]> git.sesse.net Git - c64tapwav/blobdiff - decode.cpp
Factor out cycles.plot writing.
[c64tapwav] / decode.cpp
index 99776bc29a07e15eb54d57c1cd5d2fa8986f4822..7def49df3c7fbb9f19377122c8c9639d6002462a 100644 (file)
@@ -1,34 +1,37 @@
 #include <stdio.h>
 #include <string.h>
 #include <math.h>
-#include <unistd.h>
 #include <assert.h>
 #include <limits.h>
+#include <getopt.h>
 #include <vector>
 #include <algorithm>
 
+#include "audioreader.h"
 #include "interpolate.h"
+#include "tap.h"
 
 #define BUFSIZE 4096
-#define HYSTERESIS_LIMIT 3000
-#define SAMPLE_RATE 44100
 #define C64_FREQUENCY 985248
-#define TAP_RESOLUTION 8
-
 #define SYNC_PULSE_START 1000
-#define SYNC_PULSE_END 15000
+#define SYNC_PULSE_END 20000
 #define SYNC_PULSE_LENGTH 378.0
 #define SYNC_TEST_TOLERANCE 1.10
 
-struct tap_header {
-       char identifier[12];
-       char version;
-       char reserved[3];
-       unsigned int data_len;
-};
+#define NUM_FILTER_COEFF 32
+
+static float hysteresis_limit = 3000.0 / 32768.0;
+static bool do_calibrate = true;
+static bool output_cycles_plot = false;
+static bool use_filter = false;
+static bool do_crop = false;
+static float crop_start = 0.0f, crop_end = HUGE_VAL;
+static float filter_coeff[NUM_FILTER_COEFF] = { 1.0f };  // The rest is filled with 0.
+static bool output_filtered = false;
+static bool quiet = false;
 
 // between [x,x+1]
-double find_zerocrossing(const std::vector<short> &pcm, int x)
+double find_zerocrossing(const std::vector<float> &pcm, int x)
 {
        if (pcm[x] == 0) {
                return x;
@@ -42,7 +45,7 @@ double find_zerocrossing(const std::vector<short> &pcm, int x)
 
