]> git.sesse.net Git - c64tapwav/blobdiff - decode.cpp
More output to stderr.
[c64tapwav] / decode.cpp
index 4c5da355d2255b5565e788f2bf58716c2a81ff8e..f9e525eeea07b8ebaf351d87d9870be36d1c22cb 100644 (file)
@@ -25,6 +25,7 @@
 
 // SPSA options
 #define NUM_FILTER_COEFF 32
+#define NUM_SPSA_VALS (NUM_FILTER_COEFF + 2)
 #define NUM_ITER 5000
 #define A NUM_ITER/10  // approx
 #define INITIAL_A 0.005 // A bit of trial and error...
@@ -32,8 +33,8 @@
 #define GAMMA 0.166
 #define ALPHA 1.0
 
-static float hysteresis_upper_limit = 3000.0 / 32768.0;
-static float hysteresis_lower_limit = -3000.0 / 32768.0;
+static float hysteresis_upper_limit = 0.1;
+static float hysteresis_lower_limit = -0.1;
 static bool do_calibrate = true;
 static bool output_cycles_plot = false;
 static bool do_crop = false;
@@ -51,6 +52,11 @@ static bool output_leveled = false;
 static std::vector<float> train_snap_points;
 static bool do_train = false;
 
+// The frequency to filter on (for do_auto_level), in Hertz.
+// Larger values makes the compressor react faster, but if it is too large,
+// you'll ruin the waveforms themselves.
+static float auto_level_freq = 200.0;
+
 // The minimum estimated sound level (for do_auto_level) at any given point.
 // If you decrease this, you'll be able to amplify really silent signals
 // by more, but you'll also increase the level of silent (ie. noise-only) segments,
@@ -169,7 +175,9 @@ void output_tap(const std::vector<pulse>& pulses, double calibration_factor)
 
 static struct option long_options[] = {
        {"auto-level",       0,                 0, 'a' },
+       {"auto-level-freq",  required_argument, 0, 'b' },
        {"output-leveled",   0,                 0, 'A' },
+       {"min-level",        required_argument, 0, 'm' },
        {"no-calibrate",     0,                 0, 's' },
        {"plot-cycles",      0,                 0, 'p' },
        {"hysteresis-limit", required_argument, 0, 'l' },
@@ -187,11 +195,12 @@ void help()
        fprintf(stderr, "decode [OPTIONS] AUDIO-FILE > TAP-FILE\n");
        fprintf(stderr, "\n");
        fprintf(stderr, "  -a, --auto-level             automatically adjust amplitude levels throughout the file\n");
+       fprintf(stderr, "  -b, --auto-level-freq        minimum frequency in Hertz of corrected level changes (default 200 Hz)\n");
        fprintf(stderr, "  -A, --output-leveled         output leveled waveform to leveled.raw\n");
-       fprintf(stderr, "  -m, --min-level              minimum estimated sound level (0..32768) for --auto-level\n");
+       fprintf(stderr, "  -m, --min-level              minimum estimated sound level (0..1) for --auto-level\n");
        fprintf(stderr, "  -s, --no-calibrate           do not try to calibrate on sync pulse length\n");
        fprintf(stderr, "  -p, --plot-cycles            output debugging info to cycles.plot\n");
-       fprintf(stderr, "  -l, --hysteresis-limit VAL   change amplitude threshold for ignoring pulses (0..32768)\n");
+       fprintf(stderr, "  -l, --hysteresis-limit U[:L] change amplitude threshold for ignoring pulses (-1..1)\n");
        fprintf(stderr, "  -f, --filter C1:C2:C3:...    specify FIR filter (up to %d coefficients)\n", NUM_FILTER_COEFF);
        fprintf(stderr, "  -r, --rc-filter FREQ         send signal through a highpass RC filter with given frequency (in Hertz)\n");
        fprintf(stderr, "  -F, --output-filtered        output filtered waveform to filtered.raw\n");
@@ -207,7 +216,7 @@ void parse_options(int argc, char **argv)
 {
        for ( ;; ) {
                int option_index = 0;
-               int c = getopt_long(argc, argv, "aAm:spl:f:r:Fc:t:qh", long_options, &option_index);
+               int c = getopt_long(argc, argv, "ab:Am:spl:f:r:Fc:t:qh", long_options, &option_index);
                if (c == -1)
                        break;
 
@@ -216,12 +225,16 @@ void parse_options(int argc, char **argv)
                        do_auto_level = true;
                        break;
 
+               case 'b':
+                       auto_level_freq = atof(optarg);
+                       break;
+
                case 'A':
                        output_leveled = true;
                        break;
 
                case 'm':
-                       min_level = atof(optarg) / 32768.0;
+                       min_level = atof(optarg);
                        break;
 
                case 's':
@@ -234,12 +247,12 @@ void parse_options(int argc, char **argv)
 
                case 'l': {
                        const char *hyststr = strtok(optarg, ": ");
-                       hysteresis_upper_limit = atof(hyststr) / 32768.0;
+                       hysteresis_upper_limit = atof(hyststr);
                        hyststr = strtok(NULL, ": ");
                        if (hyststr == NULL) {
                                hysteresis_lower_limit = -hysteresis_upper_limit;
                        } else {
-                               hysteresis_lower_limit = atof(hyststr) / 32768.0;
+                               hysteresis_lower_limit = atof(hyststr);
                        }
                        break;
                }
@@ -367,7 +380,7 @@ std::vector<float> do_rc_filter(const std::vector<float>& pcm, float freq, int s
        return filtered_pcm;
 }
 
