]> git.sesse.net Git - c64tapwav/blobdiff - decode.cpp
Make leveler minimum level configurable, since it is connected to hysteresis limit.
[c64tapwav] / decode.cpp
index ca0c675e411fbddfca3037cddbbd7fc1e69083e7..b3b8aa3376f355b9fcad9e8cd3aa4fc9b1bf2b4b 100644 (file)
@@ -1,33 +1,55 @@
 #include <stdio.h>
 #include <string.h>
 #include <math.h>
-#include <unistd.h>
 #include <assert.h>
+#include <limits.h>
+#include <getopt.h>
 #include <vector>
 #include <algorithm>
 
+#include "audioreader.h"
 #include "interpolate.h"
+#include "level.h"
+#include "tap.h"
 
 #define BUFSIZE 4096
-#define HYSTERESIS_LIMIT 3000
-#define SAMPLE_RATE 44100
 #define C64_FREQUENCY 985248
-#define TAP_RESOLUTION 8
-
 #define SYNC_PULSE_START 1000
-#define SYNC_PULSE_END 15000
+#define SYNC_PULSE_END 20000
 #define SYNC_PULSE_LENGTH 378.0
 #define SYNC_TEST_TOLERANCE 1.10
 
-struct tap_header {
-       char identifier[12];
-       char version;
-       char reserved[3];
-       unsigned int data_len;
-};
+// SPSA options
+#define NUM_FILTER_COEFF 32
+#define NUM_ITER 5000
+#define A NUM_ITER/10  // approx
+#define INITIAL_A 0.005 // A bit of trial and error...
+#define INITIAL_C 0.02  // This too.
+#define GAMMA 0.166
+#define ALPHA 1.0
+
+static float hysteresis_limit = 3000.0 / 32768.0;
+static bool do_calibrate = true;
+static bool output_cycles_plot = false;
+static bool use_filter = false;
+static bool do_crop = false;
+static float crop_start = 0.0f, crop_end = HUGE_VAL;
+static float filter_coeff[NUM_FILTER_COEFF] = { 1.0f };  // The rest is filled with 0.
+static bool output_filtered = false;
+static bool quiet = false;
+static bool do_auto_level = false;
+static bool output_leveled = false;
+static std::vector<float> train_snap_points;
+static bool do_train = false;
+
+// The minimum estimated sound level (for do_auto_level) at any given point.
+// If you decrease this, you'll be able to amplify really silent signals
+// by more, but you'll also increase the level of silent (ie. noise-only) segments,
+// possibly caused misdetected pulses in these segments.
+static float min_level = 0.05f;
 
 // between [x,x+1]
-double find_zerocrossing(const std::vector<short> &pcm, int x)
+double find_zerocrossing(const std::vector<float> &pcm, int x)
 {
        if (pcm[x] == 0) {
                return x;
@@ -36,12 +58,12 @@ double find_zerocrossing(const std::vector<short> &pcm, int x)
                return x + 1;
        }
 
-       assert(pcm[x + 1] > 0);
-       assert(pcm[x] < 0);
+       assert(pcm[x + 1] < 0);
+       assert(pcm[x] > 0);
 