        double upper = x;
        double lower = x + 1;
-       while (upper - lower > 1e-6) {
+       while (lower - upper > 1e-3) {
                double mid = 0.5f * (upper + lower);
                if (lanczos_interpolate(pcm, mid) > 0) {
                        upper = mid;
@@ -58,33 +61,220 @@ struct pulse {
        double time;  // in seconds from start
        double len;   // in seconds
 };
-       
-int main(int argc, char **argv)
+
+// Calibrate on the first ~25k pulses (skip a few, just to be sure).
+double calibrate(const std::vector<pulse> &pulses) {
+       if (pulses.size() < SYNC_PULSE_END) {
+               fprintf(stderr, "Too few pulses, not calibrating!\n");
+               return 1.0;
+       }
+
+       int sync_pulse_end = -1;
+       double sync_pulse_stddev = -1.0;
+
+       // Compute the standard deviation (to check for uneven speeds).
+       // If it suddenly skyrockets, we assume that sync ended earlier
+       // than we thought (it should be 25000 cycles), and that we should
+       // calibrate on fewer cycles.
+       for (int try_end : { 2000, 4000, 5000, 7500, 10000, 15000, SYNC_PULSE_END }) {
+               double sum2 = 0.0;
+               for (int i = SYNC_PULSE_START; i < try_end; ++i) {
+                       double cycles = pulses[i].len * C64_FREQUENCY;
+                       sum2 += (cycles - SYNC_PULSE_LENGTH) * (cycles - SYNC_PULSE_LENGTH);
+               }
+               double stddev = sqrt(sum2 / (try_end - SYNC_PULSE_START - 1));
+               if (sync_pulse_end != -1 && stddev > 5.0 && stddev / sync_pulse_stddev > 1.3) {
+                       fprintf(stderr, "Stopping at %d sync pulses because standard deviation would be too big (%.2f cycles); shorter-than-usual trailer?\n",
+                               sync_pulse_end, stddev);
+                       break;
+               }
+               sync_pulse_end = try_end;
+               sync_pulse_stddev = stddev;
+       }
+       if (!quiet) {
+               fprintf(stderr, "Sync pulse length standard deviation: %.2f cycles\n",
+                       sync_pulse_stddev);
+       }
+
+       double sum = 0.0;
+       for (int i = SYNC_PULSE_START; i < sync_pulse_end; ++i) {
+               sum += pulses[i].len;
+       }
+       double mean_length = C64_FREQUENCY * sum / (sync_pulse_end - SYNC_PULSE_START);
+       double calibration_factor = SYNC_PULSE_LENGTH / mean_length;
+       if (!quiet) {
+               fprintf(stderr, "Calibrated sync pulse length: %.2f -> %.2f (change %+.2f%%)\n",
+                       mean_length, SYNC_PULSE_LENGTH, 100.0 * (calibration_factor - 1.0));
+       }
+
+       // Check for pulses outside +/- 10% (sign of misdetection).
+       for (int i = SYNC_PULSE_START; i < sync_pulse_end; ++i) {
+               double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
+               if (cycles < SYNC_PULSE_LENGTH / SYNC_TEST_TOLERANCE || cycles > SYNC_PULSE_LENGTH * SYNC_TEST_TOLERANCE) {
+                       fprintf(stderr, "Sync cycle with downflank at %.6f was detected at %.0f cycles; misdetect?\n",
+                               pulses[i].time, cycles);
+               }
+       }
+
+       return calibration_factor;
+}
+
+void output_tap(const std::vector<pulse>& pulses, double calibration_factor)
 {
-       make_lanczos_weight_table();
-       std::vector<short> pcm;
+       std::vector<char> tap_data;
+       for (unsigned i = 0; i < pulses.size(); ++i) {
+               double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
+               int len = lrintf(cycles / TAP_RESOLUTION);
+               if (i > SYNC_PULSE_END && (cycles < 100 || cycles > 800)) {
+                       fprintf(stderr, "Cycle with downflank at %.6f was detected at %.0f cycles; misdetect?\n",
+                                       pulses[i].time, cycles);
+               }
+               if (len <= 255) {
+                       tap_data.push_back(len);
+               } else {
+                       int overflow_len = lrintf(cycles);
+                       tap_data.push_back(0);
+                       tap_data.push_back(overflow_len & 0xff);
+                       tap_data.push_back((overflow_len >> 8) & 0xff);
+                       tap_data.push_back(overflow_len >> 16);
+               }
+       }
+
+       tap_header hdr;
+       memcpy(hdr.identifier, "C64-TAPE-RAW", 12);
+       hdr.version = 1;
+       hdr.reserved[0] = hdr.reserved[1] = hdr.reserved[2] = 0;
+       hdr.data_len = tap_data.size();
+
+       fwrite(&hdr, sizeof(hdr), 1, stdout);
+       fwrite(tap_data.data(), tap_data.size(), 1, stdout);
+}
+
+static struct option long_options[] = {
+       {"no-calibrate",     0,                 0, 's' },
+       {"plot-cycles",      0,                 0, 'p' },
+       {"hysteresis-limit", required_argument, 0, 'l' },
+       {"filter",           required_argument, 0, 'f' },
+       {"output-filtered",  0,                 0, 'F' },
+       {"crop",             required_argument, 0, 'c' },
+       {"quiet",            0,                 0, 'q' },
+       {"help",             0,                 0, 'h' },
+       {0,                  0,                 0, 0   }
+};
+
+void help()
+{
+       fprintf(stderr, "decode [OPTIONS] AUDIO-FILE > TAP-FILE\n");
+       fprintf(stderr, "\n");
+       fprintf(stderr, "  -s, --no-calibrate           do not try to calibrate on sync pulse length\n");
+       fprintf(stderr, "  -p, --plot-cycles            output debugging info to cycles.plot\n");
+       fprintf(stderr, "  -l, --hysteresis-limit VAL   change amplitude threshold for ignoring pulses (0..32768)\n");
+       fprintf(stderr, "  -f, --filter C1:C2:C3:...    specify FIR filter (up to %d coefficients)\n", NUM_FILTER_COEFF);
+       fprintf(stderr, "  -F, --output-filtered        output filtered waveform to filtered.raw\n");
+       fprintf(stderr, "  -c, --crop START[:END]       use only the given part of the file\n");
+       fprintf(stderr, "  -q, --quiet                  suppress some informational messages\n");
+       fprintf(stderr, "  -h, --help                   display this help, then exit\n");
+       exit(1);
+}
 
