]> git.sesse.net Git - fjl/blob - driver.c
Kill the expect for now.
[fjl] / driver.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4
5 #include "bytesource.h"
6 #include "choice.h"
7 #include "dehuff.h"
8 #include "idct.h"
9 #include "input.h"
10 #include "zigzag.h"
11
12 struct jpeg_image {
13         unsigned precision;
14         unsigned width, height;
15         unsigned num_components;
16         unsigned hsample[256], vsample[256], qtable[256];
17         unsigned max_hsample, max_vsample;
18         unsigned stride[256];
19         unsigned num_blocks_horizontal, num_blocks_vertical;
20         uint32_t qvalues[256][DCTSIZE2];
21         void* idct_data[256];
22         uint8_t* pixel_data[256];
23         uint8_t* pixel_write_pointer[256];
24 };
25
26 ssize_t stdio_read(void* userdata, uint8_t* buf, size_t count) 
27 {
28         return fread(buf, 1, count, (FILE*)userdata);
29 }
30
31 void read_dqt(struct byte_source* source, struct jpeg_image* image)
32 {
33         unsigned len = read_uint16(byte_source_input_func, source);
34         assert(len >= 67);
35         uint8_t precision_table = read_uint8(byte_source_input_func, source);
36         int precision = precision_table >> 4;  // 0 = 8 bits, otherwise 16 bits.
37         int table = precision_table & 0x0f;
38
39         if (image->idct_data[table] != NULL) {
40                 idct_choice_free(image->idct_data[table]);
41         }
42
43         if (precision != 0) {
44                 assert(len == 131);
45                 fprintf(stderr, "Quantization table %u: 16 bits/entry\n", table);
46         } else {
47                 assert(len == 67);
48                 fprintf(stderr, "Quantization table %u: 8 bits/entry\n", table);
49         }
50         
51         for (unsigned i = 0; i < 64; ++i) {
52                 if (precision != 0) {
53                         image->qvalues[table][unzigzag[i]] =
54                                 read_uint16(byte_source_input_func, source);
55                 } else {
56                         image->qvalues[table][unzigzag[i]] =
57                                 read_uint8(byte_source_input_func, source);
58                 }       
59         }
60
61         image->idct_data[table] = idct_choice_alloc(image->qvalues[table]);
62 }
63
64 void read_sof(struct byte_source* source, struct jpeg_image* image)
65 {
66         unsigned len = read_uint16(byte_source_input_func, source);
67         assert(len >= 8);
68         image->precision = read_uint8(byte_source_input_func, source);
69         assert(image->precision == 8);
70         image->height = read_uint16(byte_source_input_func, source);
71         image->width = read_uint16(byte_source_input_func, source);
72         image->num_components = read_uint8(byte_source_input_func, source);
73         len -= 8;
74
75         fprintf(stderr, "%u-bit %ux%u JPEG with %u components\n",
76                 image->precision, image->width, image->height, image->num_components);
77
78         for (unsigned i = 0; i < image->num_components; ++i) {
79                 assert(len >= 3);
80                 unsigned c = read_uint8(byte_source_input_func, source);
81                 unsigned sampling_factors = read_uint8(byte_source_input_func, source);
82                 image->hsample[c] = sampling_factors >> 4;
83                 image->vsample[c] = sampling_factors & 0x0f;
84                 image->qtable[c] = read_uint8(byte_source_input_func, source);
85                 len -= 3;
86
87                 if (image->hsample[c] > image->max_hsample) {
88                         image->max_hsample = image->hsample[c];
89                 }
90                 if (image->vsample[c] > image->max_vsample) {
91                         image->max_vsample = image->vsample[c];
92                 }
93
94                 fprintf(stderr, "Component %u: sampling factors %u x %x, quantization table %u\n",
95                         c, image->hsample[c], image->vsample[c], image->qtable[c]);
96         }
97         
98         image->num_blocks_horizontal = (image->width + image->max_hsample * DCTSIZE - 1) / (image->max_hsample * DCTSIZE);
99         image->num_blocks_vertical = (image->height + image->max_vsample * DCTSIZE - 1) / (image->max_vsample * DCTSIZE);
100
101         for (unsigned c = 0; c < 256; ++c) {
102                 if (image->hsample[c] == 0) {
103                         continue;
104                 }
105
106                 unsigned width = image->num_blocks_horizontal * image->hsample[c] * DCTSIZE;
107                 unsigned height = image->num_blocks_vertical * image->vsample[c] * DCTSIZE;
108                 image->stride[c] = width;
109                 image->pixel_data[c] = (uint8_t*)malloc(width * height);
110                 assert(image->pixel_data[c] != NULL);
111                 image->pixel_write_pointer[c] = image->pixel_data[c];
112
113                 fprintf(stderr, "Component %u: allocating %d x %d\n", c, width, height);
114         }
115 }
116
117 void decode_ac_coefficients(const struct huffman_table* tbl, struct bit_source* bits, int16_t* coeff)
118 {
119         possibly_refill(bits, DEHUF_AC_TABLE_BITS);
120         for (unsigned i = 0; i < DCTSIZE2 - 1; ) {
121                 unsigned lookup = peek_bits(bits, DEHUF_AC_TABLE_BITS);
122                 int code = tbl->ac_table_codes[lookup];
123                 unsigned length = tbl->ac_table_length[lookup];
124                 unsigned r = tbl->ac_table_skip[lookup];
125
126                 if (code == AC_DEHUF_SLOW_PATH) {