-       double lower = x;
-       double upper = x + 1;
-       while (upper - lower > 1e-6) {
+       double upper = x;
+       double lower = x + 1;
+       while (lower - upper > 1e-3) {
                double mid = 0.5f * (upper + lower);
                if (lanczos_interpolate(pcm, mid) > 0) {
                        upper = mid;
@@ -57,47 +79,268 @@ struct pulse {
        double time;  // in seconds from start
        double len;   // in seconds
 };
-       
-int main(int argc, char **argv)
+
+// Calibrate on the first ~25k pulses (skip a few, just to be sure).
+double calibrate(const std::vector<pulse> &pulses) {
+       if (pulses.size() < SYNC_PULSE_END) {
+               fprintf(stderr, "Too few pulses, not calibrating!\n");
+               return 1.0;
+       }
+
+       int sync_pulse_end = -1;
+       double sync_pulse_stddev = -1.0;
+
+       // Compute the standard deviation (to check for uneven speeds).
+       // If it suddenly skyrockets, we assume that sync ended earlier
+       // than we thought (it should be 25000 cycles), and that we should
+       // calibrate on fewer cycles.
+       for (int try_end : { 2000, 4000, 5000, 7500, 10000, 15000, SYNC_PULSE_END }) {
+               double sum2 = 0.0;
+               for (int i = SYNC_PULSE_START; i < try_end; ++i) {
+                       double cycles = pulses[i].len * C64_FREQUENCY;
+                       sum2 += (cycles - SYNC_PULSE_LENGTH) * (cycles - SYNC_PULSE_LENGTH);
+               }
+               double stddev = sqrt(sum2 / (try_end - SYNC_PULSE_START - 1));
+               if (sync_pulse_end != -1 && stddev > 5.0 && stddev / sync_pulse_stddev > 1.3) {
+                       fprintf(stderr, "Stopping at %d sync pulses because standard deviation would be too big (%.2f cycles); shorter-than-usual trailer?\n",
+                               sync_pulse_end, stddev);
+                       break;
+               }
+               sync_pulse_end = try_end;
+               sync_pulse_stddev = stddev;
+       }
+       if (!quiet) {
+               fprintf(stderr, "Sync pulse length standard deviation: %.2f cycles\n",
+                       sync_pulse_stddev);
+       }
+
+       double sum = 0.0;
+       for (int i = SYNC_PULSE_START; i < sync_pulse_end; ++i) {
+               sum += pulses[i].len;
+       }
+       double mean_length = C64_FREQUENCY * sum / (sync_pulse_end - SYNC_PULSE_START);
+       double calibration_factor = SYNC_PULSE_LENGTH / mean_length;
+       if (!quiet) {
+               fprintf(stderr, "Calibrated sync pulse length: %.2f -> %.2f (change %+.2f%%)\n",
+                       mean_length, SYNC_PULSE_LENGTH, 100.0 * (calibration_factor - 1.0));
+       }
+
+       // Check for pulses outside +/- 10% (sign of misdetection).
+       for (int i = SYNC_PULSE_START; i < sync_pulse_end; ++i) {
+               double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
+               if (cycles < SYNC_PULSE_LENGTH / SYNC_TEST_TOLERANCE || cycles > SYNC_PULSE_LENGTH * SYNC_TEST_TOLERANCE) {
+                       fprintf(stderr, "Sync cycle with downflank at %.6f was detected at %.0f cycles; misdetect?\n",
+                               pulses[i].time, cycles);
+               }
+       }
+
+       return calibration_factor;
+}
+
+void output_tap(const std::vector<pulse>& pulses, double calibration_factor)
 {
-       std::vector<short> pcm;
+       std::vector<char> tap_data;
+       for (unsigned i = 0; i < pulses.size(); ++i) {
+               double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
+               int len = lrintf(cycles / TAP_RESOLUTION);
+               if (i > SYNC_PULSE_END && (cycles < 100 || cycles > 800)) {
+                       fprintf(stderr, "Cycle with downflank at %.6f was detected at %.0f cycles; misdetect?\n",
+                                       pulses[i].time, cycles);
+               }
+               if (len <= 255) {
+                       tap_data.push_back(len);
+               } else {
+                       int overflow_len = lrintf(cycles);
+                       tap_data.push_back(0);
+                       tap_data.push_back(overflow_len & 0xff);
+                       tap_data.push_back((overflow_len >> 8) & 0xff);
+                       tap_data.push_back(overflow_len >> 16);
+               }
+       }
 
