]> git.sesse.net Git - c64tapwav/blobdiff - decode.cpp
Add a --quiet option.
[c64tapwav] / decode.cpp
index ec95faad5c960ad19fe5f137bded32c2faa2f7fb..2a27371ac2db191c78c0119e812f8bad01834096 100644 (file)
@@ -3,6 +3,7 @@
 #include <math.h>
 #include <assert.h>
 #include <limits.h>
+#include <getopt.h>
 #include <vector>
 #include <algorithm>
 
 #include "tap.h"
 
 #define BUFSIZE 4096
-#define HYSTERESIS_LIMIT 3000
 #define C64_FREQUENCY 985248
-
 #define SYNC_PULSE_START 1000
 #define SYNC_PULSE_END 20000
 #define SYNC_PULSE_LENGTH 378.0
 #define SYNC_TEST_TOLERANCE 1.10
 
+#define NUM_FILTER_COEFF 32
+
+static float hysteresis_limit = 3000.0 / 32768.0;
+static bool do_calibrate = true;
+static bool output_cycles_plot = false;
+static bool use_filter = false;
+static float filter_coeff[NUM_FILTER_COEFF] = { 1.0f };  // The rest is filled with 0.
+static bool output_filtered = false;
+static bool quiet = false;
+
 // between [x,x+1]
 double find_zerocrossing(const std::vector<float> &pcm, int x)
 {
@@ -80,8 +89,10 @@ double calibrate(const std::vector<pulse> &pulses) {
                sync_pulse_end = try_end;
                sync_pulse_stddev = stddev;
        }
-       fprintf(stderr, "Sync pulse length standard deviation: %.2f cycles\n",
-               sync_pulse_stddev);
+       if (!quiet) {
+               fprintf(stderr, "Sync pulse length standard deviation: %.2f cycles\n",
+                       sync_pulse_stddev);
+       }
 
        double sum = 0.0;
        for (int i = SYNC_PULSE_START; i < sync_pulse_end; ++i) {
@@ -89,8 +100,10 @@ double calibrate(const std::vector<pulse> &pulses) {
        }
        double mean_length = C64_FREQUENCY * sum / (sync_pulse_end - SYNC_PULSE_START);
        double calibration_factor = SYNC_PULSE_LENGTH / mean_length;
-       fprintf(stderr, "Calibrated sync pulse length: %.2f -> %.2f (change %+.2f%%)\n",
-               mean_length, SYNC_PULSE_LENGTH, 100.0 * (calibration_factor - 1.0));
+       if (!quiet) {
+               fprintf(stderr, "Calibrated sync pulse length: %.2f -> %.2f (change %+.2f%%)\n",
+                       mean_length, SYNC_PULSE_LENGTH, 100.0 * (calibration_factor - 1.0));
+       }
 
        // Check for pulses outside +/- 10% (sign of misdetection).
        for (int i = SYNC_PULSE_START; i < sync_pulse_end; ++i) {
@@ -134,29 +147,105 @@ void output_tap(const std::vector<pulse>& pulses, double calibration_factor)
        fwrite(&hdr, sizeof(hdr), 1, stdout);
        fwrite(tap_data.data(), tap_data.size(), 1, stdout);
 }
-       
-int main(int argc, char **argv)
+
+static struct option long_options[] = {
+       {"no-calibrate",     0,                 0, 's' },
+       {"plot-cycles",      0,                 0, 'p' },
+       {"hysteresis-limit", required_argument, 0, 'l' },
+       {"filter",           required_argument, 0, 'f' },
+       {"output-filtered",  0,                 0, 'F' },
+       {"quiet",            0,                 0, 'q' },
+       {"help",             0,                 0, 'h' },
+       {0,                  0,                 0, 0   }
+};
+
+void help()
 {
-       make_lanczos_weight_table();
-       std::vector<float> pcm;
-       int sample_rate;
-       if (!read_audio_file(argv[1], &pcm, &sample_rate)) {
-               exit(1);
+       fprintf(stderr, "decode [OPTIONS] AUDIO-FILE > TAP-FILE\n");
+       fprintf(stderr, "\n");
+       fprintf(stderr, "  -s, --no-calibrate           do not try to calibrate on sync pulse length\n");
+       fprintf(stderr, "  -p, --plot-cycles            output debugging info to cycles.plot\n");
+       fprintf(stderr, "  -l, --hysteresis-limit VAL   change amplitude threshold for ignoring pulses (0..32768)\n");
+       fprintf(stderr, "  -f, --filter C1:C2:C3:...    specify FIR filter (up to %d coefficients)\n", NUM_FILTER_COEFF);
+       fprintf(stderr, "  -F, --output-filtered        output filtered waveform to filtered.raw\n");
+       fprintf(stderr, "  -q, --quiet                  suppress some informational messages\n");
+       fprintf(stderr, "  -h, --help                   display this help, then exit\n");
+       exit(1);
+}
+
+void parse_options(int argc, char **argv)
+{
+       for ( ;; ) {
+               int option_index = 0;
+               int c = getopt_long(argc, argv, "spl:f:Fqh", long_options, &option_index);
+               if (c == -1)
+                       break;
+
+               switch (c) {
+               case 's':
+                       do_calibrate = false;
+                       break;
+
+               case 'p':
+                       output_cycles_plot = true;
+                       break;
+
+               case 'l':
+                       hysteresis_limit = atof(optarg) / 32768.0;
+                       break;
+
+               case 'f': {
+                       const char *coeffstr = strtok(optarg, ":");
+                       int coeff_index = 0;
+                       while (coeff_index < NUM_FILTER_COEFF && coeffstr != NULL) {
+                               filter_coeff[coeff_index++] = atof(coeffstr);
+                               coeffstr = strtok(NULL, ":");
+                       }
+                       use_filter = true;
+                       break;
+               }
+
+               case 'F':
+                       output_filtered = true;
+                       break;
+
+               case 'q':
+                       quiet = true;
+                       break;
+
+               case 'h':
+               default:
+                       help();
+                       exit(1);
+               }
        }
+}
 
