]> git.sesse.net Git - c64tapwav/blobdiff - decode.cpp
Specify levels in terms of 0..1 and not 0..32768.
[c64tapwav] / decode.cpp
index 7def49df3c7fbb9f19377122c8c9639d6002462a..839c2619d91824b0fc49417942c20f6e038690a9 100644 (file)
@@ -1,3 +1,6 @@
+// Copyright Steinar H. Gunderson <sgunderson@bigfoot.com>
+// Licensed under the GPL, v2. (See the file COPYING.)
+
 #include <stdio.h>
 #include <string.h>
 #include <math.h>
@@ -9,7 +12,9 @@
 
 #include "audioreader.h"
 #include "interpolate.h"
+#include "level.h"
 #include "tap.h"
+#include "filter.h"
 
 #define BUFSIZE 4096
 #define C64_FREQUENCY 985248
 #define SYNC_PULSE_LENGTH 378.0
 #define SYNC_TEST_TOLERANCE 1.10
 
+// SPSA options
 #define NUM_FILTER_COEFF 32
-
-static float hysteresis_limit = 3000.0 / 32768.0;
+#define NUM_ITER 5000
+#define A NUM_ITER/10  // approx
+#define INITIAL_A 0.005 // A bit of trial and error...
+#define INITIAL_C 0.02  // This too.
+#define GAMMA 0.166
+#define ALPHA 1.0
+
+static float hysteresis_upper_limit = 0.1;
+static float hysteresis_lower_limit = -0.1;
 static bool do_calibrate = true;
 static bool output_cycles_plot = false;
-static bool use_filter = false;
 static bool do_crop = false;
 static float crop_start = 0.0f, crop_end = HUGE_VAL;
+
+static bool use_fir_filter = false;
 static float filter_coeff[NUM_FILTER_COEFF] = { 1.0f };  // The rest is filled with 0.
+static bool use_rc_filter = false;
+static float rc_filter_freq;
 static bool output_filtered = false;
-static bool quiet = false;
 
-// between [x,x+1]
-double find_zerocrossing(const std::vector<float> &pcm, int x)
+static bool quiet = false;
+static bool do_auto_level = false;
+static bool output_leveled = false;
+static std::vector<float> train_snap_points;
+static bool do_train = false;
+
+// The frequency to filter on (for do_auto_level), in Hertz.
+// Larger values makes the compressor react faster, but if it is too large,
+// you'll ruin the waveforms themselves.
+static float auto_level_freq = 200.0;
+
+// The minimum estimated sound level (for do_auto_level) at any given point.
+// If you decrease this, you'll be able to amplify really silent signals
+// by more, but you'll also increase the level of silent (ie. noise-only) segments,
+// possibly caused misdetected pulses in these segments.
+static float min_level = 0.05f;
+
+// search for the value <limit> between [x,x+1]
+double find_crossing(const std::vector<float> &pcm, int x, float limit)
 {
-       if (pcm[x] == 0) {
-               return x;
-       }
-       if (pcm[x + 1] == 0) {
-               return x + 1;
-       }
-
-       assert(pcm[x + 1] < 0);
-       assert(pcm[x] > 0);
-
        double upper = x;
        double lower = x + 1;
        while (lower - upper > 1e-3) {
                double mid = 0.5f * (upper + lower);
-               if (lanczos_interpolate(pcm, mid) > 0) {
+               if (lanczos_interpolate(pcm, mid) > limit) {
                        upper = mid;
                } else {
                        lower = mid;
@@ -151,10 +173,15 @@ void output_tap(const std::vector<pulse>& pulses, double calibration_factor)
 }
 