-       while (!feof(stdin)) {
-               short buf[BUFSIZE];
-               ssize_t ret = fread(buf, 2, BUFSIZE, stdin);
-               if (ret >= 0) {
-                       pcm.insert(pcm.end(), buf, buf + ret);
+       tap_header hdr;
+       memcpy(hdr.identifier, "C64-TAPE-RAW", 12);
+       hdr.version = 1;
+       hdr.reserved[0] = hdr.reserved[1] = hdr.reserved[2] = 0;
+       hdr.data_len = tap_data.size();
+
+       fwrite(&hdr, sizeof(hdr), 1, stdout);
+       fwrite(tap_data.data(), tap_data.size(), 1, stdout);
+}
+
+static struct option long_options[] = {
+       {"auto-level",       0,                 0, 'a' },
+       {"output-leveled",   0,                 0, 'A' },
+       {"no-calibrate",     0,                 0, 's' },
+       {"plot-cycles",      0,                 0, 'p' },
+       {"hysteresis-limit", required_argument, 0, 'l' },
+       {"filter",           required_argument, 0, 'f' },
+       {"output-filtered",  0,                 0, 'F' },
+       {"crop",             required_argument, 0, 'c' },
+       {"quiet",            0,                 0, 'q' },
+       {"help",             0,                 0, 'h' },
+       {0,                  0,                 0, 0   }
+};
+
+void help()
+{
+       fprintf(stderr, "decode [OPTIONS] AUDIO-FILE > TAP-FILE\n");
+       fprintf(stderr, "\n");
+       fprintf(stderr, "  -a, --auto-level             automatically adjust amplitude levels throughout the file\n");
+       fprintf(stderr, "  -A, --output-leveled         output leveled waveform to leveled.raw\n");
+       fprintf(stderr, "  -m, --min-level              minimum estimated sound level (0..32768) for --auto-level\n");
+       fprintf(stderr, "  -s, --no-calibrate           do not try to calibrate on sync pulse length\n");
+       fprintf(stderr, "  -p, --plot-cycles            output debugging info to cycles.plot\n");
+       fprintf(stderr, "  -l, --hysteresis-limit VAL   change amplitude threshold for ignoring pulses (0..32768)\n");
+       fprintf(stderr, "  -f, --filter C1:C2:C3:...    specify FIR filter (up to %d coefficients)\n", NUM_FILTER_COEFF);
+       fprintf(stderr, "  -F, --output-filtered        output filtered waveform to filtered.raw\n");
+       fprintf(stderr, "  -c, --crop START[:END]       use only the given part of the file\n");
+       fprintf(stderr, "  -t, --train LEN1:LEN2:...    train a filter for detecting any of the given number of cycles\n");
+       fprintf(stderr, "                               (implies --no-calibrate and --quiet unless overridden)\n");
+       fprintf(stderr, "  -q, --quiet                  suppress some informational messages\n");
+       fprintf(stderr, "  -h, --help                   display this help, then exit\n");
+       exit(1);
+}
+
+void parse_options(int argc, char **argv)
+{
+       for ( ;; ) {
+               int option_index = 0;
+               int c = getopt_long(argc, argv, "aAm:spl:f:Fc:t:qh", long_options, &option_index);
+               if (c == -1)
+                       break;
+
+               switch (c) {
+               case 'a':
+                       do_auto_level = true;
+                       break;
+
+               case 'A':
+                       output_leveled = true;
+                       break;
+
+               case 'm':
+                       min_level = atof(optarg) / 32768.0;
+                       break;
+
+               case 's':
+                       do_calibrate = false;
+                       break;
+
+               case 'p':
+                       output_cycles_plot = true;
+                       break;
+
+               case 'l':
+                       hysteresis_limit = atof(optarg) / 32768.0;
+                       break;
+
+               case 'f': {
+                       const char *coeffstr = strtok(optarg, ": ");
+                       int coeff_index = 0;
+                       while (coeff_index < NUM_FILTER_COEFF && coeffstr != NULL) {
+                               filter_coeff[coeff_index++] = atof(coeffstr);
+                               coeffstr = strtok(NULL, ": ");
+                       }
+                       use_filter = true;
+                       break;
                }
-       }       
 
-#if 0
-       for (int i = 0; i < LEN; ++i) {
-               in[i] += rand() % 10000;
+               case 'F':
+                       output_filtered = true;
+                       break;
+
+               case 'c': {
+                       const char *cropstr = strtok(optarg, ":");
+                       crop_start = atof(cropstr);
+                       cropstr = strtok(NULL, ":");
+                       if (cropstr == NULL) {
+                               crop_end = HUGE_VAL;
+                       } else {
+                               crop_end = atof(cropstr);
+                       }
+                       do_crop = true;
+                       break;
+               }
+
+               case 't': {
+                       const char *cyclestr = strtok(optarg, ":");
+                       while (cyclestr != NULL) {
+                               train_snap_points.push_back(atof(cyclestr));
+                               cyclestr = strtok(NULL, ":");
+                       }
+                       do_train = true;
+
+                       // Set reasonable defaults (can be overridden later on the command line).
+                       do_calibrate = false;
+                       quiet = true;
+                       break;
+               }
+
+               case 'q':
+                       quiet = true;
+                       break;
+
+               case 'h':
+               default:
+                       help();
+                       exit(1);
+               }
        }
-#endif
+}
 