-       while (!feof(stdin)) {
-               short buf[BUFSIZE];
-               ssize_t ret = fread(buf, 2, BUFSIZE, stdin);
-               if (ret >= 0) {
-                       pcm.insert(pcm.end(), buf, buf + ret);
+void parse_options(int argc, char **argv)
+{
+       for ( ;; ) {
+               int option_index = 0;
+               int c = getopt_long(argc, argv, "spl:f:Fc:qh", long_options, &option_index);
+               if (c == -1)
+                       break;
+
+               switch (c) {
+               case 's':
+                       do_calibrate = false;
+                       break;
+
+               case 'p':
+                       output_cycles_plot = true;
+                       break;
+
+               case 'l':
+                       hysteresis_limit = atof(optarg) / 32768.0;
+                       break;
+
+               case 'f': {
+                       const char *coeffstr = strtok(optarg, ":");
+                       int coeff_index = 0;
+                       while (coeff_index < NUM_FILTER_COEFF && coeffstr != NULL) {
+                               filter_coeff[coeff_index++] = atof(coeffstr);
+                               coeffstr = strtok(NULL, ":");
+                       }
+                       use_filter = true;
+                       break;
                }
-       }       
 
-#if 0
-       for (int i = 0; i < LEN; ++i) {
-               in[i] += rand() % 10000;
+               case 'F':
+                       output_filtered = true;
+                       break;
+
+               case 'c': {
+                       const char *cropstr = strtok(optarg, ":");
+                       crop_start = atof(cropstr);
+                       cropstr = strtok(NULL, ":");
+                       if (cropstr == NULL) {
+                               crop_end = HUGE_VAL;
+                       } else {
+                               crop_end = atof(cropstr);
+                       }
+                       do_crop = true;
+                       break;
+               }
+
+               case 'q':
+                       quiet = true;
+                       break;
+
+               case 'h':
+               default:
+                       help();
+                       exit(1);
+               }
        }
-#endif
+}
 
-#if 0
-       for (int i = 0; i < LEN; ++i) {
-               printf("%d\n", in[i]);
+std::vector<float> crop(const std::vector<float>& pcm, float crop_start, float crop_end, int sample_rate)
+{
+       size_t start_sample, end_sample;
+       if (crop_start >= 0.0f) {
+               start_sample = std::min<size_t>(lrintf(crop_start * sample_rate), pcm.size());
        }
-#endif
+       if (crop_end >= 0.0f) {
+               end_sample = std::min<size_t>(lrintf(crop_end * sample_rate), pcm.size());
+       }
+       return std::vector<float>(pcm.begin() + start_sample, pcm.begin() + end_sample);
+}
 