 static struct option long_options[] = {
+       {"auto-level",       0,                 0, 'a' },
+       {"auto-level-freq",  required_argument, 0, 'b' },
+       {"output-leveled",   0,                 0, 'A' },
+       {"min-level",        required_argument, 0, 'm' },
        {"no-calibrate",     0,                 0, 's' },
        {"plot-cycles",      0,                 0, 'p' },
        {"hysteresis-limit", required_argument, 0, 'l' },
        {"filter",           required_argument, 0, 'f' },
+       {"rc-filter",        required_argument, 0, 'r' },
        {"output-filtered",  0,                 0, 'F' },
        {"crop",             required_argument, 0, 'c' },
        {"quiet",            0,                 0, 'q' },
@@ -166,12 +193,19 @@ void help()
 {
        fprintf(stderr, "decode [OPTIONS] AUDIO-FILE > TAP-FILE\n");
        fprintf(stderr, "\n");
+       fprintf(stderr, "  -a, --auto-level             automatically adjust amplitude levels throughout the file\n");
+       fprintf(stderr, "  -b, --auto-level-freq        minimum frequency in Hertz of corrected level changes (default 200 Hz)\n");
+       fprintf(stderr, "  -A, --output-leveled         output leveled waveform to leveled.raw\n");
+       fprintf(stderr, "  -m, --min-level              minimum estimated sound level (0..1) for --auto-level\n");
        fprintf(stderr, "  -s, --no-calibrate           do not try to calibrate on sync pulse length\n");
        fprintf(stderr, "  -p, --plot-cycles            output debugging info to cycles.plot\n");
-       fprintf(stderr, "  -l, --hysteresis-limit VAL   change amplitude threshold for ignoring pulses (0..32768)\n");
+       fprintf(stderr, "  -l, --hysteresis-limit U[:L] change amplitude threshold for ignoring pulses (-1..1)\n");
        fprintf(stderr, "  -f, --filter C1:C2:C3:...    specify FIR filter (up to %d coefficients)\n", NUM_FILTER_COEFF);
+       fprintf(stderr, "  -r, --rc-filter FREQ         send signal through a highpass RC filter with given frequency (in Hertz)\n");
        fprintf(stderr, "  -F, --output-filtered        output filtered waveform to filtered.raw\n");
        fprintf(stderr, "  -c, --crop START[:END]       use only the given part of the file\n");
+       fprintf(stderr, "  -t, --train LEN1:LEN2:...    train a filter for detecting any of the given number of cycles\n");
+       fprintf(stderr, "                               (implies --no-calibrate and --quiet unless overridden)\n");
        fprintf(stderr, "  -q, --quiet                  suppress some informational messages\n");
        fprintf(stderr, "  -h, --help                   display this help, then exit\n");
        exit(1);
@@ -181,11 +215,27 @@ void parse_options(int argc, char **argv)
 {
        for ( ;; ) {
                int option_index = 0;
-               int c = getopt_long(argc, argv, "spl:f:Fc:qh", long_options, &option_index);
+               int c = getopt_long(argc, argv, "ab:Am:spl:f:r:Fc:t:qh", long_options, &option_index);
                if (c == -1)
                        break;
 
                switch (c) {
+               case 'a':
+                       do_auto_level = true;
+                       break;
+
+               case 'b':
+                       auto_level_freq = atof(optarg);
+                       break;
+
+               case 'A':
+                       output_leveled = true;
+                       break;
+
+               case 'm':
+                       min_level = atof(optarg);
+                       break;
+
                case 's':
                        do_calibrate = false;
                        break;
@@ -194,21 +244,34 @@ void parse_options(int argc, char **argv)
                        output_cycles_plot = true;
                        break;
 
-               case 'l':
-                       hysteresis_limit = atof(optarg) / 32768.0;
+               case 'l': {
+                       const char *hyststr = strtok(optarg, ": ");
+                       hysteresis_upper_limit = atof(hyststr);
+                       hyststr = strtok(NULL, ": ");
+                       if (hyststr == NULL) {
+                               hysteresis_lower_limit = -hysteresis_upper_limit;
+                       } else {
+                               hysteresis_lower_limit = atof(hyststr);
+                       }
                        break;
+               }
 
                case 'f': {
-                       const char *coeffstr = strtok(optarg, ":");
+                       const char *coeffstr = strtok(optarg, ": ");
                        int coeff_index = 0;
                        while (coeff_index < NUM_FILTER_COEFF && coeffstr != NULL) {
                                filter_coeff[coeff_index++] = atof(coeffstr);
-                               coeffstr = strtok(NULL, ":");
+                               coeffstr = strtok(NULL, ": ");
                        }
-                       use_filter = true;
+                       use_fir_filter = true;
                        break;
                }
 