-#if 0
-       for (int i = 0; i < LEN; ++i) {
-               printf("%d\n", in[i]);
+std::vector<float> crop(const std::vector<float>& pcm, float crop_start, float crop_end, int sample_rate)
+{
+       size_t start_sample, end_sample;
+       if (crop_start >= 0.0f) {
+               start_sample = std::min<size_t>(lrintf(crop_start * sample_rate), pcm.size());
        }
-#endif
+       if (crop_end >= 0.0f) {
+               end_sample = std::min<size_t>(lrintf(crop_end * sample_rate), pcm.size());
+       }
+       return std::vector<float>(pcm.begin() + start_sample, pcm.begin() + end_sample);
+}
 
-       std::vector<pulse> pulses;  // in seconds
+// TODO: Support AVX here.
+std::vector<float> do_filter(const std::vector<float>& pcm, const float* filter)
+{
+       std::vector<float> filtered_pcm;
+       filtered_pcm.reserve(pcm.size());
+       for (unsigned i = NUM_FILTER_COEFF; i < pcm.size(); ++i) {
+               float s = 0.0f;
+               for (int j = 0; j < NUM_FILTER_COEFF; ++j) {
+                       s += filter[j] * pcm[i - j];
+               }
+               filtered_pcm.push_back(s);
+       }
+
+       if (output_filtered) {
+               FILE *fp = fopen("filtered.raw", "wb");
+               fwrite(filtered_pcm.data(), filtered_pcm.size() * sizeof(filtered_pcm[0]), 1, fp);
+               fclose(fp);
+       }
+
+       return filtered_pcm;
+}
+
+std::vector<pulse> detect_pulses(const std::vector<float> &pcm, int sample_rate)
+{
+       std::vector<pulse> pulses;
 
        // Find the flanks.
        int last_bit = -1;
-       double last_upflank = -1;
+       double last_downflank = -1;
        for (unsigned i = 0; i < pcm.size(); ++i) {
                int bit = (pcm[i] > 0) ? 1 : 0;
-               if (bit == 1 && last_bit == 0) {
-                       // Check if we ever go up above HYSTERESIS_LIMIT before we dip down again.
+               if (bit == 0 && last_bit == 1) {
+                       // Check if we ever go up above <hysteresis_limit> before we dip down again.
                        bool true_pulse = false;
                        unsigned j;
-                       int max_level_after = -32768;
+                       int min_level_after = 32767;
                        for (j = i; j < pcm.size(); ++j) {
-                               max_level_after = std::max<int>(max_level_after, pcm[j]);
-                               if (pcm[j] < 0) break;
-                               if (pcm[j] > HYSTERESIS_LIMIT) {
+                               min_level_after = std::min<int>(min_level_after, pcm[j]);
+                               if (pcm[j] > 0) break;
+                               if (pcm[j] < -hysteresis_limit) {
                                        true_pulse = true;
                                        break;
                                }
@@ -105,88 +348,163 @@ int main(int argc, char **argv)
 
                        if (!true_pulse) {
 #if 0
-                               fprintf(stderr, "Ignored up-flank at %.6f seconds due to hysteresis (%d < %d).\n",
-                                       double(i) / SAMPLE_RATE, max_level_after, HYSTERESIS_LIMIT);
+                               fprintf(stderr, "Ignored down-flank at %.6f seconds due to hysteresis (%d < %d).\n",
+                                       double(i) / sample_rate, -min_level_after, hysteresis_limit);
 #endif
                                i = j;
                                continue;
                        } 
 
-                       // up-flank!
-                       double t = find_zerocrossing(pcm, i - 1) * (1.0 / SAMPLE_RATE);
-                       if (last_upflank > 0) {
+                       // down-flank!
+                       double t = find_zerocrossing(pcm, i - 1) * (1.0 / sample_rate) + crop_start;
+                       if (last_downflank > 0) {
                                pulse p;
                                p.time = t;
-                               p.len = t - last_upflank;
+                               p.len = t - last_downflank;
                                pulses.push_back(p);
                        }
-                       last_upflank = t;
+                       last_downflank = t;
                }
                last_bit = bit;
        }
+       return pulses;
+}
 