-       std::vector<pulse> pulses;  // in seconds
+// TODO: Support AVX here.
+std::vector<float> do_filter(const std::vector<float>& pcm, const float* filter)
+{
+       std::vector<float> filtered_pcm;
+       filtered_pcm.reserve(pcm.size());
+       for (unsigned i = NUM_FILTER_COEFF; i < pcm.size(); ++i) {
+               float s = 0.0f;
+               for (int j = 0; j < NUM_FILTER_COEFF; ++j) {
+                       s += filter[j] * pcm[i - j];
+               }
+               filtered_pcm.push_back(s);
+       }
+
+       if (output_filtered) {
+               FILE *fp = fopen("filtered.raw", "wb");
+               fwrite(filtered_pcm.data(), filtered_pcm.size() * sizeof(filtered_pcm[0]), 1, fp);
+               fclose(fp);
+       }
+
+       return filtered_pcm;
+}
+
+std::vector<pulse> detect_pulses(const std::vector<float> &pcm, int sample_rate)
+{
+       std::vector<pulse> pulses;
 
        // Find the flanks.
        int last_bit = -1;
@@ -92,14 +282,14 @@ int main(int argc, char **argv)
        for (unsigned i = 0; i < pcm.size(); ++i) {
                int bit = (pcm[i] > 0) ? 1 : 0;
                if (bit == 0 && last_bit == 1) {
-                       // Check if we ever go up above HYSTERESIS_LIMIT before we dip down again.
+                       // Check if we ever go up above <hysteresis_limit> before we dip down again.
                        bool true_pulse = false;
                        unsigned j;
                        int min_level_after = 32767;
                        for (j = i; j < pcm.size(); ++j) {
                                min_level_after = std::min<int>(min_level_after, pcm[j]);
                                if (pcm[j] > 0) break;
-                               if (pcm[j] < -HYSTERESIS_LIMIT) {
+                               if (pcm[j] < -hysteresis_limit) {
                                        true_pulse = true;
                                        break;
                                }
@@ -108,14 +298,14 @@ int main(int argc, char **argv)
                        if (!true_pulse) {
 #if 0
                                fprintf(stderr, "Ignored down-flank at %.6f seconds due to hysteresis (%d < %d).\n",
-                                       double(i) / SAMPLE_RATE, -min_level_after, HYSTERESIS_LIMIT);
+                                       double(i) / sample_rate, -min_level_after, hysteresis_limit);
 #endif
                                i = j;
                                continue;
                        } 
 
                        // down-flank!
-                       double t = find_zerocrossing(pcm, i - 1) * (1.0 / SAMPLE_RATE);
+                       double t = find_zerocrossing(pcm, i - 1) * (1.0 / sample_rate) + crop_start;
                        if (last_downflank > 0) {
                                pulse p;
                                p.time = t;
@@ -126,85 +316,60 @@ int main(int argc, char **argv)
                }
                last_bit = bit;
        }
+       return pulses;
+}
 
