]> git.sesse.net Git - c64tapwav/blobdiff - decode.cpp
Add a license.
[c64tapwav] / decode.cpp
index 32e2cc3543e7c560915dc8955413687d5a121b6c..d1b291f025d711b62f47d8e5d233311e3b29f071 100644 (file)
@@ -1,3 +1,6 @@
+// Copyright Steinar H. Gunderson <sgunderson@bigfoot.com>
+// Licensed under the GPL, v2. (See the file COPYING.)
+
 #include <stdio.h>
 #include <string.h>
 #include <math.h>
@@ -11,6 +14,7 @@
 #include "interpolate.h"
 #include "level.h"
 #include "tap.h"
+#include "filter.h"
 
 #define BUFSIZE 4096
 #define C64_FREQUENCY 985248
 #define SYNC_PULSE_LENGTH 378.0
 #define SYNC_TEST_TOLERANCE 1.10
 
+// SPSA options
 #define NUM_FILTER_COEFF 32
+#define NUM_ITER 5000
+#define A NUM_ITER/10  // approx
+#define INITIAL_A 0.005 // A bit of trial and error...
+#define INITIAL_C 0.02  // This too.
+#define GAMMA 0.166
+#define ALPHA 1.0
 
 static float hysteresis_limit = 3000.0 / 32768.0;
 static bool do_calibrate = true;
 static bool output_cycles_plot = false;
-static bool use_filter = false;
 static bool do_crop = false;
 static float crop_start = 0.0f, crop_end = HUGE_VAL;
+
+static bool use_fir_filter = false;
 static float filter_coeff[NUM_FILTER_COEFF] = { 1.0f };  // The rest is filled with 0.
+static bool use_rc_filter = false;
+static float rc_filter_freq;
 static bool output_filtered = false;
+
 static bool quiet = false;
 static bool do_auto_level = false;
 static bool output_leveled = false;
+static std::vector<float> train_snap_points;
+static bool do_train = false;
+
+// The minimum estimated sound level (for do_auto_level) at any given point.
+// If you decrease this, you'll be able to amplify really silent signals
+// by more, but you'll also increase the level of silent (ie. noise-only) segments,
+// possibly caused misdetected pulses in these segments.
+static float min_level = 0.05f;
 
 // between [x,x+1]
 double find_zerocrossing(const std::vector<float> &pcm, int x)
@@ -155,10 +178,12 @@ void output_tap(const std::vector<pulse>& pulses, double calibration_factor)
 
 static struct option long_options[] = {
        {"auto-level",       0,                 0, 'a' },
+       {"output-leveled",   0,                 0, 'A' },
        {"no-calibrate",     0,                 0, 's' },
        {"plot-cycles",      0,                 0, 'p' },
        {"hysteresis-limit", required_argument, 0, 'l' },
        {"filter",           required_argument, 0, 'f' },
+       {"rc-filter",        required_argument, 0, 'r' },
        {"output-filtered",  0,                 0, 'F' },
        {"crop",             required_argument, 0, 'c' },
        {"quiet",            0,                 0, 'q' },
@@ -172,12 +197,16 @@ void help()
        fprintf(stderr, "\n");
        fprintf(stderr, "  -a, --auto-level             automatically adjust amplitude levels throughout the file\n");
        fprintf(stderr, "  -A, --output-leveled         output leveled waveform to leveled.raw\n");
+       fprintf(stderr, "  -m, --min-level              minimum estimated sound level (0..32768) for --auto-level\n");
        fprintf(stderr, "  -s, --no-calibrate           do not try to calibrate on sync pulse length\n");
        fprintf(stderr, "  -p, --plot-cycles            output debugging info to cycles.plot\n");
        fprintf(stderr, "  -l, --hysteresis-limit VAL   change amplitude threshold for ignoring pulses (0..32768)\n");
        fprintf(stderr, "  -f, --filter C1:C2:C3:...    specify FIR filter (up to %d coefficients)\n", NUM_FILTER_COEFF);
+       fprintf(stderr, "  -r, --rc-filter FREQ         send signal through a highpass RC filter with given frequency (in Hertz)\n");
        fprintf(stderr, "  -F, --output-filtered        output filtered waveform to filtered.raw\n");
        fprintf(stderr, "  -c, --crop START[:END]       use only the given part of the file\n");
+       fprintf(stderr, "  -t, --train LEN1:LEN2:...    train a filter for detecting any of the given number of cycles\n");
+       fprintf(stderr, "                               (implies --no-calibrate and --quiet unless overridden)\n");
        fprintf(stderr, "  -q, --quiet                  suppress some informational messages\n");
        fprintf(stderr, "  -h, --help                   display this help, then exit\n");
        exit(1);
@@ -187,7 +216,7 @@ void parse_options(int argc, char **argv)
 {
        for ( ;; ) {
                int option_index = 0;
-               int c = getopt_long(argc, argv, "aAspl:f:Fc:qh", long_options, &option_index);
+               int c = getopt_long(argc, argv, "aAm:spl:f:r:Fc:t:qh", long_options, &option_index);
                if (c == -1)
                        break;
 