127                         unsigned rs = read_huffman_symbol_no_refill(tbl, bits);
128                         if (rs == 0x00) {
129                                 /* end of block */
130                                 break;
131                         }
132
133                         unsigned r = rs >> 4;
134                         unsigned s = rs & 0xf;
135                         i += r + 1;
136                         possibly_refill(bits, s);
137                         coeff[unzigzag[i]] = extend(read_bits(bits, s), s);
138                         possibly_refill(bits, DEHUF_AC_TABLE_BITS);
139                 } else {
140                         assert(bits->bits_available >= length);
141                         read_bits(bits, length);
142                         possibly_refill(bits, DEHUF_AC_TABLE_BITS);
143
144                         assert(r >= 1);
145                         i += r;
146                         coeff[unzigzag[i]] = code;
147                 }
148         }
149 }
150
151 void read_scan(struct byte_source* source, struct jpeg_image* image, huffman_tables_t* tables)
152 {
153         unsigned len = read_uint16(byte_source_input_func, source);
154         assert(len >= 2);
155         len -= 2;
156
157         assert(len >= 1);
158         unsigned num_components = read_uint8(byte_source_input_func, source);
159         --len;
160
161         unsigned component_num[256];
162         unsigned dc_huffman_table[256], ac_huffman_table[256];
163         unsigned ss, se, ah_al;
164         int last_dc[256];
165
166         for (unsigned i = 0; i < num_components; ++i) {
167                 unsigned char td_ta;
168                 assert(len >= 2);
169                 component_num[i] = read_uint8(byte_source_input_func, source);
170                 td_ta = read_uint8(byte_source_input_func, source);
171                 len -= 2;
172                 dc_huffman_table[i] = td_ta >> 4;
173                 ac_huffman_table[i] = td_ta & 0x0f;
174                 last_dc[i] = 0;
175         }
176
177         assert(len >= 3);
178         ss = read_uint8(byte_source_input_func, source);
179         se = read_uint8(byte_source_input_func, source);
180         ah_al = read_uint8(byte_source_input_func, source);
181         len -= 3;
182
183         if (len != 0) {
184                 fprintf(stderr, "Error: %u unused bytes at end of SOS segment\n", len);
185         }
186
187         struct bit_source bits;
188         init_bit_source(&bits, byte_source_input_func, 8, source);
189                 
190         unsigned mcu_x = 0, mcu_y = 0;
191
192         while (!bits.source_eof) {
193                 for (unsigned c = 0; c < num_components; ++c) {
194                         unsigned cn = component_num[c];
195                         assert(image->idct_data[image->qtable[cn]] != NULL);
196
197                         uint8_t* pixel_write_pointer_y = image->pixel_write_pointer[cn];
198                         for (unsigned local_yb = 0; local_yb < image->vsample[cn]; ++local_yb, pixel_write_pointer_y += image->stride[cn] * DCTSIZE) {
199                                 uint8_t* pixel_write_pointer = pixel_write_pointer_y;
200                                 for (unsigned local_xb = 0; local_xb < image->hsample[cn]; ++local_xb, pixel_write_pointer += DCTSIZE) {
201                                         const struct huffman_table* dc_table = &((*tables)[DC_CLASS][dc_huffman_table[c]]);
202                                         const struct huffman_table* ac_table = &((*tables)[AC_CLASS][ac_huffman_table[c]]);
203
204                                         // decode DC component
205                                         unsigned dc_category = read_huffman_symbol(dc_table, &bits);
206                                         possibly_refill(&bits, dc_category);
207                                         last_dc[c] += extend(read_bits(&bits, dc_category), dc_category);
208                                         
209                                         int16_t coeff[DCTSIZE2] = { 0 };
210                                         coeff[0] = last_dc[c];
211                                         decode_ac_coefficients(ac_table, &bits, coeff);
212
213                                         uint8_t pixdata[DCTSIZE2];      
214                                         idct_choice(coeff, image->idct_data[image->qtable[cn]], pixdata);
215
216                                         uint8_t* dest_pixdata = pixel_write_pointer;
217                                         for (unsigned y = 0; y < DCTSIZE; ++y, dest_pixdata += image->stride[cn]) {
218                                                 memcpy(dest_pixdata, pixdata + y * DCTSIZE, DCTSIZE);
219                                         }
220                                 }
221                         }
222                         image->pixel_write_pointer[cn] += DCTSIZE * image->hsample[cn];
223                 }
224         
225                 if (++mcu_x == image->num_blocks_horizontal) {
226                         ++mcu_y;
227                         mcu_x = 0;
228                 
229                         for (unsigned c = 0; c < num_components; ++c) {
230                                 unsigned cn = component_num[c];
231                                 image->pixel_write_pointer[cn] += (image->vsample[cn] * DCTSIZE - 1) * image->stride[cn];
232                         }
233
234                         // Some debug code.