+               case 'r':
+                       use_rc_filter = true;
+                       rc_filter_freq = atof(optarg);
+                       break;
+
                case 'F':
                        output_filtered = true;
                        break;
@@ -226,6 +289,20 @@ void parse_options(int argc, char **argv)
                        break;
                }
 
+               case 't': {
+                       const char *cyclestr = strtok(optarg, ":");
+                       while (cyclestr != NULL) {
+                               train_snap_points.push_back(atof(cyclestr));
+                               cyclestr = strtok(NULL, ":");
+                       }
+                       do_train = true;
+
+                       // Set reasonable defaults (can be overridden later on the command line).
+                       do_calibrate = false;
+                       quiet = true;
+                       break;
+               }
+
                case 'q':
                        quiet = true;
                        break;
@@ -251,7 +328,7 @@ std::vector<float> crop(const std::vector<float>& pcm, float crop_start, float c
 }
 
 // TODO: Support AVX here.
-std::vector<float> do_filter(const std::vector<float>& pcm, const float* filter)
+std::vector<float> do_fir_filter(const std::vector<float>& pcm, const float* filter)
 {
        std::vector<float> filtered_pcm;
        filtered_pcm.reserve(pcm.size());
@@ -272,49 +349,60 @@ std::vector<float> do_filter(const std::vector<float>& pcm, const float* filter)
        return filtered_pcm;
 }
 
+std::vector<float> do_rc_filter(const std::vector<float>& pcm, float freq, int sample_rate)
+{
+       // This is only a 6 dB/oct filter, which seemingly works better
+       // than the Filter class, which is a standard biquad (12 dB/oct).
+       // The b/c calculations come from libnyquist (atone.c);
+       // I haven't checked, but I suppose they fall out of the bilinear
+       // transform of the transfer function H(s) = s/(s + w).
+       std::vector<float> filtered_pcm;
+       filtered_pcm.resize(pcm.size());
+       const float b = 2.0f - cos(2.0 * M_PI * freq / sample_rate);
+       const float c = b - sqrt(b * b - 1.0f);
+       float prev_in = 0.0f;
+       float prev_out = 0.0f;
+       for (unsigned i = 0; i < pcm.size(); ++i) {
+               float in = pcm[i];
+               float out = c * (prev_out + in - prev_in);
+               filtered_pcm[i] = out;
+               prev_in = in;
+               prev_out = out;
+       }
+
+       if (output_filtered) {
+               FILE *fp = fopen("filtered.raw", "wb");
+               fwrite(filtered_pcm.data(), filtered_pcm.size() * sizeof(filtered_pcm[0]), 1, fp);
+               fclose(fp);
+       }
+
+       return filtered_pcm;
+}
+
 std::vector<pulse> detect_pulses(const std::vector<float> &pcm, int sample_rate)
 {
        std::vector<pulse> pulses;
 