-#if 0
-       for (int i = 0; i < LEN; ++i) {
-               in[i] += rand() % 10000;
+// TODO: Support AVX here.
+std::vector<float> do_filter(const std::vector<float>& pcm, const float* filter)
+{
+       std::vector<float> filtered_pcm;
+       filtered_pcm.reserve(pcm.size());
+       for (unsigned i = NUM_FILTER_COEFF; i < pcm.size(); ++i) {
+               float s = 0.0f;
+               for (int j = 0; j < NUM_FILTER_COEFF; ++j) {
+                       s += filter[j] * pcm[i - j];
+               }
+               filtered_pcm.push_back(s);
        }
-#endif
 
-#if 0
-       for (int i = 0; i < LEN; ++i) {
-               printf("%d\n", in[i]);
+       if (output_filtered) {
+               FILE *fp = fopen("filtered.raw", "wb");
+               fwrite(filtered_pcm.data(), filtered_pcm.size() * sizeof(filtered_pcm[0]), 1, fp);
+               fclose(fp);
        }
-#endif
 
-       std::vector<pulse> pulses;  // in seconds
+       return filtered_pcm;
+}
+
+std::vector<pulse> detect_pulses(const std::vector<float> &pcm, int sample_rate)
+{
+       std::vector<pulse> pulses;
 
        // Find the flanks.
        int last_bit = -1;
@@ -164,14 +253,14 @@ int main(int argc, char **argv)
        for (unsigned i = 0; i < pcm.size(); ++i) {
                int bit = (pcm[i] > 0) ? 1 : 0;
                if (bit == 0 && last_bit == 1) {
-                       // Check if we ever go up above HYSTERESIS_LIMIT before we dip down again.
+                       // Check if we ever go up above <hysteresis_limit> before we dip down again.
                        bool true_pulse = false;
                        unsigned j;
                        int min_level_after = 32767;
                        for (j = i; j < pcm.size(); ++j) {
                                min_level_after = std::min<int>(min_level_after, pcm[j]);
                                if (pcm[j] > 0) break;
-                               if (pcm[j] < -HYSTERESIS_LIMIT) {
+                               if (pcm[j] < -hysteresis_limit) {
                                        true_pulse = true;
                                        break;
                                }
@@ -180,7 +269,7 @@ int main(int argc, char **argv)
                        if (!true_pulse) {
 #if 0
                                fprintf(stderr, "Ignored down-flank at %.6f seconds due to hysteresis (%d < %d).\n",
-                                       double(i) / sample_rate, -min_level_after, HYSTERESIS_LIMIT);
+                                       double(i) / sample_rate, -min_level_after, hysteresis_limit);
 #endif
                                i = j;
                                continue;
@@ -198,16 +287,51 @@ int main(int argc, char **argv)
                }
                last_bit = bit;
        }
+       return pulses;
+}
 
-       double calibration_factor = calibrate(pulses);
+int main(int argc, char **argv)
+{
+       parse_options(argc, argv);
 
-       FILE *fp = fopen("cycles.plot", "w");
-       std::vector<char> tap_data;
-       for (unsigned i = 0; i < pulses.size(); ++i) {
-               double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
-               fprintf(fp, "%f %f\n", pulses[i].time, cycles);
+       make_lanczos_weight_table();
+       std::vector<float> pcm;
+       int sample_rate;
+       if (!read_audio_file(argv[optind], &pcm, &sample_rate)) {
+               exit(1);
+       }
+
+       if (use_filter) {
+               pcm = do_filter(pcm, filter_coeff);
+       }
+
+#if 0
+       for (int i = 0; i < LEN; ++i) {
+               in[i] += rand() % 10000;
+       }
+#endif
+
+#if 0
+       for (int i = 0; i < LEN; ++i) {
+               printf("%d\n", in[i]);
+       }
+#endif
+
+       std::vector<pulse> pulses = detect_pulses(pcm, sample_rate);
+
+       double calibration_factor = 1.0;
+       if (do_calibrate) {
+               calibration_factor = calibrate(pulses);
+       }
+
+       if (output_cycles_plot) {
+               FILE *fp = fopen("cycles.plot", "w");
+               for (unsigned i = 0; i < pulses.size(); ++i) {
+                       double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
+                       fprintf(fp, "%f %f\n", pulses[i].time, cycles);
+               }
+               fclose(fp);
        }
-       fclose(fp);
 
        output_tap(pulses, calibration_factor);
 }