run(c,
910                         bch2_btree_delete_range_trans(trans, id, start, end,
911                                                       update_flags, journal_seq));
912         if (ret == -BCH_ERR_transaction_restart_nested)
913                 ret = 0;
914         return ret;
915 }
916
917 int bch2_btree_bit_mod(struct btree_trans *trans, enum btree_id btree,
918                        struct bpos pos, bool set)
919 {
920         struct bkey_i *k = bch2_trans_kmalloc(trans, sizeof(*k));
921         int ret = PTR_ERR_OR_ZERO(k);
922         if (ret)
923                 return ret;
924
925         bkey_init(&k->k);
926         k->k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
927         k->k.p = pos;
928
929         struct btree_iter iter;
930         bch2_trans_iter_init(trans, &iter, btree, pos, BTREE_ITER_INTENT);
931
932         ret   = bch2_btree_iter_traverse(&iter) ?:
933                 bch2_trans_update(trans, &iter, k, 0);
934         bch2_trans_iter_exit(trans, &iter);
935         return ret;
936 }
937
938 int bch2_btree_bit_mod_buffered(struct btree_trans *trans, enum btree_id btree,
939                                 struct bpos pos, bool set)
940 {
941         struct bkey_i k;
942
943         bkey_init(&k.k);
944         k.k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted;
945         k.k.p = pos;
946
947         return bch2_trans_update_buffered(trans, btree, &k);
948 }
949
950 static int __bch2_trans_log_msg(struct btree_trans *trans, struct printbuf *buf, unsigned u64s)
951 {
952         struct jset_entry *e = bch2_trans_jset_entry_alloc(trans, jset_u64s(u64s));
953         int ret = PTR_ERR_OR_ZERO(e);
954         if (ret)
955                 return ret;
956
957         struct jset_entry_log *l = container_of(e, struct jset_entry_log, entry);
958         journal_entry_init(e, BCH_JSET_ENTRY_log, 0, 1, u64s);
959         memcpy(l->d, buf->buf, buf->pos);
960         return 0;
961 }
962
963 __printf(3, 0)
964 static int
965 __bch2_fs_log_msg(struct bch_fs *c, unsigned commit_flags, const char *fmt,
966                   va_list args)
967 {
968         struct printbuf buf = PRINTBUF;
969         prt_vprintf(&buf, fmt, args);
970
971         unsigned u64s = DIV_ROUND_UP(buf.pos, sizeof(u64));
972         prt_chars(&buf, '\0', u64s * sizeof(u64) - buf.pos);
973
974         int ret = buf.allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0;
975         if (ret)
976                 goto err;
977
978         if (!test_bit(JOURNAL_STARTED, &c->journal.flags)) {
979                 ret = darray_make_room(&c->journal.early_journal_entries, jset_u64s(u64s));
980                 if (ret)
981                         goto err;
982
983                 struct jset_entry_log *l = (void *) &darray_top(c->journal.early_journal_entries);
984                 journal_entry_init(&l->entry, BCH_JSET_ENTRY_log, 0, 1, u64s);
985                 memcpy(l->d, buf.buf, buf.pos);
986                 c->journal.early_journal_entries.nr += jset_u64s(u64s);
987         } else {
988                 ret = bch2_trans_do(c, NULL, NULL,
989                         BCH_TRANS_COMMIT_lazy_rw|commit_flags,
990                         __bch2_trans_log_msg(trans, &buf, u64s));
991         }
992 err:
993         printbuf_exit(&buf);
994         return ret;
995 }
996
997 __printf(2, 3)
998 int bch2_fs_log_msg(struct bch_fs *c, const char *fmt, ...)
999 {
1000         va_list args;
1001         int ret;
1002
1003         va_start(args, fmt);
1004         ret = __bch2_fs_log_msg(c, 0, fmt, args);
1005         va_end(args);
1006         return ret;
1007 }
1008
1009 /*
1010  * Use for logging messages during recovery to enable reserved space and avoid
1011  * blocking.
1012  */
1013 __printf(2, 3)
1014 int bch2_journal_log_msg(struct bch_fs *c, const char *fmt, ...)
1015 {
1016         va_list args;
1017         int ret;
1018
1019         va_start(args, fmt);
1020         ret = __bch2_fs_log_msg(c, BCH_WATERMARK_reclaim, fmt, args);
1021         va_end(args);
1022         return ret;
1023 }