X-Git-Url: https://git.sesse.net/?p=c64tapwav;a=blobdiff_plain;f=decode.cpp;h=ab242d0be5845f7145e0b40ca75c5a646207ca25;hp=32e2cc3543e7c560915dc8955413687d5a121b6c;hb=b0572bf7f70621037e6692c392965f2e85ea2590;hpb=2116cd5829fafa82e23eb328e01e76c876c7b781 diff --git a/decode.cpp b/decode.cpp index 32e2cc3..ab242d0 100644 --- a/decode.cpp +++ b/decode.cpp @@ -19,7 +19,14 @@ #define SYNC_PULSE_LENGTH 378.0 #define SYNC_TEST_TOLERANCE 1.10 +// SPSA options #define NUM_FILTER_COEFF 32 +#define NUM_ITER 5000 +#define A NUM_ITER/10 // approx +#define INITIAL_A 0.005 // A bit of trial and error... +#define INITIAL_C 0.02 // This too. +#define GAMMA 0.166 +#define ALPHA 1.0 static float hysteresis_limit = 3000.0 / 32768.0; static bool do_calibrate = true; @@ -32,6 +39,8 @@ static bool output_filtered = false; static bool quiet = false; static bool do_auto_level = false; static bool output_leveled = false; +static std::vector train_snap_points; +static bool do_train = false; // between [x,x+1] double find_zerocrossing(const std::vector &pcm, int x) @@ -178,6 +187,8 @@ void help() fprintf(stderr, " -f, --filter C1:C2:C3:... specify FIR filter (up to %d coefficients)\n", NUM_FILTER_COEFF); fprintf(stderr, " -F, --output-filtered output filtered waveform to filtered.raw\n"); fprintf(stderr, " -c, --crop START[:END] use only the given part of the file\n"); + fprintf(stderr, " -t, --train LEN1:LEN2:... train a filter for detecting any of the given number of cycles\n"); + fprintf(stderr, " (implies --no-calibrate and --quiet unless overridden)\n"); fprintf(stderr, " -q, --quiet suppress some informational messages\n"); fprintf(stderr, " -h, --help display this help, then exit\n"); exit(1); @@ -187,7 +198,7 @@ void parse_options(int argc, char **argv) { for ( ;; ) { int option_index = 0; - int c = getopt_long(argc, argv, "aAspl:f:Fc:qh", long_options, &option_index); + int c = getopt_long(argc, argv, "aAspl:f:Fc:t:qh", long_options, &option_index); if (c == -1) break; @@ -213,11 +224,11 @@ void parse_options(int argc, char **argv) break; case 'f': { - const char *coeffstr = strtok(optarg, ":"); + const char *coeffstr = strtok(optarg, ": "); int coeff_index = 0; while (coeff_index < NUM_FILTER_COEFF && coeffstr != NULL) { filter_coeff[coeff_index++] = atof(coeffstr); - coeffstr = strtok(NULL, ":"); + coeffstr = strtok(NULL, ": "); } use_filter = true; break; @@ -240,6 +251,20 @@ void parse_options(int argc, char **argv) break; } + case 't': { + const char *cyclestr = strtok(optarg, ":"); + while (cyclestr != NULL) { + train_snap_points.push_back(atof(cyclestr)); + cyclestr = strtok(NULL, ":"); + } + do_train = true; + + // Set reasonable defaults (can be overridden later on the command line). + do_calibrate = false; + quiet = true; + break; + } + case 'q': quiet = true; break; @@ -343,6 +368,76 @@ void output_cycle_plot(const std::vector &pulses, double calibration_fact fclose(fp); } +float eval_badness(const std::vector& pulses, double calibration_factor) +{ + double sum_badness = 0.0; + for (unsigned i = 0; i < pulses.size(); ++i) { + double cycles = pulses[i].len * calibration_factor * C64_FREQUENCY; + if (cycles > 2000.0) cycles = 2000.0; // Don't make pauses arbitrarily bad. + double badness = (cycles - train_snap_points[0]) * (cycles - train_snap_points[0]); + for (unsigned j = 1; j < train_snap_points.size(); ++j) { + badness = std::min(badness, (cycles - train_snap_points[j]) * (cycles - train_snap_points[j])); + } + sum_badness += badness; + } + return sqrt(sum_badness / (pulses.size() - 1)); +} + +void spsa_train(std::vector &pcm, int sample_rate) +{ + // Train! + float filter[NUM_FILTER_COEFF] = { 1.0f }; // The rest is filled with 0. + + float start_c = INITIAL_C; + double best_badness = HUGE_VAL; + + for (int n = 1; n < NUM_ITER; ++n) { + float a = INITIAL_A * pow(n + A, -ALPHA); + float c = start_c * pow(n, -GAMMA); + + // find a random perturbation + float p[NUM_FILTER_COEFF]; + float filter1[NUM_FILTER_COEFF], filter2[NUM_FILTER_COEFF]; + for (int i = 0; i < NUM_FILTER_COEFF; ++i) { + p[i] = (rand() % 2) ? 1.0 : -1.0; + filter1[i] = std::max(std::min(filter[i] - c * p[i], 1.0f), -1.0f); + filter2[i] = std::max(std::min(filter[i] + c * p[i], 1.0f), -1.0f); + } + + std::vector pulses1 = detect_pulses(do_filter(pcm, filter1), sample_rate); + std::vector pulses2 = detect_pulses(do_filter(pcm, filter2), sample_rate); + float badness1 = eval_badness(pulses1, 1.0); + float badness2 = eval_badness(pulses2, 1.0); + + // Find the gradient estimator + float g[NUM_FILTER_COEFF]; + for (int i = 0; i < NUM_FILTER_COEFF; ++i) { + g[i] = (badness2 - badness1) / (2.0 * c * p[i]); + filter[i] -= a * g[i]; + filter[i] = std::max(std::min(filter[i], 1.0f), -1.0f); + } + if (badness2 < badness1) { + std::swap(badness1, badness2); + std::swap(filter1, filter2); + std::swap(pulses1, pulses2); + } + if (badness1 < best_badness) { + printf("\nNew best filter (badness=%f):", badness1); + for (int i = 0; i < NUM_FILTER_COEFF; ++i) { + printf(" %.5f", filter1[i]); + } + best_badness = badness1; + printf("\n"); + + if (output_cycles_plot) { + output_cycle_plot(pulses1, 1.0); + } + } + printf("%d ", n); + fflush(stdout); + } +} + int main(int argc, char **argv) { parse_options(argc, argv); @@ -383,6 +478,11 @@ int main(int argc, char **argv) } #endif + if (do_train) { + spsa_train(pcm, sample_rate); + exit(0); + } + std::vector pulses = detect_pulses(pcm, sample_rate); double calibration_factor = 1.0;