Redo the phase generation; we now start at the output end instead of at the inputs...
[movit] / effect_chain.cpp
1 #define GL_GLEXT_PROTOTYPES 1
2
3 #include <stdio.h>
4 #include <string.h>
5 #include <assert.h>
6
7 #include <GL/gl.h>
8 #include <GL/glext.h>
9
10 #include <algorithm>
11 #include <set>
12 #include <stack>
13 #include <vector>
14
15 #include "util.h"
16 #include "effect_chain.h"
17 #include "gamma_expansion_effect.h"
18 #include "gamma_compression_effect.h"
19 #include "lift_gamma_gain_effect.h"
20 #include "colorspace_conversion_effect.h"
21 #include "sandbox_effect.h"
22 #include "saturation_effect.h"
23 #include "mirror_effect.h"
24 #include "vignette_effect.h"
25 #include "blur_effect.h"
26 #include "diffusion_effect.h"
27 #include "glow_effect.h"
28 #include "mix_effect.h"
29 #include "input.h"
30
31 EffectChain::EffectChain(unsigned width, unsigned height)
32         : width(width),
33           height(height),
34           finalized(false) {}
35
36 Input *EffectChain::add_input(const ImageFormat &format)
37 {
38         char eff_id[256];
39         sprintf(eff_id, "src_image%d", inputs.size());
40
41         Input *input = new Input(format, width, height);
42         effects.push_back(input);
43         inputs.push_back(input);
44         output_color_space.insert(std::make_pair(input, format.color_space));
45         output_gamma_curve.insert(std::make_pair(input, format.gamma_curve));
46         effect_ids.insert(std::make_pair(input, eff_id));
47         incoming_links.insert(std::make_pair(input, std::vector<Effect *>()));
48         return input;
49 }
50
51 void EffectChain::add_output(const ImageFormat &format)
52 {
53         output_format = format;
54 }
55
56 void EffectChain::add_effect_raw(Effect *effect, const std::vector<Effect *> &inputs)
57 {
58         char effect_id[256];
59         sprintf(effect_id, "eff%u", (unsigned)effects.size());
60
61         effects.push_back(effect);
62         effect_ids.insert(std::make_pair(effect, effect_id));
63         assert(inputs.size() == effect->num_inputs());
64         for (unsigned i = 0; i < inputs.size(); ++i) {
65                 assert(std::find(effects.begin(), effects.end(), inputs[i]) != effects.end());
66                 outgoing_links[inputs[i]].push_back(effect);
67         }
68         incoming_links.insert(std::make_pair(effect, inputs));
69         output_gamma_curve[effect] = output_gamma_curve[last_added_effect()];
70         output_color_space[effect] = output_color_space[last_added_effect()];
71 }
72
73 Effect *instantiate_effect(EffectId effect)
74 {
75         switch (effect) {
76         case EFFECT_GAMMA_EXPANSION:
77                 return new GammaExpansionEffect();
78         case EFFECT_GAMMA_COMPRESSION:
79                 return new GammaCompressionEffect();
80         case EFFECT_COLOR_SPACE_CONVERSION:
81                 return new ColorSpaceConversionEffect();
82         case EFFECT_SANDBOX:
83                 return new SandboxEffect();
84         case EFFECT_LIFT_GAMMA_GAIN:
85                 return new LiftGammaGainEffect();
86         case EFFECT_SATURATION:
87                 return new SaturationEffect();
88         case EFFECT_MIRROR:
89                 return new MirrorEffect();
90         case EFFECT_VIGNETTE:
91                 return new VignetteEffect();
92         case EFFECT_BLUR:
93                 return new BlurEffect();
94         case EFFECT_DIFFUSION:
95                 return new DiffusionEffect();
96         case EFFECT_GLOW:
97                 return new GlowEffect();
98         case EFFECT_MIX:
99                 return new MixEffect();
100         }
101         assert(false);
102 }
103
104 // Set the "use_srgb_texture_format" option on all inputs that feed into this node,
105 // and update the output_gamma_curve[] map as we go.
106 //
107 // NOTE: We assume that the only way we could actually get GAMMA_sRGB from an
108 // effect (except from GammaCompressionCurve, which should never be inserted
109 // into a chain when this is called) is by pass-through from a texture.
110 // Thus, we can simply feed the flag up towards all inputs.