-       // Calibrate on the first ~25k pulses (skip a few, just to be sure).
-       double calibration_factor = 1.0f;
-       if (pulses.size() < SYNC_PULSE_END) {
-               fprintf(stderr, "Too few pulses, not calibrating!\n");
-       } else {
-               double sum = 0.0;
-               for (int i = SYNC_PULSE_START; i < SYNC_PULSE_END; ++i) {
-                       sum += pulses[i].len;
+void output_cycle_plot(const std::vector<pulse> &pulses, double calibration_factor)
+{
+       FILE *fp = fopen("cycles.plot", "w");
+       for (unsigned i = 0; i < pulses.size(); ++i) {
+               double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
+               fprintf(fp, "%f %f\n", pulses[i].time, cycles);
+       }
+       fclose(fp);
+}
+
+float eval_badness(const std::vector<pulse>& pulses, double calibration_factor)
+{
+       double sum_badness = 0.0;
+       for (unsigned i = 0; i < pulses.size(); ++i) {
+               double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
+               if (cycles > 2000.0) cycles = 2000.0;  // Don't make pauses arbitrarily bad.
+               double badness = (cycles - train_snap_points[0]) * (cycles - train_snap_points[0]);
+               for (unsigned j = 1; j < train_snap_points.size(); ++j) {
+                       badness = std::min(badness, (cycles - train_snap_points[j]) * (cycles - train_snap_points[j]));
                }
-               double mean_length = C64_FREQUENCY * sum / (SYNC_PULSE_END - SYNC_PULSE_START);
-               calibration_factor = SYNC_PULSE_LENGTH / mean_length;
-               fprintf(stderr, "Calibrated sync pulse length: %.2f -> %.2f (change %+.2f%%)\n",
-                       mean_length, SYNC_PULSE_LENGTH, 100.0 * (calibration_factor - 1.0));
+               sum_badness += badness;
+       }
+       return sqrt(sum_badness / (pulses.size() - 1));
+}
 
-               // Check for pulses outside +/- 10% (sign of misdetection).
-               for (int i = SYNC_PULSE_START; i < SYNC_PULSE_END; ++i) {
-                       double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
-                       if (cycles < SYNC_PULSE_LENGTH / SYNC_TEST_TOLERANCE || cycles > SYNC_PULSE_LENGTH * SYNC_TEST_TOLERANCE) {
-                               fprintf(stderr, "Sync cycle with upflank at %.6f was detected at %.0f cycles; misdetect?\n",
-                                       pulses[i].time, cycles);
-                       }
+void spsa_train(std::vector<float> &pcm, int sample_rate)
+{
+       // Train!
+       float filter[NUM_FILTER_COEFF] = { 1.0f };  // The rest is filled with 0.
+
+       float start_c = INITIAL_C;
+       double best_badness = HUGE_VAL;
+
+       for (int n = 1; n < NUM_ITER; ++n) {
+               float a = INITIAL_A * pow(n + A, -ALPHA);
+               float c = start_c * pow(n, -GAMMA);
+
+               // find a random perturbation
+               float p[NUM_FILTER_COEFF];
+               float filter1[NUM_FILTER_COEFF], filter2[NUM_FILTER_COEFF];
+               for (int i = 0; i < NUM_FILTER_COEFF; ++i) {
+                       p[i] = (rand() % 2) ? 1.0 : -1.0;
+                       filter1[i] = std::max(std::min(filter[i] - c * p[i], 1.0f), -1.0f);
+                       filter2[i] = std::max(std::min(filter[i] + c * p[i], 1.0f), -1.0f);
                }
 