-       // Calibrate on the first ~25k pulses (skip a few, just to be sure).
-       double calibration_factor = 1.0f;
-       if (pulses.size() < SYNC_PULSE_END) {
-               fprintf(stderr, "Too few pulses, not calibrating!\n");
-       } else {
-               double sum = 0.0;
-               for (int i = SYNC_PULSE_START; i < SYNC_PULSE_END; ++i) {
-                       sum += pulses[i].len;
-               }
-               double mean_length = C64_FREQUENCY * sum / (SYNC_PULSE_END - SYNC_PULSE_START);
-               calibration_factor = SYNC_PULSE_LENGTH / mean_length;
-               fprintf(stderr, "Calibrated sync pulse length: %.2f -> %.2f (change %+.2f%%)\n",
-                       mean_length, SYNC_PULSE_LENGTH, 100.0 * (calibration_factor - 1.0));
-
-               // Check for pulses outside +/- 10% (sign of misdetection).
-               for (int i = SYNC_PULSE_START; i < SYNC_PULSE_END; ++i) {
-                       double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
-                       if (cycles < SYNC_PULSE_LENGTH / SYNC_TEST_TOLERANCE || cycles > SYNC_PULSE_LENGTH * SYNC_TEST_TOLERANCE) {
-                               fprintf(stderr, "Sync cycle with downflank at %.6f was detected at %.0f cycles; misdetect?\n",
-                                       pulses[i].time, cycles);
-                       }
-               }
-
-               // Compute the standard deviation (to check for uneven speeds).
-               double sum2 = 0.0;
-               for (int i = SYNC_PULSE_START; i < SYNC_PULSE_END; ++i) {
-                       double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
-                       sum2 += (cycles - SYNC_PULSE_LENGTH) * (cycles - SYNC_PULSE_LENGTH);
-               }
-               double stddev = sqrt(sum2 / (SYNC_PULSE_END - SYNC_PULSE_START - 1));
-               fprintf(stderr, "Sync pulse length standard deviation: %.2f cycles\n",
-                       stddev);
-       }
-
+void output_cycle_plot(const std::vector<pulse> &pulses, double calibration_factor)
+{
        FILE *fp = fopen("cycles.plot", "w");
-       std::vector<char> tap_data;
        for (unsigned i = 0; i < pulses.size(); ++i) {
                double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
                fprintf(fp, "%f %f\n", pulses[i].time, cycles);
-               int len = lrintf(cycles / TAP_RESOLUTION);
-               if (i > SYNC_PULSE_END && (cycles < 100 || cycles > 800)) {
-                       fprintf(stderr, "Cycle with downflank at %.6f was detected at %.0f cycles; misdetect?\n",
-                                       pulses[i].time, cycles);
-               }
-               if (len <= 255) {
-                       tap_data.push_back(len);
-               } else {
-                       int overflow_len = lrintf(cycles);
-                       tap_data.push_back(0);
-                       tap_data.push_back(overflow_len & 0xff);
-                       tap_data.push_back((overflow_len >> 8) & 0xff);
-                       tap_data.push_back(overflow_len >> 16);
-               }
        }
        fclose(fp);
+}
 
-       tap_header hdr;
-       memcpy(hdr.identifier, "C64-TAPE-RAW", 12);
-       hdr.version = 1;
-       hdr.reserved[0] = hdr.reserved[1] = hdr.reserved[2] = 0;
-       hdr.data_len = tap_data.size();
+int main(int argc, char **argv)
+{
+       parse_options(argc, argv);
 
-       fwrite(&hdr, sizeof(hdr), 1, stdout);
-       fwrite(tap_data.data(), tap_data.size(), 1, stdout);
+       make_lanczos_weight_table();
+       std::vector<float> pcm;
+       int sample_rate;
+       if (!read_audio_file(argv[optind], &pcm, &sample_rate)) {
+               exit(1);
+       }
 
-       // Output a debug raw file with pulse detection points.
-       fp = fopen("debug.raw", "wb");
-       short one = 32767;
-       short zero = 0;
-       unsigned pulsenum = 0;
-       for (unsigned i = 0; i < pcm.size(); ++i) {
-               unsigned next_pulse = (pulsenum >= pulses.size()) ? INT_MAX : int(pulses[pulsenum].time * SAMPLE_RATE);
-               if (i >= next_pulse) {
-                       fwrite(&one, sizeof(one), 1, fp);
-                       ++pulsenum;
-               } else {
-                       fwrite(&zero, sizeof(zero), 1, fp);
-               }
+       if (do_crop) {
+               pcm = crop(pcm, crop_start, crop_end, sample_rate);
        }
-       fclose(fp);
+
+       if (use_filter) {
+               pcm = do_filter(pcm, filter_coeff);
+       }
+
+#if 0
+       for (int i = 0; i < LEN; ++i) {
+               in[i] += rand() % 10000;
+       }
+#endif
+
+#if 0
+       for (int i = 0; i < LEN; ++i) {
+               printf("%d\n", in[i]);
+       }
+#endif
+
+       std::vector<pulse> pulses = detect_pulses(pcm, sample_rate);
+
+       double calibration_factor = 1.0;
+       if (do_calibrate) {
+               calibration_factor = calibrate(pulses);
+       }
+
+       if (output_cycles_plot) {
+               output_cycle_plot(pulses, calibration_factor);
+       }
+
+       output_tap(pulses, calibration_factor);
 }