-std::vector<pulse> detect_pulses(const std::vector<float> &pcm, int sample_rate)
+std::vector<pulse> detect_pulses(const std::vector<float> &pcm, float hysteresis_upper_limit, float hysteresis_lower_limit, int sample_rate)
 {
        std::vector<pulse> pulses;
 
@@ -479,7 +492,7 @@ void find_kmeans(const std::vector<pulse> &pulses, double calibration_factor, co
 
 void spsa_train(const std::vector<float> &pcm, int sample_rate)
 {
-       float filter[NUM_FILTER_COEFF] = { 1.0f };  // The rest is filled with 0.
+       float vals[NUM_SPSA_VALS] = { hysteresis_upper_limit, hysteresis_lower_limit, 1.0f };  // The rest is filled with 0.
 
        float start_c = INITIAL_C;
        double best_badness = HUGE_VAL;
@@ -489,38 +502,38 @@ void spsa_train(const std::vector<float> &pcm, int sample_rate)
                float c = start_c * pow(n, -GAMMA);
 
                // find a random perturbation
-               float p[NUM_FILTER_COEFF];
-               float filter1[NUM_FILTER_COEFF], filter2[NUM_FILTER_COEFF];
-               for (int i = 0; i < NUM_FILTER_COEFF; ++i) {
+               float p[NUM_SPSA_VALS];
+               float vals1[NUM_SPSA_VALS], vals2[NUM_SPSA_VALS];
+               for (int i = 0; i < NUM_SPSA_VALS; ++i) {
                        p[i] = (rand() % 2) ? 1.0 : -1.0;
-                       filter1[i] = std::max(std::min(filter[i] - c * p[i], 1.0f), -1.0f);
-                       filter2[i] = std::max(std::min(filter[i] + c * p[i], 1.0f), -1.0f);
+                       vals1[i] = std::max(std::min(vals[i] - c * p[i], 1.0f), -1.0f);
+                       vals2[i] = std::max(std::min(vals[i] + c * p[i], 1.0f), -1.0f);
                }
 
-               std::vector<pulse> pulses1 = detect_pulses(do_fir_filter(pcm, filter1), sample_rate);
-               std::vector<pulse> pulses2 = detect_pulses(do_fir_filter(pcm, filter2), sample_rate);
+               std::vector<pulse> pulses1 = detect_pulses(do_fir_filter(pcm, vals1 + 2), vals1[0], vals1[1], sample_rate);
+               std::vector<pulse> pulses2 = detect_pulses(do_fir_filter(pcm, vals2 + 2), vals2[0], vals2[1], sample_rate);
                float badness1 = eval_badness(pulses1, 1.0);
                float badness2 = eval_badness(pulses2, 1.0);
 
                // Find the gradient estimator
-               float g[NUM_FILTER_COEFF];
-               for (int i = 0; i < NUM_FILTER_COEFF; ++i) {
+               float g[NUM_SPSA_VALS];
+               for (int i = 0; i < NUM_SPSA_VALS; ++i) {
                        g[i] = (badness2 - badness1) / (2.0 * c * p[i]);
-                       filter[i] -= a * g[i];
-                       filter[i] = std::max(std::min(filter[i], 1.0f), -1.0f);
+                       vals[i] -= a * g[i];
+                       vals[i] = std::max(std::min(vals[i], 1.0f), -1.0f);
                }
                if (badness2 < badness1) {
                        std::swap(badness1, badness2);
-                       std::swap(filter1, filter2);
+                       std::swap(vals1, vals2);
                        std::swap(pulses1, pulses2);
                }
                if (badness1 < best_badness) {
-                       printf("\nNew best filter (badness=%f):", badness1);
+                       fprintf(stderr, "\nNew best filter (badness=%f):", badness1);
                        for (int i = 0; i < NUM_FILTER_COEFF; ++i) {
-                               printf(" %.5f", filter1[i]);
+                               fprintf(stderr, " %.5f", vals1[i + 2]);
                        }
+                       fprintf(stderr, ", hysteresis limits = %f %f\n", vals1[0], vals1[1]);
                        best_badness = badness1;
-                       printf("\n");
 
                        find_kmeans(pulses1, 1.0, train_snap_points);
 
@@ -528,8 +541,8 @@ void spsa_train(const std::vector<float> &pcm, int sample_rate)
                                output_cycle_plot(pulses1, 1.0);
                        }
                }
-               printf("%d ", n);
-               fflush(stdout);
+               fprintf(stderr, "%d ", n);
+               fflush(stderr);
        }
 }
 
@@ -557,7 +570,7 @@ int main(int argc, char **argv)
        }
 
        if (do_auto_level) {
-               pcm = level_samples(pcm, min_level, sample_rate);
+               pcm = level_samples(pcm, min_level, auto_level_freq, sample_rate);
                if (output_leveled) {
                        FILE *fp = fopen("leveled.raw", "wb");
                        fwrite(pcm.data(), pcm.size() * sizeof(pcm[0]), 1, fp);
@@ -582,7 +595,7 @@ int main(int argc, char **argv)
                exit(0);
        }
 
-       std::vector<pulse> pulses = detect_pulses(pcm, sample_rate);
+       std::vector<pulse> pulses = detect_pulses(pcm, hysteresis_upper_limit, hysteresis_lower_limit, sample_rate);
 
        double calibration_factor = 1.0;
        if (do_calibrate) {