]> git.sesse.net Git - c64tapwav/blobdiff - decode.cpp
Make the compressor filter frequency configurable, and up the default to a more aggre...
[c64tapwav] / decode.cpp
index d1b291f025d711b62f47d8e5d233311e3b29f071..b90ad218b759a264da739685faecfd328be0db40 100644 (file)
@@ -32,7 +32,8 @@
 #define GAMMA 0.166
 #define ALPHA 1.0
 
-static float hysteresis_limit = 3000.0 / 32768.0;
+static float hysteresis_upper_limit = 3000.0 / 32768.0;
+static float hysteresis_lower_limit = -3000.0 / 32768.0;
 static bool do_calibrate = true;
 static bool output_cycles_plot = false;
 static bool do_crop = false;
@@ -50,30 +51,25 @@ static bool output_leveled = false;
 static std::vector<float> train_snap_points;
 static bool do_train = false;
 
+// The frequency to filter on (for do_auto_level), in Hertz.
+// Larger values makes the compressor react faster, but if it is too large,
+// you'll ruin the waveforms themselves.
+static float auto_level_freq = 200.0;
+
 // The minimum estimated sound level (for do_auto_level) at any given point.
 // If you decrease this, you'll be able to amplify really silent signals
 // by more, but you'll also increase the level of silent (ie. noise-only) segments,
 // possibly caused misdetected pulses in these segments.
 static float min_level = 0.05f;
 
-// between [x,x+1]
-double find_zerocrossing(const std::vector<float> &pcm, int x)
+// search for the value <limit> between [x,x+1]
+double find_crossing(const std::vector<float> &pcm, int x, float limit)
 {
-       if (pcm[x] == 0) {
-               return x;
-       }
-       if (pcm[x + 1] == 0) {
-               return x + 1;
-       }
-
-       assert(pcm[x + 1] < 0);
-       assert(pcm[x] > 0);
-
        double upper = x;
        double lower = x + 1;
        while (lower - upper > 1e-3) {
                double mid = 0.5f * (upper + lower);
-               if (lanczos_interpolate(pcm, mid) > 0) {
+               if (lanczos_interpolate(pcm, mid) > limit) {
                        upper = mid;
                } else {
                        lower = mid;
@@ -178,7 +174,9 @@ void output_tap(const std::vector<pulse>& pulses, double calibration_factor)
 
 static struct option long_options[] = {
        {"auto-level",       0,                 0, 'a' },
+       {"auto-level-freq",  required_argument, 0, 'b' },
        {"output-leveled",   0,                 0, 'A' },
+       {"min-level",        required_argument, 0, 'm' },
        {"no-calibrate",     0,                 0, 's' },
        {"plot-cycles",      0,                 0, 'p' },
        {"hysteresis-limit", required_argument, 0, 'l' },
@@ -196,6 +194,7 @@ void help()
        fprintf(stderr, "decode [OPTIONS] AUDIO-FILE > TAP-FILE\n");
        fprintf(stderr, "\n");
        fprintf(stderr, "  -a, --auto-level             automatically adjust amplitude levels throughout the file\n");
+       fprintf(stderr, "  -b, --auto-level-freq        minimum frequency in Hertz of corrected level changes (default 200 Hz)\n");
        fprintf(stderr, "  -A, --output-leveled         output leveled waveform to leveled.raw\n");
        fprintf(stderr, "  -m, --min-level              minimum estimated sound level (0..32768) for --auto-level\n");
        fprintf(stderr, "  -s, --no-calibrate           do not try to calibrate on sync pulse length\n");
@@ -216,7 +215,7 @@ void parse_options(int argc, char **argv)
 {
        for ( ;; ) {
                int option_index = 0;
-               int c = getopt_long(argc, argv, "aAm:spl:f:r:Fc:t:qh", long_options, &option_index);
+               int c = getopt_long(argc, argv, "ab:Am:spl:f:r:Fc:t:qh", long_options, &option_index);
                if (c == -1)
                        break;
 
@@ -225,6 +224,10 @@ void parse_options(int argc, char **argv)
                        do_auto_level = true;
                        break;
 
+               case 'b':
+                       auto_level_freq = atof(optarg);
+                       break;
+
                case 'A':
                        output_leveled = true;
                        break;
@@ -241,9 +244,17 @@ void parse_options(int argc, char **argv)
                        output_cycles_plot = true;
                        break;
 
