]> git.sesse.net Git - c64tapwav/blobdiff - decode.cpp
Fix an off-by-two in the filter cutoff.
[c64tapwav] / decode.cpp
index 930b1933d52a343ba45f61dc60b1c8bcd9bd1a4a..ef8630de9948532f66e324d82a35485f74e24aa9 100644 (file)
@@ -1,3 +1,6 @@
+// Copyright Steinar H. Gunderson <sgunderson@bigfoot.com>
+// Licensed under the GPL, v2. (See the file COPYING.)
+
 #include <stdio.h>
 #include <string.h>
 #include <math.h>
@@ -11,6 +14,7 @@
 #include "interpolate.h"
 #include "level.h"
 #include "tap.h"
+#include "filter.h"
 
 #define BUFSIZE 4096
 #define C64_FREQUENCY 985248
 static float hysteresis_limit = 3000.0 / 32768.0;
 static bool do_calibrate = true;
 static bool output_cycles_plot = false;
-static bool use_filter = false;
 static bool do_crop = false;
 static float crop_start = 0.0f, crop_end = HUGE_VAL;
+
+static bool use_fir_filter = false;
 static float filter_coeff[NUM_FILTER_COEFF] = { 1.0f };  // The rest is filled with 0.
+static bool use_rc_filter = false;
+static float rc_filter_freq;
 static bool output_filtered = false;
+
 static bool quiet = false;
 static bool do_auto_level = false;
 static bool output_leveled = false;
@@ -175,6 +183,7 @@ static struct option long_options[] = {
        {"plot-cycles",      0,                 0, 'p' },
        {"hysteresis-limit", required_argument, 0, 'l' },
        {"filter",           required_argument, 0, 'f' },
+       {"rc-filter",        required_argument, 0, 'r' },
        {"output-filtered",  0,                 0, 'F' },
        {"crop",             required_argument, 0, 'c' },
        {"quiet",            0,                 0, 'q' },
@@ -193,6 +202,7 @@ void help()
        fprintf(stderr, "  -p, --plot-cycles            output debugging info to cycles.plot\n");
        fprintf(stderr, "  -l, --hysteresis-limit VAL   change amplitude threshold for ignoring pulses (0..32768)\n");
        fprintf(stderr, "  -f, --filter C1:C2:C3:...    specify FIR filter (up to %d coefficients)\n", NUM_FILTER_COEFF);
+       fprintf(stderr, "  -r, --rc-filter FREQ         send signal through a highpass RC filter with given frequency (in Hertz)\n");
        fprintf(stderr, "  -F, --output-filtered        output filtered waveform to filtered.raw\n");
        fprintf(stderr, "  -c, --crop START[:END]       use only the given part of the file\n");
        fprintf(stderr, "  -t, --train LEN1:LEN2:...    train a filter for detecting any of the given number of cycles\n");
@@ -206,7 +216,7 @@ void parse_options(int argc, char **argv)
 {
        for ( ;; ) {
                int option_index = 0;
-               int c = getopt_long(argc, argv, "aAm:spl:f:Fc:t:qh", long_options, &option_index);
+               int c = getopt_long(argc, argv, "aAm:spl:f:r:Fc:t:qh", long_options, &option_index);
                if (c == -1)
                        break;
 
@@ -242,10 +252,15 @@ void parse_options(int argc, char **argv)
                                filter_coeff[coeff_index++] = atof(coeffstr);
                                coeffstr = strtok(NULL, ": ");
                        }
-                       use_filter = true;
+                       use_fir_filter = true;
                        break;
                }
 
+               case 'r':
+                       use_rc_filter = true;
+                       rc_filter_freq = atof(optarg);
+                       break;
+
                case 'F':
                        output_filtered = true;
                        break;
@@ -302,7 +317,7 @@ std::vector<float> crop(const std::vector<float>& pcm, float crop_start, float c
 }
 
 // TODO: Support AVX here.
-std::vector<float> do_filter(const std::vector<float>& pcm, const float* filter)
+std::vector<float> do_fir_filter(const std::vector<float>& pcm, const float* filter)
 {
        std::vector<float> filtered_pcm;
        filtered_pcm.reserve(pcm.size());
@@ -323,6 +338,24 @@ std::vector<float> do_filter(const std::vector<float>& pcm, const float* filter)
        return filtered_pcm;
 }
 
+std::vector<float> do_rc_filter(const std::vector<float>& pcm, float freq, int sample_rate)
+{
+       std::vector<float> filtered_pcm;
+       filtered_pcm.resize(pcm.size());
+       Filter filter = Filter::hpf(2.0 * M_PI * freq / sample_rate);
+       for (unsigned i = 0; i < pcm.size(); ++i) {
+               filtered_pcm[i] = filter.update(pcm[i]);
+       }
+
+       if (output_filtered) {
+               FILE *fp = fopen("filtered.raw", "wb");
+               fwrite(filtered_pcm.data(), filtered_pcm.size() * sizeof(filtered_pcm[0]), 1, fp);
+               fclose(fp);
+       }
+
+       return filtered_pcm;
+}
+
 std::vector<pulse> detect_pulses(const std::vector<float> &pcm, int sample_rate)
 {
        std::vector<pulse> pulses;
@@ -380,22 +413,79 @@ void output_cycle_plot(const std::vector<pulse> &pulses, double calibration_fact
        fclose(fp);
 }
 