@@ -200,6 +229,10 @@ void parse_options(int argc, char **argv)
                        output_leveled = true;
                        break;
 
+               case 'm':
+                       min_level = atof(optarg) / 32768.0;
+                       break;
+
                case 's':
                        do_calibrate = false;
                        break;
@@ -213,16 +246,21 @@ void parse_options(int argc, char **argv)
                        break;
 
                case 'f': {
-                       const char *coeffstr = strtok(optarg, ":");
+                       const char *coeffstr = strtok(optarg, ": ");
                        int coeff_index = 0;
                        while (coeff_index < NUM_FILTER_COEFF && coeffstr != NULL) {
                                filter_coeff[coeff_index++] = atof(coeffstr);
-                               coeffstr = strtok(NULL, ":");
+                               coeffstr = strtok(NULL, ": ");
                        }
-                       use_filter = true;
+                       use_fir_filter = true;
                        break;
                }
 
+               case 'r':
+                       use_rc_filter = true;
+                       rc_filter_freq = atof(optarg);
+                       break;
+
                case 'F':
                        output_filtered = true;
                        break;
@@ -240,6 +278,20 @@ void parse_options(int argc, char **argv)
                        break;
                }
 
+               case 't': {
+                       const char *cyclestr = strtok(optarg, ":");
+                       while (cyclestr != NULL) {
+                               train_snap_points.push_back(atof(cyclestr));
+                               cyclestr = strtok(NULL, ":");
+                       }
+                       do_train = true;
+
+                       // Set reasonable defaults (can be overridden later on the command line).
+                       do_calibrate = false;
+                       quiet = true;
+                       break;
+               }
+
                case 'q':
                        quiet = true;
                        break;
@@ -265,7 +317,7 @@ std::vector<float> crop(const std::vector<float>& pcm, float crop_start, float c
 }
 
 // TODO: Support AVX here.
-std::vector<float> do_filter(const std::vector<float>& pcm, const float* filter)
+std::vector<float> do_fir_filter(const std::vector<float>& pcm, const float* filter)
 {
        std::vector<float> filtered_pcm;
        filtered_pcm.reserve(pcm.size());
@@ -286,6 +338,24 @@ std::vector<float> do_filter(const std::vector<float>& pcm, const float* filter)
        return filtered_pcm;
 }
 
+std::vector<float> do_rc_filter(const std::vector<float>& pcm, float freq, int sample_rate)
+{
+       std::vector<float> filtered_pcm;
+       filtered_pcm.resize(pcm.size());
+       Filter filter = Filter::hpf(M_PI * freq / sample_rate);
+       for (unsigned i = 0; i < pcm.size(); ++i) {
+               filtered_pcm[i] = filter.update(pcm[i]);
+       }
+
+       if (output_filtered) {
+               FILE *fp = fopen("filtered.raw", "wb");
+               fwrite(filtered_pcm.data(), filtered_pcm.size() * sizeof(filtered_pcm[0]), 1, fp);
+               fclose(fp);
+       }
+
+       return filtered_pcm;
+}
+
 std::vector<pulse> detect_pulses(const std::vector<float> &pcm, int sample_rate)
 {
        std::vector<pulse> pulses;
@@ -343,6 +413,134 @@ void output_cycle_plot(const std::vector<pulse> &pulses, double calibration_fact
        fclose(fp);
 }
 