-               case 'l':
-                       hysteresis_limit = atof(optarg) / 32768.0;
+               case 'l': {
+                       const char *hyststr = strtok(optarg, ": ");
+                       hysteresis_upper_limit = atof(hyststr) / 32768.0;
+                       hyststr = strtok(NULL, ": ");
+                       if (hyststr == NULL) {
+                               hysteresis_lower_limit = -hysteresis_upper_limit;
+                       } else {
+                               hysteresis_lower_limit = atof(hyststr) / 32768.0;
+                       }
                        break;
+               }
 
                case 'f': {
                        const char *coeffstr = strtok(optarg, ": ");
@@ -340,11 +351,23 @@ std::vector<float> do_fir_filter(const std::vector<float>& pcm, const float* fil
 
 std::vector<float> do_rc_filter(const std::vector<float>& pcm, float freq, int sample_rate)
 {
+       // This is only a 6 dB/oct filter, which seemingly works better
+       // than the Filter class, which is a standard biquad (12 dB/oct).
+       // The b/c calculations come from libnyquist (atone.c);
+       // I haven't checked, but I suppose they fall out of the bilinear
+       // transform of the transfer function H(s) = s/(s + w).
        std::vector<float> filtered_pcm;
        filtered_pcm.resize(pcm.size());
-       Filter filter = Filter::hpf(M_PI * freq / sample_rate);
+       const float b = 2.0f - cos(2.0 * M_PI * freq / sample_rate);
+       const float c = b - sqrt(b * b - 1.0f);
+       float prev_in = 0.0f;
+       float prev_out = 0.0f;
        for (unsigned i = 0; i < pcm.size(); ++i) {
-               filtered_pcm[i] = filter.update(pcm[i]);
+               float in = pcm[i];
+               float out = c * (prev_out + in - prev_in);
+               filtered_pcm[i] = out;
+               prev_in = in;
+               prev_out = out;
        }
 
        if (output_filtered) {
@@ -361,44 +384,25 @@ std::vector<pulse> detect_pulses(const std::vector<float> &pcm, int sample_rate)
        std::vector<pulse> pulses;
 
        // Find the flanks.
-       int last_bit = -1;
+       enum State { START, ABOVE, BELOW } state = START;
        double last_downflank = -1;
        for (unsigned i = 0; i < pcm.size(); ++i) {
-               int bit = (pcm[i] > 0) ? 1 : 0;
-               if (bit == 0 && last_bit == 1) {
-                       // Check if we ever go up above <hysteresis_limit> before we dip down again.
-                       bool true_pulse = false;
-                       unsigned j;
-                       int min_level_after = 32767;
-                       for (j = i; j < pcm.size(); ++j) {
-                               min_level_after = std::min<int>(min_level_after, pcm[j]);
-                               if (pcm[j] > 0) break;
-                               if (pcm[j] < -hysteresis_limit) {
-                                       true_pulse = true;
-                                       break;
+               if (pcm[i] > hysteresis_upper_limit) {
+                       state = ABOVE;
+               } else if (pcm[i] < hysteresis_lower_limit) {
+                       if (state == ABOVE) {
+                               // down-flank!
+                               double t = find_crossing(pcm, i - 1, hysteresis_lower_limit) * (1.0 / sample_rate) + crop_start;
+                               if (last_downflank > 0) {
+                                       pulse p;
+                                       p.time = t;
+                                       p.len = t - last_downflank;
+                                       pulses.push_back(p);
                                }
+                               last_downflank = t;
                        }
-
-                       if (!true_pulse) {
-#if 0
-                               fprintf(stderr, "Ignored down-flank at %.6f seconds due to hysteresis (%d < %d).\n",
-                                       double(i) / sample_rate, -min_level_after, hysteresis_limit);
-#endif
-                               i = j;
-                               continue;
-                       } 
-
-                       // down-flank!
-                       double t = find_zerocrossing(pcm, i - 1) * (1.0 / sample_rate) + crop_start;
-                       if (last_downflank > 0) {
-                               pulse p;
-                               p.time = t;
-                               p.len = t - last_downflank;
-                               pulses.push_back(p);
-                       }
-                       last_downflank = t;
+                       state = BELOW;
                }
-               last_bit = bit;
        }
        return pulses;
 }
@@ -465,7 +469,7 @@ void find_kmeans(const std::vector<pulse> &pulses, double calibration_factor, co
                bool any_moved = false;
                for (unsigned i = 0; i < initial_centers.size(); ++i) {
                        if (num[i] == 0) {
-                               printf("K-means broke down, can't output new reference training points\n");
+                               fprintf(stderr, "K-means broke down, can't output new reference training points\n");
                                return;
                        }
                        float new_center = sums[i] / num[i];
@@ -478,11 +482,11 @@ void find_kmeans(const std::vector<pulse> &pulses, double calibration_factor, co
                        break;
                }
        }
-       printf("New reference training points:");
+       fprintf(stderr, "New reference training points:");
        for (unsigned i = 0; i < last_centers.size(); ++i) {
-               printf(" %.3f", last_centers[i]);
+               fprintf(stderr, " %.3f", last_centers[i]);
        }
-       printf("\n");
+       fprintf(stderr, "\n");
 }
 
 void spsa_train(const std::vector<float> &pcm, int sample_rate)
@@ -565,7 +569,7 @@ int main(int argc, char **argv)
        }
 
        if (do_auto_level) {
-               pcm = level_samples(pcm, min_level, sample_rate);
+               pcm = level_samples(pcm, min_level, auto_level_freq, sample_rate);
                if (output_leveled) {
                        FILE *fp = fopen("leveled.raw", "wb");
                        fwrite(pcm.data(), pcm.size() * sizeof(pcm[0]), 1, fp);