        // Find the flanks.
-       int last_bit = -1;
+       enum State { START, ABOVE, BELOW } state = START;
        double last_downflank = -1;
        for (unsigned i = 0; i < pcm.size(); ++i) {
-               int bit = (pcm[i] > 0) ? 1 : 0;
-               if (bit == 0 && last_bit == 1) {
-                       // Check if we ever go up above <hysteresis_limit> before we dip down again.
-                       bool true_pulse = false;
-                       unsigned j;
-                       int min_level_after = 32767;
-                       for (j = i; j < pcm.size(); ++j) {
-                               min_level_after = std::min<int>(min_level_after, pcm[j]);
-                               if (pcm[j] > 0) break;
-                               if (pcm[j] < -hysteresis_limit) {
-                                       true_pulse = true;
-                                       break;
+               if (pcm[i] > hysteresis_upper_limit) {
+                       state = ABOVE;
+               } else if (pcm[i] < hysteresis_lower_limit) {
+                       if (state == ABOVE) {
+                               // down-flank!
+                               double t = find_crossing(pcm, i - 1, hysteresis_lower_limit) * (1.0 / sample_rate) + crop_start;
+                               if (last_downflank > 0) {
+                                       pulse p;
+                                       p.time = t;
+                                       p.len = t - last_downflank;
+                                       pulses.push_back(p);
                                }
+                               last_downflank = t;
                        }
-
-                       if (!true_pulse) {
-#if 0
-                               fprintf(stderr, "Ignored down-flank at %.6f seconds due to hysteresis (%d < %d).\n",
-                                       double(i) / sample_rate, -min_level_after, hysteresis_limit);
-#endif
-                               i = j;
-                               continue;
-                       } 
-
-                       // down-flank!
-                       double t = find_zerocrossing(pcm, i - 1) * (1.0 / sample_rate) + crop_start;
-                       if (last_downflank > 0) {
-                               pulse p;
-                               p.time = t;
-                               p.len = t - last_downflank;
-                               pulses.push_back(p);
-                       }
-                       last_downflank = t;
+                       state = BELOW;
                }
-               last_bit = bit;
        }
        return pulses;
 }
@@ -329,6 +417,134 @@ void output_cycle_plot(const std::vector<pulse> &pulses, double calibration_fact
        fclose(fp);
 }
 