+std::pair<int, double> find_closest_point(double x, const std::vector<float> &points)
+{
+       int best_point = 0;
+       double best_dist = (x - points[0]) * (x - points[0]);
+       for (unsigned j = 1; j < train_snap_points.size(); ++j) {
+               double dist = (x - points[j]) * (x - points[j]);
+               if (dist < best_dist) {
+                       best_point = j;
+                       best_dist = dist;
+               }
+       }
+       return std::make_pair(best_point, best_dist);
+}
+
+float eval_badness(const std::vector<pulse>& pulses, double calibration_factor)
+{
+       double sum_badness = 0.0;
+       for (unsigned i = 0; i < pulses.size(); ++i) {
+               double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
+               if (cycles > 2000.0) cycles = 2000.0;  // Don't make pauses arbitrarily bad.
+               std::pair<int, double> selected_point_and_sq_dist = find_closest_point(cycles, train_snap_points);
+               sum_badness += selected_point_and_sq_dist.second;
+       }
+       return sqrt(sum_badness / (pulses.size() - 1));
+}
+
+void find_kmeans(const std::vector<pulse> &pulses, double calibration_factor, const std::vector<float> &initial_centers)
+{
+       std::vector<float> last_centers = initial_centers;
+       std::vector<float> sums;
+       std::vector<float> num;
+       sums.resize(initial_centers.size());
+       num.resize(initial_centers.size());
+       for ( ;; ) {
+               for (unsigned i = 0; i < initial_centers.size(); ++i) {
+                       sums[i] = 0.0f;
+                       num[i] = 0;
+               }
+               for (unsigned i = 0; i < pulses.size(); ++i) {
+                       double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
+                       // Ignore heavy outliers, which are almost always long pauses.
+                       if (cycles > 2000.0) {
+                               continue;
+                       }
+                       std::pair<int, double> selected_point_and_sq_dist = find_closest_point(cycles, last_centers);
+                       int p = selected_point_and_sq_dist.first;
+                       sums[p] += cycles;
+                       ++num[p];
+               }
+               bool any_moved = false;
+               for (unsigned i = 0; i < initial_centers.size(); ++i) {
+                       if (num[i] == 0) {
+                               printf("K-means broke down, can't output new reference training points\n");
+                               return;
+                       }
+                       float new_center = sums[i] / num[i];
+                       if (fabs(new_center - last_centers[i]) > 1e-3) {
+                               any_moved = true;
+                       }
+                       last_centers[i] = new_center;
+               }
+               if (!any_moved) {
+                       break;
+               }
+       }
+       printf("New reference training points:");
+       for (unsigned i = 0; i < last_centers.size(); ++i) {
+               printf(" %.3f", last_centers[i]);
+       }
+       printf("\n");
+}
+
+void spsa_train(const std::vector<float> &pcm, int sample_rate)
+{
+       float filter[NUM_FILTER_COEFF] = { 1.0f };  // The rest is filled with 0.
+
+       float start_c = INITIAL_C;
+       double best_badness = HUGE_VAL;
+
+       for (int n = 1; n < NUM_ITER; ++n) {
+               float a = INITIAL_A * pow(n + A, -ALPHA);
+               float c = start_c * pow(n, -GAMMA);
+
+               // find a random perturbation
+               float p[NUM_FILTER_COEFF];
+               float filter1[NUM_FILTER_COEFF], filter2[NUM_FILTER_COEFF];
+               for (int i = 0; i < NUM_FILTER_COEFF; ++i) {
+                       p[i] = (rand() % 2) ? 1.0 : -1.0;
+                       filter1[i] = std::max(std::min(filter[i] - c * p[i], 1.0f), -1.0f);
+                       filter2[i] = std::max(std::min(filter[i] + c * p[i], 1.0f), -1.0f);
+               }
+
+               std::vector<pulse> pulses1 = detect_pulses(do_fir_filter(pcm, filter1), sample_rate);
+               std::vector<pulse> pulses2 = detect_pulses(do_fir_filter(pcm, filter2), sample_rate);
+               float badness1 = eval_badness(pulses1, 1.0);
+               float badness2 = eval_badness(pulses2, 1.0);
+
+               // Find the gradient estimator
+               float g[NUM_FILTER_COEFF];
+               for (int i = 0; i < NUM_FILTER_COEFF; ++i) {
+                       g[i] = (badness2 - badness1) / (2.0 * c * p[i]);
+                       filter[i] -= a * g[i];
+                       filter[i] = std::max(std::min(filter[i], 1.0f), -1.0f);
+               }
+               if (badness2 < badness1) {
+                       std::swap(badness1, badness2);
+                       std::swap(filter1, filter2);
+                       std::swap(pulses1, pulses2);
+               }
+               if (badness1 < best_badness) {
+                       printf("\nNew best filter (badness=%f):", badness1);
+                       for (int i = 0; i < NUM_FILTER_COEFF; ++i) {
+                               printf(" %.5f", filter1[i]);
+                       }
+                       best_badness = badness1;
+                       printf("\n");
+
+                       find_kmeans(pulses1, 1.0, train_snap_points);
+
+                       if (output_cycles_plot) {
+                               output_cycle_plot(pulses1, 1.0);
+                       }
+               }
+               printf("%d ", n);
+               fflush(stdout);
+       }
+}
+
 int main(int argc, char **argv)
 {
        parse_options(argc, argv);
@@ -358,12 +556,16 @@ int main(int argc, char **argv)
                pcm = crop(pcm, crop_start, crop_end, sample_rate);
        }
 
-       if (use_filter) {
-               pcm = do_filter(pcm, filter_coeff);
+       if (use_fir_filter) {
+               pcm = do_fir_filter(pcm, filter_coeff);
+       }
+
+       if (use_rc_filter) {
+               pcm = do_rc_filter(pcm, rc_filter_freq, sample_rate);
        }
 
        if (do_auto_level) {
-               pcm = level_samples(pcm, sample_rate);
+               pcm = level_samples(pcm, min_level, sample_rate);
                if (output_leveled) {
                        FILE *fp = fopen("leveled.raw", "wb");
                        fwrite(pcm.data(), pcm.size() * sizeof(pcm[0]), 1, fp);
@@ -383,6 +585,11 @@ int main(int argc, char **argv)
        }
 #endif
 
+       if (do_train) {
+               spsa_train(pcm, sample_rate);
+               exit(0);
+       }
+
        std::vector<pulse> pulses = detect_pulses(pcm, sample_rate);
 
        double calibration_factor = 1.0;