235                         const int c = 1;
236                         if (mcu_y == image->num_blocks_vertical) {
237                                 unsigned stride = image->num_blocks_horizontal * image->hsample[c] * DCTSIZE;
238                                 unsigned height = image->num_blocks_vertical * image->vsample[c] * DCTSIZE;
239                                 printf("P5\n%u %u\n255\n", stride, height);
240                                 fwrite(image->pixel_data[c], stride * height, 1, stdout);
241                         }
242                 }
243         }
244         if (len != 0) {
245                 fprintf(stderr, "Error: %u unused bytes at end of SOS segment\n", len);
246         }
247 }
248                         
249 void skip_segment(struct byte_source* source)
250 {
251         uint8_t buf[4096];
252         for ( ;; ) {
253                 ssize_t ret = byte_source_input_func(source, buf, 4096);
254                 if (ret == -1) {
255                         fprintf(stderr, "Input error!\n");
256                         exit(1);
257                 }
258                 if (ret == 0) {
259                         return;
260                 }
261         }
262 }
263         
264 int main(void)
265 {
266         struct jpeg_image jpeg;
267         memset(&jpeg, 0, sizeof(jpeg));
268         init_choices();
269
270         struct byte_source source;
271         init_byte_source(&source, stdio_read, stdin);
272
273         huffman_tables_t tables;
274
275         for ( ;; ) {
276                 uint8_t m2 = byte_source_read_marker(&source);
277                 assert(m2 != 0x00);
278
279                 fprintf(stderr, "Marker 0x%02x, at position %ld\n", m2, ftell(stdin) - source.bytes_available);
280
281                 switch (m2) {
282                 case 0xe0:
283                 case 0xe1:
284                 case 0xe2:
285                 case 0xe3:
286                 case 0xe4:
287                 case 0xe5:
288                 case 0xe6:
289                 case 0xe7:
290                 case 0xe8:
291                 case 0xe9:
292                 case 0xea:
293                 case 0xeb:
294                 case 0xec:
295                 case 0xed:
296                 case 0xee:
297                 case 0xef:
298                         /* APP0 through APPF */
299                 case 0xfc:
300                         /* some EXIF stuff */
301                 case 0xfe:
302                         /* comment */
303                 case 0xff:
304                         /* ignore */
305                         skip_segment(&source);
306                         break;
307                 case 0xdb:
308                         /* DQT */
309                         read_dqt(&source, &jpeg);
310                         break;
311                 case 0xc0:
312                         /* SOF0 (baseline DCT, Huffman encoded) */
313                         read_sof(&source, &jpeg);
314                         break;
315                 case 0xd8:
316                         /* SOI */
317                         break;
318                 case 0xd9:
319                         /* EOI */
320                         exit(0);
321                 case 0xc4:
322                         /* DHT (define Huffman tables) */
323                         read_huffman_tables(&tables, byte_source_input_func, &source);
324                         break;
325                 case 0xda:
326                         /* SOS (start of scan) */
327                         read_scan(&source, &jpeg, &tables);
328                         break;
329                 default:
330                         fprintf(stderr, "Error: Unknown marker 0x%02x\n", m2);
331                         exit(1);
332                 }
333         }
334 }