+std::pair<int, double> find_closest_point(double x, const std::vector<float> &points)
+{
+       int best_point = 0;
+       double best_dist = (x - points[0]) * (x - points[0]);
+       for (unsigned j = 1; j < train_snap_points.size(); ++j) {
+               double dist = (x - points[j]) * (x - points[j]);
+               if (dist < best_dist) {
+                       best_point = j;
+                       best_dist = dist;
+               }
+       }
+       return std::make_pair(best_point, best_dist);
+}
+
+float eval_badness(const std::vector<pulse>& pulses, double calibration_factor)
+{
+       double sum_badness = 0.0;
+       for (unsigned i = 0; i < pulses.size(); ++i) {
+               double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
+               if (cycles > 2000.0) cycles = 2000.0;  // Don't make pauses arbitrarily bad.
+               std::pair<int, double> selected_point_and_sq_dist = find_closest_point(cycles, train_snap_points);
+               sum_badness += selected_point_and_sq_dist.second;
+       }
+       return sqrt(sum_badness / (pulses.size() - 1));
+}
+
+void find_kmeans(const std::vector<pulse> &pulses, double calibration_factor, const std::vector<float> &initial_centers)
+{
+       std::vector<float> last_centers = initial_centers;
+       std::vector<float> sums;
+       std::vector<float> num;
+       sums.resize(initial_centers.size());
+       num.resize(initial_centers.size());
+       for ( ;; ) {
+               for (unsigned i = 0; i < initial_centers.size(); ++i) {
+                       sums[i] = 0.0f;
+                       num[i] = 0;
+               }
+               for (unsigned i = 0; i < pulses.size(); ++i) {
+                       double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
+                       // Ignore heavy outliers, which are almost always long pauses.
+                       if (cycles > 2000.0) {
+                               continue;
+                       }
+                       std::pair<int, double> selected_point_and_sq_dist = find_closest_point(cycles, last_centers);
+                       int p = selected_point_and_sq_dist.first;
+                       sums[p] += cycles;
+                       ++num[p];
+               }
+               bool any_moved = false;
+               for (unsigned i = 0; i < initial_centers.size(); ++i) {
+                       if (num[i] == 0) {
+                               fprintf(stderr, "K-means broke down, can't output new reference training points\n");
+                               return;
+                       }
+                       float new_center = sums[i] / num[i];
+                       if (fabs(new_center - last_centers[i]) > 1e-3) {
+                               any_moved = true;
+                       }
+                       last_centers[i] = new_center;
+               }
+               if (!any_moved) {
+                       break;
+               }
+       }
+       fprintf(stderr, "New reference training points:");
+       for (unsigned i = 0; i < last_centers.size(); ++i) {
+               fprintf(stderr, " %.3f", last_centers[i]);
+       }
+       fprintf(stderr, "\n");
+}
+
+void spsa_train(const std::vector<float> &pcm, int sample_rate)
+{
+       float filter[NUM_FILTER_COEFF] = { 1.0f };  // The rest is filled with 0.
+
+       float start_c = INITIAL_C;
+       double best_badness = HUGE_VAL;
+
+       for (int n = 1; n < NUM_ITER; ++n) {
+               float a = INITIAL_A * pow(n + A, -ALPHA);
+               float c = start_c * pow(n, -GAMMA);
+
+               // find a random perturbation
+               float p[NUM_FILTER_COEFF];
+               float filter1[NUM_FILTER_COEFF], filter2[NUM_FILTER_COEFF];
+               for (int i = 0; i < NUM_FILTER_COEFF; ++i) {
+                       p[i] = (rand() % 2) ? 1.0 : -1.0;
+                       filter1[i] = std::max(std::min(filter[i] - c * p[i], 1.0f), -1.0f);
+                       filter2[i] = std::max(std::min(filter[i] + c * p[i], 1.0f), -1.0f);
+               }
+
+               std::vector<pulse> pulses1 = detect_pulses(do_fir_filter(pcm, filter1), sample_rate);
+               std::vector<pulse> pulses2 = detect_pulses(do_fir_filter(pcm, filter2), sample_rate);
+               float badness1 = eval_badness(pulses1, 1.0);
+               float badness2 = eval_badness(pulses2, 1.0);
+
+               // Find the gradient estimator
+               float g[NUM_FILTER_COEFF];
+               for (int i = 0; i < NUM_FILTER_COEFF; ++i) {
+                       g[i] = (badness2 - badness1) / (2.0 * c * p[i]);
+                       filter[i] -= a * g[i];
+                       filter[i] = std::max(std::min(filter[i], 1.0f), -1.0f);
+               }
+               if (badness2 < badness1) {
+                       std::swap(badness1, badness2);
+                       std::swap(filter1, filter2);
+                       std::swap(pulses1, pulses2);
+               }
+               if (badness1 < best_badness) {
+                       printf("\nNew best filter (badness=%f):", badness1);
+                       for (int i = 0; i < NUM_FILTER_COEFF; ++i) {
+                               printf(" %.5f", filter1[i]);
+                       }
+                       best_badness = badness1;
+                       printf("\n");
+
+                       find_kmeans(pulses1, 1.0, train_snap_points);
+
+                       if (output_cycles_plot) {
+                               output_cycle_plot(pulses1, 1.0);
+                       }
+               }
+               printf("%d ", n);
+               fflush(stdout);
+       }
+}
+
 int main(int argc, char **argv)
 {
        parse_options(argc, argv);
@@ -344,8 +560,21 @@ int main(int argc, char **argv)
                pcm = crop(pcm, crop_start, crop_end, sample_rate);
        }
 
-       if (use_filter) {
-               pcm = do_filter(pcm, filter_coeff);
+       if (use_fir_filter) {
+               pcm = do_fir_filter(pcm, filter_coeff);
+       }
+
+       if (use_rc_filter) {
+               pcm = do_rc_filter(pcm, rc_filter_freq, sample_rate);
+       }
+
+       if (do_auto_level) {
+               pcm = level_samples(pcm, min_level, auto_level_freq, sample_rate);
+               if (output_leveled) {
+                       FILE *fp = fopen("leveled.raw", "wb");
+                       fwrite(pcm.data(), pcm.size() * sizeof(pcm[0]), 1, fp);
+                       fclose(fp);
+               }
        }
 
 #if 0
@@ -360,6 +589,11 @@ int main(int argc, char **argv)
        }
 #endif
 
+       if (do_train) {
+               spsa_train(pcm, sample_rate);
+               exit(0);
+       }
+
        std::vector<pulse> pulses = detect_pulses(pcm, sample_rate);
 
        double calibration_factor = 1.0;