X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=motion_search.frag;h=eb4f7c77fe2c6f8cb056a46caeaa89d58f0ee486;hb=3795723be95f2fe82f3c8b8b45b1a905b2c811fd;hp=616e2080dc1084342dd1723c283ba9deab755fc9;hpb=804409c84346fc01270a388e099b8a99528ed0c6;p=nageru diff --git a/motion_search.frag b/motion_search.frag index 616e208..eb4f7c7 100644 --- a/motion_search.frag +++ b/motion_search.frag @@ -35,22 +35,50 @@ be ideal. */ -const uint patch_size = 12; -const uint num_iterations = 16; +in vec3 flow_tc; +in vec2 patch_center; +flat in int ref_layer, search_layer; +out vec3 out_flow; + +uniform sampler2DArray flow_tex, image_tex; +uniform usampler2DArray grad_tex; // Also contains the corresponding reference image. +uniform vec2 inv_image_size, inv_prev_level_size; +uniform uint patch_size; +uniform uint num_iterations; + +vec3 unpack_gradients(uint v) +{ + uint vi = v & 0xffu; + uint xi = (v >> 8) & 0xfffu; + uint yi = v >> 20; + vec3 r = vec3(xi * (1.0f / 4095.0f) - 0.5f, yi * (1.0f / 4095.0f) - 0.5f, vi * (1.0f / 255.0f)); + return r; +} -in vec2 flow_tc; -in vec2 patch_bottom_left_texel; // Center of bottom-left texel of patch. -out vec2 out_flow; +// Note: The third variable is the actual pixel value. +vec3 get_gradients(vec3 tc) +{ + vec3 grad = unpack_gradients(texture(grad_tex, tc).x); -uniform sampler2D flow_tex, grad0_tex, image0_tex, image1_tex; -uniform float image_width, image_height, inv_image_width, inv_image_height; + // Zero gradients outside the image. (We'd do this with a sampler, + // but we want the repeat behavior for the actual texels, in the + // z channel.) + if (any(lessThan(tc.xy, vec2(0.0f))) || any(greaterThan(tc.xy, vec2(1.0f)))) { + grad.xy = vec2(0.0f); + } + + return grad; +} void main() { - // Lock patch_bottom_left_texel to an integer, so that we never get - // any bilinear artifacts for the gradient. - vec2 base = round(patch_bottom_left_texel * vec2(image_width, image_height)) - * vec2(inv_image_width, inv_image_height); + vec2 image_size = textureSize(grad_tex, 0).xy; + + // Lock the patch center to an integer, so that we never get + // any bilinear artifacts for the gradient. (NOTE: This assumes an + // even patch size.) Then calculate the bottom-left texel of the patch. + vec2 base = (round(patch_center * image_size) - (0.5f * patch_size - 0.5f)) + * inv_image_size; // First, precompute the pseudo-Hessian for the template patch. // This is the part where we really save by the inverse search @@ -63,15 +91,18 @@ void main() // this is an outer product, so we get a (symmetric) 2x2 matrix, // not a scalar. mat2 H = mat2(0.0f); + vec2 grad_sum = vec2(0.0f); // Used for patch normalization. + float template_sum = 0.0f; for (uint y = 0; y < patch_size; ++y) { for (uint x = 0; x < patch_size; ++x) { - vec2 tc; - tc.x = base.x + x * inv_image_width; - tc.y = base.y + y * inv_image_height; - vec2 grad = texture(grad0_tex, tc).xy; + vec2 tc = base + uvec2(x, y) * inv_image_size; + vec3 grad = get_gradients(vec3(tc, ref_layer)); H[0][0] += grad.x * grad.x; H[1][1] += grad.y * grad.y; H[0][1] += grad.x * grad.y; + + template_sum += grad.z; // The actual template pixel value. + grad_sum += grad.xy; } } H[1][0] = H[0][1]; @@ -87,27 +118,67 @@ void main() mat2 H_inv = inverse(H); - // Fetch the initial guess for the flow. - vec2 initial_u = texture(flow_tex, flow_tc).xy; + // Fetch the initial guess for the flow, and convert from the previous size to this one. + vec2 initial_u = texture(flow_tex, flow_tc).xy * (image_size * inv_prev_level_size); vec2 u = initial_u; + float mean_diff, first_mean_diff; for (uint i = 0; i < num_iterations; ++i) { vec2 du = vec2(0.0, 0.0); + float warped_sum = 0.0f; + vec2 u_norm = u * inv_image_size; // In [0..1] coordinates instead of pixels. for (uint y = 0; y < patch_size; ++y) { for (uint x = 0; x < patch_size; ++x) { - vec2 tc; - tc.x = base.x + x * inv_image_width; - tc.y = base.y + y * inv_image_height; - vec2 grad = texture(grad0_tex, tc).xy; - float t = texture(image0_tex, tc).x; - float warped = texture(image1_tex, tc + u).x; - du += grad * (warped - t); + vec2 tc = base + uvec2(x, y) * inv_image_size; + vec3 grad = get_gradients(vec3(tc, ref_layer)); + float t = grad.z; + float warped = texture(image_tex, vec3(tc + u_norm, search_layer)).x; + du += grad.xy * (warped - t); + warped_sum += warped; } } - u += H_inv * du * vec2(inv_image_width, inv_image_height); + + // Subtract the mean for patch normalization. We've done our + // sums without subtracting the means (because we didn't know them + // beforehand), ie.: + // + // sum(S^T * ((x + µ1) - (y + µ2))) = sum(S^T * (x - y)) + (µ1 – µ2) sum(S^T) + // + // which gives trivially + // + // sum(S^T * (x - y)) = [what we calculated] - (µ1 - µ2) sum(S^T) + // + // so we can just subtract away the mean difference here. + mean_diff = (warped_sum - template_sum) * (1.0 / float(patch_size * patch_size)); + du -= grad_sum * mean_diff; + + if (i == 0) { + first_mean_diff = mean_diff; + } + + // Do the actual update. + u -= H_inv * du; } - // TODO: reject if moving too far + // Reject if we moved too far. Note that the paper says “too far” is the + // patch size, but the DIS code uses half of a patch size. The latter seems + // to give much better overall results. + // + // Also reject if the patch goes out-of-bounds (the paper does not mention this, + // but the code does, and it seems to be critical to avoid really bad behavior + // at the edges). + vec2 patch_center = (base * image_size - 0.5f) + patch_size * 0.5f + u; + if (length(u - initial_u) > (patch_size * 0.5f) || + patch_center.x < -(patch_size * 0.5f) || + image_size.x - patch_center.x < -(patch_size * 0.5f) || + patch_center.y < -(patch_size * 0.5f) || + image_size.y - patch_center.y < -(patch_size * 0.5f)) { + u = initial_u; + mean_diff = first_mean_diff; + } - out_flow = u; + // NOTE: The mean patch diff will be for the second-to-last patch, + // not the true position of du. But hopefully, it will be very close. + u *= inv_image_size; + out_flow = vec3(u.x, u.y, mean_diff); }