X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=mixer.cpp;h=cfdb5b190b1b25f828227d6b59fdc8fe9eeda455;hb=593173ffcdbccff777720b3c41c3e771fa93a10a;hp=72022026f771056e0211ccac874e69c8ee0ed22a;hpb=65d716be70e6295628dfa5bb0a72f3429b9696ba;p=nageru diff --git a/mixer.cpp b/mixer.cpp index 7202202..cfdb5b1 100644 --- a/mixer.cpp +++ b/mixer.cpp @@ -98,6 +98,7 @@ Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards) num_cards(num_cards), mixer_surface(create_surface(format)), h264_encoder_surface(create_surface(format)), + correlation(OUTPUT_FREQUENCY), level_compressor(OUTPUT_FREQUENCY), limiter(OUTPUT_FREQUENCY), compressor(OUTPUT_FREQUENCY) @@ -184,7 +185,7 @@ Mixer::Mixer(const QSurfaceFormat &format, unsigned num_cards) // hlen=16 is pretty low quality, but we use quite a bit of CPU otherwise, // and there's a limit to how important the peak meter is. - peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16); + peak_resampler.setup(OUTPUT_FREQUENCY, OUTPUT_FREQUENCY * 4, /*num_channels=*/2, /*hlen=*/16, /*frel=*/1.0); alsa.reset(new ALSAOutput(OUTPUT_FREQUENCY, /*num_channels=*/2)); } @@ -534,7 +535,8 @@ void Mixer::thread_func() audio_level_callback(loudness_s, 20.0 * log10(peak), loudness_i, loudness_range_low, loudness_range_high, - gain_staging_db); + gain_staging_db, 20.0 * log10(final_makeup_gain), + correlation.get_correlation()); } for (unsigned card_index = 1; card_index < num_cards; ++card_index) { @@ -707,7 +709,9 @@ void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples) // we don't need it for voice, and it will reduce headroom // and confuse the compressor. (In particular, any hums at 50 or 60 Hz // should be dampened.) - locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f); + if (locut_enabled) { + locut.render(samples_out.data(), samples_out.size() / 2, locut_cutoff_hz * 2.0 * M_PI / OUTPUT_FREQUENCY, 0.5f); + } // Apply a level compressor to get the general level right. // Basically, if it's over about -40 dBFS, we squeeze it down to that level @@ -716,7 +720,7 @@ void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples) // entirely arbitrary, but from practical tests with speech, it seems to // put ut around -23 LUFS, so it's a reasonable starting point for later use. { - unique_lock lock(level_compressor_mutex); + unique_lock lock(compressor_mutex); if (level_compressor_enabled) { float threshold = 0.01f; // -40 dBFS. float ratio = 20.0f; @@ -782,13 +786,54 @@ void Mixer::process_audio_one_frame(int64_t frame_pts_int, int num_samples) peak = max(peak, find_peak(interpolated_samples_out.data(), out_stereo_samples * 2)); } - // Find R128 levels. + // At this point, we are most likely close to +0 LU, but all of our + // measurements have been on raw sample values, not R128 values. + // So we have a final makeup gain to get us to +0 LU; the gain + // adjustments required should be relatively small, and also, the + // offset shouldn't change much (only if the type of audio changes + // significantly). Thus, we shoot for updating this value basically + // “whenever we process buffers”, since the R128 calculation isn't exactly + // something we get out per-sample. + // + // Note that there's a feedback loop here, so we choose a very slow filter + // (half-time of 100 seconds). + double target_loudness_factor, alpha; + { + unique_lock lock(compressor_mutex); + double loudness_lu = r128.loudness_M() - ref_level_lufs; + double current_makeup_lu = 20.0f * log10(final_makeup_gain); + target_loudness_factor = pow(10.0f, -loudness_lu / 20.0f); + + // If we're outside +/- 5 LU uncorrected, we don't count it as + // a normal signal (probably silence) and don't change the + // correction factor; just apply what we already have. + if (fabs(loudness_lu - current_makeup_lu) >= 5.0 || !final_makeup_gain_auto) { + alpha = 0.0; + } else { + // Formula adapted from + // https://en.wikipedia.org/wiki/Low-pass_filter#Simple_infinite_impulse_response_filter. + const double half_time_s = 100.0; + const double fc_mul_2pi_delta_t = 1.0 / (half_time_s * OUTPUT_FREQUENCY); + alpha = fc_mul_2pi_delta_t / (fc_mul_2pi_delta_t + 1.0); + } + + double m = final_makeup_gain; + for (size_t i = 0; i < samples_out.size(); i += 2) { + samples_out[i + 0] *= m; + samples_out[i + 1] *= m; + m += (target_loudness_factor - m) * alpha; + } + final_makeup_gain = m; + } + + // Find R128 levels and L/R correlation. vector left, right; deinterleave_samples(samples_out, &left, &right); float *ptrs[] = { left.data(), right.data() }; { unique_lock lock(compressor_mutex); r128.process(left.size(), ptrs); + correlation.process_samples(samples_out); } // Send the samples to the sound card. @@ -893,6 +938,7 @@ void Mixer::reset_meters() peak = 0.0f; r128.reset(); r128.integr_start(); + correlation.reset(); } Mixer::OutputChannel::~OutputChannel()