+std::pair<int, double> find_closest_point(double x, const std::vector<float> &points)
+{
+       int best_point = 0;
+       double best_dist = (x - points[0]) * (x - points[0]);
+       for (unsigned j = 1; j < train_snap_points.size(); ++j) {
+               double dist = (x - points[j]) * (x - points[j]);
+               if (dist < best_dist) {
+                       best_point = j;
+                       best_dist = dist;
+               }
+       }
+       return std::make_pair(best_point, best_dist);
+}
+
 float eval_badness(const std::vector<pulse>& pulses, double calibration_factor)
 {
        double sum_badness = 0.0;
        for (unsigned i = 0; i < pulses.size(); ++i) {
                double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
                if (cycles > 2000.0) cycles = 2000.0;  // Don't make pauses arbitrarily bad.
-               double badness = (cycles - train_snap_points[0]) * (cycles - train_snap_points[0]);
-               for (unsigned j = 1; j < train_snap_points.size(); ++j) {
-                       badness = std::min(badness, (cycles - train_snap_points[j]) * (cycles - train_snap_points[j]));
-               }
-               sum_badness += badness;
+               std::pair<int, double> selected_point_and_sq_dist = find_closest_point(cycles, train_snap_points);
+               sum_badness += selected_point_and_sq_dist.second;
        }
        return sqrt(sum_badness / (pulses.size() - 1));
 }
 
-void spsa_train(std::vector<float> &pcm, int sample_rate)
+void find_kmeans(const std::vector<pulse> &pulses, double calibration_factor, const std::vector<float> &initial_centers)
+{
+       std::vector<float> last_centers = initial_centers;
+       std::vector<float> sums;
+       std::vector<float> num;
+       sums.resize(initial_centers.size());
+       num.resize(initial_centers.size());
+       for ( ;; ) {
+               for (unsigned i = 0; i < initial_centers.size(); ++i) {
+                       sums[i] = 0.0f;
+                       num[i] = 0;
+               }
+               for (unsigned i = 0; i < pulses.size(); ++i) {
+                       double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY;
+                       // Ignore heavy outliers, which are almost always long pauses.
+                       if (cycles > 2000.0) {
+                               continue;
+                       }
+                       std::pair<int, double> selected_point_and_sq_dist = find_closest_point(cycles, last_centers);
+                       int p = selected_point_and_sq_dist.first;
+                       sums[p] += cycles;
+                       ++num[p];
+               }
+               bool any_moved = false;
+               for (unsigned i = 0; i < initial_centers.size(); ++i) {
+                       if (num[i] == 0) {
+                               printf("K-means broke down, can't output new reference training points\n");
+                               return;
+                       }
+                       float new_center = sums[i] / num[i];
+                       if (fabs(new_center - last_centers[i]) > 1e-3) {
+                               any_moved = true;
+                       }
+                       last_centers[i] = new_center;
+               }
+               if (!any_moved) {
+                       break;
+               }
+       }
+       printf("New reference training points:");
+       for (unsigned i = 0; i < last_centers.size(); ++i) {
+               printf(" %.3f", last_centers[i]);
+       }
+       printf("\n");
+}
+
+void spsa_train(const std::vector<float> &pcm, int sample_rate)
 {
        float filter[NUM_FILTER_COEFF] = { 1.0f };  // The rest is filled with 0.
 
@@ -415,8 +505,8 @@ void spsa_train(std::vector<float> &pcm, int sample_rate)
                        filter2[i] = std::max(std::min(filter[i] + c * p[i], 1.0f), -1.0f);
                }
 
-               std::vector<pulse> pulses1 = detect_pulses(do_filter(pcm, filter1), sample_rate);
-               std::vector<pulse> pulses2 = detect_pulses(do_filter(pcm, filter2), sample_rate);
+               std::vector<pulse> pulses1 = detect_pulses(do_fir_filter(pcm, filter1), sample_rate);
+               std::vector<pulse> pulses2 = detect_pulses(do_fir_filter(pcm, filter2), sample_rate);
                float badness1 = eval_badness(pulses1, 1.0);
                float badness2 = eval_badness(pulses2, 1.0);
 
@@ -440,6 +530,8 @@ void spsa_train(std::vector<float> &pcm, int sample_rate)
                        best_badness = badness1;
                        printf("\n");
 
+                       find_kmeans(pulses1, 1.0, train_snap_points);
+
                        if (output_cycles_plot) {
                                output_cycle_plot(pulses1, 1.0);
                        }
@@ -464,8 +556,12 @@ int main(int argc, char **argv)
                pcm = crop(pcm, crop_start, crop_end, sample_rate);
        }
 
-       if (use_filter) {
-               pcm = do_filter(pcm, filter_coeff);
+       if (use_fir_filter) {
+               pcm = do_fir_filter(pcm, filter_coeff);
+       }
+
+       if (use_rc_filter) {
+               pcm = do_rc_filter(pcm, rc_filter_freq, sample_rate);
        }
 
        if (do_auto_level) {