X-Git-Url: https://git.sesse.net/?p=c64tapwav;a=blobdiff_plain;f=decode.cpp;h=1c9733184b013a7310e84c1ecea3b15e643d8a1f;hp=80921b29c9fc9d1a1c0e742bf97f1c9e3b360540;hb=7780b150f76de3a52ce985a1d0e7b950fa6c0638;hpb=fd62bd13eca89fafd42bcdf9395b9a85aa7d82b1 diff --git a/decode.cpp b/decode.cpp index 80921b2..1c97331 100644 --- a/decode.cpp +++ b/decode.cpp @@ -18,9 +18,14 @@ #define SYNC_PULSE_LENGTH 378.0 #define SYNC_TEST_TOLERANCE 1.10 +#define NUM_FILTER_COEFF 32 + static float hysteresis_limit = 3000.0 / 32768.0; static bool do_calibrate = true; static bool output_cycles_plot = false; +static bool use_filter = false; +static float filter_coeff[NUM_FILTER_COEFF] = { 1.0f }; // The rest is filled with 0. +static bool output_filtered = false; // between [x,x+1] double find_zerocrossing(const std::vector &pcm, int x) @@ -142,6 +147,8 @@ static struct option long_options[] = { {"no-calibrate", 0, 0, 's' }, {"plot-cycles", 0, 0, 'p' }, {"hysteresis-limit", required_argument, 0, 'l' }, + {"filter", required_argument, 0, 'f' }, + {"output-filtered", 0, 0, 'F' }, {"help", 0, 0, 'h' }, {0, 0, 0, 0 } }; @@ -153,6 +160,8 @@ void help() fprintf(stderr, " -s, --no-calibrate do not try to calibrate on sync pulse length\n"); fprintf(stderr, " -p, --plot-cycles output debugging info to cycles.plot\n"); fprintf(stderr, " -l, --hysteresis-limit VAL change amplitude threshold for ignoring pulses (0..32768)\n"); + fprintf(stderr, " -f, --filter C1:C2:C3:... specify FIR filter (up to %d coefficients)\n", NUM_FILTER_COEFF); + fprintf(stderr, " -F, --output-filtered output filtered waveform to filtered.raw\n"); fprintf(stderr, " -h, --help display this help, then exit\n"); exit(1); } @@ -161,7 +170,7 @@ void parse_options(int argc, char **argv) { for ( ;; ) { int option_index = 0; - int c = getopt_long(argc, argv, "spl:h", long_options, &option_index); + int c = getopt_long(argc, argv, "spl:f:Fh", long_options, &option_index); if (c == -1) break; @@ -177,6 +186,21 @@ void parse_options(int argc, char **argv) hysteresis_limit = atof(optarg) / 32768.0; break; + case 'f': { + const char *coeffstr = strtok(optarg, ":"); + int coeff_index = 0; + while (coeff_index < NUM_FILTER_COEFF && coeffstr != NULL) { + filter_coeff[coeff_index++] = atof(coeffstr); + coeffstr = strtok(NULL, ":"); + } + use_filter = true; + break; + } + + case 'F': + output_filtered = true; + break; + case 'h': default: help(); @@ -185,30 +209,31 @@ void parse_options(int argc, char **argv) } } -int main(int argc, char **argv) +// TODO: Support AVX here. +std::vector do_filter(const std::vector& pcm, const float* filter) { - parse_options(argc, argv); - - make_lanczos_weight_table(); - std::vector pcm; - int sample_rate; - if (!read_audio_file(argv[optind], &pcm, &sample_rate)) { - exit(1); + std::vector filtered_pcm; + filtered_pcm.reserve(pcm.size()); + for (unsigned i = NUM_FILTER_COEFF; i < pcm.size(); ++i) { + float s = 0.0f; + for (int j = 0; j < NUM_FILTER_COEFF; ++j) { + s += filter[j] * pcm[i - j]; + } + filtered_pcm.push_back(s); } -#if 0 - for (int i = 0; i < LEN; ++i) { - in[i] += rand() % 10000; + if (output_filtered) { + FILE *fp = fopen("filtered.raw", "wb"); + fwrite(filtered_pcm.data(), filtered_pcm.size() * sizeof(filtered_pcm[0]), 1, fp); + fclose(fp); } -#endif -#if 0 - for (int i = 0; i < LEN; ++i) { - printf("%d\n", in[i]); - } -#endif + return filtered_pcm; +} - std::vector pulses; // in seconds +std::vector detect_pulses(const std::vector &pcm, int sample_rate) +{ + std::vector pulses; // Find the flanks. int last_bit = -1; @@ -250,6 +275,37 @@ int main(int argc, char **argv) } last_bit = bit; } + return pulses; +} + +int main(int argc, char **argv) +{ + parse_options(argc, argv); + + make_lanczos_weight_table(); + std::vector pcm; + int sample_rate; + if (!read_audio_file(argv[optind], &pcm, &sample_rate)) { + exit(1); + } + + if (use_filter) { + pcm = do_filter(pcm, filter_coeff); + } + +#if 0 + for (int i = 0; i < LEN; ++i) { + in[i] += rand() % 10000; + } +#endif + +#if 0 + for (int i = 0; i < LEN; ++i) { + printf("%d\n", in[i]); + } +#endif + + std::vector pulses = detect_pulses(pcm, sample_rate); double calibration_factor = 1.0; if (do_calibrate) {