X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=src%2Ftimeman.cpp;h=f404ee0c353eb96215db47c14c500e3bc1c58246;hb=HEAD;hp=330709be6985d84be15be778dfc8746eccd0741a;hpb=fe60caba94de11932d6cdb9bb0282da0221c9f20;p=stockfish diff --git a/src/timeman.cpp b/src/timeman.cpp index 330709be..f404ee0c 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -1,8 +1,6 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 - Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad - Copyright (C) 2015-2017 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad + Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,95 +16,92 @@ along with this program. If not, see . */ +#include "timeman.h" + #include +#include #include "search.h" -#include "timeman.h" #include "uci.h" -TimeManagement Time; // Our global time management object +namespace Stockfish { -namespace { +TimeManagement Time; // Our global time management object - enum TimeType { OptimumTime, MaxTime }; - int remaining(int myTime, int myInc, int moveOverhead, int movesToGo, - int moveNum, bool ponder, TimeType type) { +// Called at the beginning of the search and calculates +// the bounds of time allowed for the current game ply. We currently support: +// 1) x basetime (+ z increment) +// 2) x moves in y seconds (+ z increment) +void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { - if (myTime <= 0) - return 0; + // If we have no time, no need to initialize TM, except for the start time, + // which is used by movetime. + startTime = limits.startTime; + if (limits.time[us] == 0) + return; - double ratio; // Which ratio of myTime we are going to use + TimePoint moveOverhead = TimePoint(Options["Move Overhead"]); + TimePoint npmsec = TimePoint(Options["nodestime"]); - // Usage of increment follows quadratic distribution with the maximum at move 25 - double inc = myInc * std::max(55.0, 120 - 0.12 * (moveNum - 25) * (moveNum - 25)); + // optScale is a percentage of available time to use for the current move. + // maxScale is a multiplier applied to optimumTime. + double optScale, maxScale; - // In moves-to-go we distribute time according to a quadratic function with - // the maximum around move 20 for 40 moves in y time case. - if (movesToGo) + // If we have to play in 'nodes as time' mode, then convert from time + // to nodes, and use resulting values in time management formulas. + // WARNING: to avoid time losses, the given npmsec (nodes per millisecond) + // must be much lower than the real engine speed. + if (npmsec) { - ratio = (type == OptimumTime ? 1.0 : 6.0) / std::min(50, movesToGo); + if (!availableNodes) // Only once at game start + availableNodes = npmsec * limits.time[us]; // Time is in msec + + // Convert from milliseconds to nodes + limits.time[us] = TimePoint(availableNodes); + limits.inc[us] *= npmsec; + limits.npmsec = npmsec; + } + + // Maximum move horizon of 50 moves + int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50; - if (moveNum <= 40) - ratio *= 1.1 - 0.001 * (moveNum - 20) * (moveNum - 20); - else - ratio *= 1.5; + // Make sure timeLeft is > 0 since we may use it as a divisor + TimePoint timeLeft = std::max(TimePoint(1), limits.time[us] + limits.inc[us] * (mtg - 1) + - moveOverhead * (2 + mtg)); - ratio *= 1 + inc / (myTime * 8.5); + // Use extra time with larger increments + double optExtra = std::clamp(1.0 + 12.5 * limits.inc[us] / limits.time[us], 1.0, 1.11); + + // Calculate time constants based on current time left. + double optConstant = std::min(0.00334 + 0.0003 * std::log10(limits.time[us] / 1000.0), 0.0049); + double maxConstant = std::max(3.4 + 3.0 * std::log10(limits.time[us] / 1000.0), 2.76); + + // x basetime (+ z increment) + // If there is a healthy increment, timeLeft can exceed actual available + // game time for the current move, so also cap to 20% of available game time. + if (limits.movestogo == 0) + { + optScale = std::min(0.0120 + std::pow(ply + 3.1, 0.44) * optConstant, + 0.21 * limits.time[us] / double(timeLeft)) + * optExtra; + maxScale = std::min(6.9, maxConstant + ply / 12.2); } - // Otherwise we increase usage of remaining time as the game goes on + + // x moves in y seconds (+ z increment) else { - double k = 1 + 20 * moveNum / (500.0 + moveNum); - ratio = (type == OptimumTime ? 0.017 : 0.07) * (k + inc / myTime); + optScale = std::min((0.88 + ply / 116.4) / mtg, 0.88 * limits.time[us] / double(timeLeft)); + maxScale = std::min(6.3, 1.5 + 0.11 * mtg); } - int time = int(std::min(1.0, ratio) * std::max(0, myTime - moveOverhead)); - - if (type == OptimumTime && ponder) - time *= 1.25; - - return time; - } - -} // namespace - - -/// init() is called at the beginning of the search and calculates the allowed -/// thinking time out of the time control and current game ply. We support four -/// different kinds of time controls, passed in 'limits': -/// -/// inc == 0 && movestogo == 0 means: x basetime [sudden death!] -/// inc == 0 && movestogo != 0 means: x moves in y minutes -/// inc > 0 && movestogo == 0 means: x basetime + z increment -/// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment - -void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) -{ - int moveOverhead = Options["Move Overhead"]; - int npmsec = Options["nodestime"]; - bool ponder = Options["Ponder"]; - - // If we have to play in 'nodes as time' mode, then convert from time - // to nodes, and use resulting values in time management formulas. - // WARNING: Given npms (nodes per millisecond) must be much lower then - // the real engine speed to avoid time losses. - if (npmsec) - { - if (!availableNodes) // Only once at game start - availableNodes = npmsec * limits.time[us]; // Time is in msec - - // Convert from millisecs to nodes - limits.time[us] = (int)availableNodes; - limits.inc[us] *= npmsec; - limits.npmsec = npmsec; - } - - int moveNum = (ply + 1) / 2; - - startTime = limits.startTime; - optimumTime = remaining(limits.time[us], limits.inc[us], moveOverhead, - limits.movestogo, moveNum, ponder, OptimumTime); - maximumTime = remaining(limits.time[us], limits.inc[us], moveOverhead, - limits.movestogo, moveNum, ponder, MaxTime); + // Limit the maximum possible time for this move + optimumTime = TimePoint(optScale * timeLeft); + maximumTime = + TimePoint(std::min(0.84 * limits.time[us] - moveOverhead, maxScale * optimumTime)) - 10; + + if (Options["Ponder"]) + optimumTime += optimumTime / 4; } + +} // namespace Stockfish