-               // Compute the standard deviation (to check for uneven speeds).
-               double sum2 = 0.0;
-               for (int i = SYNC_PULSE_START; i < SYNC_PULSE_END; ++i) {
-                       double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
-                       sum2 += (cycles - SYNC_PULSE_LENGTH) * (cycles - SYNC_PULSE_LENGTH);
+               std::vector<pulse> pulses1 = detect_pulses(do_filter(pcm, filter1), sample_rate);
+               std::vector<pulse> pulses2 = detect_pulses(do_filter(pcm, filter2), sample_rate);
+               float badness1 = eval_badness(pulses1, 1.0);
+               float badness2 = eval_badness(pulses2, 1.0);
+
+               // Find the gradient estimator
+               float g[NUM_FILTER_COEFF];
+               for (int i = 0; i < NUM_FILTER_COEFF; ++i) {
+                       g[i] = (badness2 - badness1) / (2.0 * c * p[i]);
+                       filter[i] -= a * g[i];
+                       filter[i] = std::max(std::min(filter[i], 1.0f), -1.0f);
                }
-               double stddev = sqrt(sum2 / (SYNC_PULSE_END - SYNC_PULSE_START - 1));
-               fprintf(stderr, "Sync pulse length standard deviation: %.2f cycles\n",
-                       stddev);
-       }
+               if (badness2 < badness1) {
+                       std::swap(badness1, badness2);
+                       std::swap(filter1, filter2);
+                       std::swap(pulses1, pulses2);
+               }
+               if (badness1 < best_badness) {
+                       printf("\nNew best filter (badness=%f):", badness1);
+                       for (int i = 0; i < NUM_FILTER_COEFF; ++i) {
+                               printf(" %.5f", filter1[i]);
+                       }
+                       best_badness = badness1;
+                       printf("\n");
 
-       FILE *fp = fopen("cycles.plot", "w");
-       std::vector<char> tap_data;
-       for (unsigned i = 0; i < pulses.size(); ++i) {
-               double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
-               fprintf(fp, "%f %f\n", pulses[i].time, cycles);
-               int len = lrintf(cycles / TAP_RESOLUTION);
-               if (i > SYNC_PULSE_END && (cycles < 100 || cycles > 800)) {
-                       fprintf(stderr, "Cycle with upflank at %.6f was detected at %.0f cycles; misdetect?\n",
-                                       pulses[i].time, cycles);
+                       if (output_cycles_plot) {
+                               output_cycle_plot(pulses1, 1.0);
+                       }
                }
-               if (len <= 255) {
-                       tap_data.push_back(len);
-               } else {
-                       int overflow_len = lrintf(cycles);
-                       tap_data.push_back(0);
-                       tap_data.push_back(overflow_len & 0xff);
-                       tap_data.push_back((overflow_len >> 8) & 0xff);
-                       tap_data.push_back(overflow_len >> 16);
+               printf("%d ", n);
+               fflush(stdout);
+       }
+}
+
+int main(int argc, char **argv)
+{
+       parse_options(argc, argv);
+
+       make_lanczos_weight_table();
+       std::vector<float> pcm;
+       int sample_rate;
+       if (!read_audio_file(argv[optind], &pcm, &sample_rate)) {
+               exit(1);
+       }
+
+       if (do_crop) {
+               pcm = crop(pcm, crop_start, crop_end, sample_rate);
+       }
+
+       if (use_filter) {
+               pcm = do_filter(pcm, filter_coeff);
+       }
+
+       if (do_auto_level) {
+               pcm = level_samples(pcm, min_level, sample_rate);
+               if (output_leveled) {
+                       FILE *fp = fopen("leveled.raw", "wb");
+                       fwrite(pcm.data(), pcm.size() * sizeof(pcm[0]), 1, fp);
+                       fclose(fp);
                }
        }
-       fclose(fp);
 
-       tap_header hdr;
-       memcpy(hdr.identifier, "C64-TAPE-RAW", 12);
-       hdr.version = 1;
-       hdr.reserved[0] = hdr.reserved[1] = hdr.reserved[2] = 0;
-       hdr.data_len = tap_data.size();
+#if 0
+       for (int i = 0; i < LEN; ++i) {
+               in[i] += rand() % 10000;
+       }
+#endif
 
-       fwrite(&hdr, sizeof(hdr), 1, stdout);
-       fwrite(tap_data.data(), tap_data.size(), 1, stdout);
+#if 0
+       for (int i = 0; i < LEN; ++i) {
+               printf("%d\n", in[i]);
+       }
+#endif
+
+       if (do_train) {
+               spsa_train(pcm, sample_rate);
+               exit(0);
+       }
+
+       std::vector<pulse> pulses = detect_pulses(pcm, sample_rate);
+
+       double calibration_factor = 1.0;
+       if (do_calibrate) {
+               calibration_factor = calibrate(pulses);
+       }
+
+       if (output_cycles_plot) {
+               output_cycle_plot(pulses, calibration_factor);
+       }
+
+       output_tap(pulses, calibration_factor);
 }