111 void EffectChain::set_use_srgb_texture_format(Effect *effect)
112 {
113         assert(output_gamma_curve.count(effect) != 0);
114         assert(output_gamma_curve[effect] == GAMMA_sRGB);
115         if (effect->num_inputs() == 0) {
116                 effect->set_int("use_srgb_texture_format", 1);
117         } else {
118                 assert(incoming_links.count(effect) == 1);
119                 std::vector<Effect *> deps = incoming_links[effect];
120                 assert(effect->num_inputs() == deps.size());
121                 for (unsigned i = 0; i < deps.size(); ++i) {
122                         set_use_srgb_texture_format(deps[i]);
123                         assert(output_gamma_curve[deps[i]] == GAMMA_LINEAR);
124                 }
125         }
126         output_gamma_curve[effect] = GAMMA_LINEAR;
127 }
128
129 Effect *EffectChain::normalize_to_linear_gamma(Effect *input)
130 {
131         assert(output_gamma_curve.count(input) != 0);
132         if (output_gamma_curve[input] == GAMMA_sRGB) {
133                 // TODO: check if the extension exists
134                 set_use_srgb_texture_format(input);
135                 output_gamma_curve[input] = GAMMA_LINEAR;
136                 return input;
137         } else {
138                 GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect();
139                 gamma_conversion->set_int("source_curve", output_gamma_curve[input]);
140                 std::vector<Effect *> inputs;
141                 inputs.push_back(input);
142                 gamma_conversion->add_self_to_effect_chain(this, inputs);
143                 output_gamma_curve[gamma_conversion] = GAMMA_LINEAR;
144                 return gamma_conversion;
145         }
146 }
147
148 Effect *EffectChain::normalize_to_srgb(Effect *input)
149 {
150         assert(output_gamma_curve.count(input) != 0);
151         assert(output_color_space.count(input) != 0);
152         assert(output_gamma_curve[input] == GAMMA_LINEAR);
153         ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect();
154         colorspace_conversion->set_int("source_space", output_color_space[input]);
155         colorspace_conversion->set_int("destination_space", COLORSPACE_sRGB);
156         std::vector<Effect *> inputs;
157         inputs.push_back(input);
158         colorspace_conversion->add_self_to_effect_chain(this, inputs);
159         output_color_space[colorspace_conversion] = COLORSPACE_sRGB;
160         return colorspace_conversion;
161 }
162
163 Effect *EffectChain::add_effect(EffectId effect_id, const std::vector<Effect *> &inputs)
164 {
165         Effect *effect = instantiate_effect(effect_id);
166
167         assert(inputs.size() == effect->num_inputs());
168
169         std::vector<Effect *> normalized_inputs = inputs;
170         for (unsigned i = 0; i < normalized_inputs.size(); ++i) {
171                 assert(output_gamma_curve.count(normalized_inputs[i]) != 0);
172                 if (effect->needs_linear_light() && output_gamma_curve[normalized_inputs[i]] != GAMMA_LINEAR) {
173                         normalized_inputs[i] = normalize_to_linear_gamma(normalized_inputs[i]);
174                 }
175                 assert(output_color_space.count(normalized_inputs[i]) != 0);
176                 if (effect->needs_srgb_primaries() && output_color_space[normalized_inputs[i]] != COLORSPACE_sRGB) {
177                         normalized_inputs[i] = normalize_to_srgb(normalized_inputs[i]);
178                 }
179         }
180
181         effect->add_self_to_effect_chain(this, normalized_inputs);
182         return effect;
183 }
184
185 // GLSL pre-1.30 doesn't support token pasting. Replace PREFIX(x) with <effect_id>_x.
186 std::string replace_prefix(const std::string &text, const std::string &prefix)
187 {
188         std::string output;
189         size_t start = 0;
190
191         while (start < text.size()) {
192                 size_t pos = text.find("PREFIX(", start);
193                 if (pos == std::string::npos) {
194                         output.append(text.substr(start, std::string::npos));
195                         break;
196                 }
197
198                 output.append(text.substr(start, pos - start));
199                 output.append(prefix);
200                 output.append("_");
201
202                 pos += strlen("PREFIX(");
203         
204                 // Output stuff until we find the matching ), which we then eat.
205                 int depth = 1;
206                 size_t end_arg_pos = pos;
207                 while (end_arg_pos < text.size()) {
208                         if (text[end_arg_pos] == '(') {
209                                 ++depth;
210                         } else if (text[end_arg_pos] == ')') {
211                                 --depth;
212                                 if (depth == 0) {
213                                         break;
214                                 }
215                         }
216                         ++end_arg_pos;
217                 }
218                 output.append(text.substr(pos, end_arg_pos - pos));
219                 ++end_arg_pos;
220                 assert(depth == 0);
221                 start = end_arg_pos;
222         }
223         return output;
224 }
225
226 EffectChain::Phase EffectChain::compile_glsl_program(const std::vector<Effect *> &inputs, const std::vector<Effect *> &effects)
227 {
228         assert(!effects.empty());
229
230         // Deduplicate the inputs.
231         std::vector<Effect *> true_inputs = inputs;
232         std::sort(true_inputs.begin(), true_inputs.end());
233         true_inputs.erase(std::unique(true_inputs.begin(), true_inputs.end()), true_inputs.end());
234
235         bool input_needs_mipmaps = false;
236         std::string frag_shader = read_file("header.frag");
237
238         // Create functions for all the texture inputs that we need.
239         for (unsigned i = 0; i < true_inputs.size(); ++i) {
240                 Effect *effect = true_inputs[i];
241                 assert(effect_ids.count(effect) != 0);
242                 std::string effect_id = effect_ids[effect];
243         
244                 frag_shader += std::string("uniform sampler2D tex_") + effect_id + ";\n";       
245                 frag_shader += std::string("vec4 ") + effect_id + "(vec2 tc) {\n";
246                 if (effect->num_inputs() == 0) {
247                         // OpenGL's origin is bottom-left, but most graphics software assumes
248                         // a top-left origin. Thus, for inputs that come from the user,
249                         // we flip the y coordinate. However, for FBOs, the origin
250                         // is all correct, so don't do anything.
251                         frag_shader += "\ttc.y = 1.0f - tc.y;\n";
252                 }
253                 frag_shader += "\treturn texture2D(tex_" + effect_id + ", tc);\n";
254                 frag_shader += "}\n";
255                 frag_shader += "\n";
256         }
257
258         std::string last_effect_id;
259         for (unsigned i = 0; i < effects.size(); ++i) {
260                 Effect *effect = effects[i];
261                 assert(effect != NULL);
262                 assert(effect_ids.count(effect) != 0);
263                 std::string effect_id = effect_ids[effect];
264                 last_effect_id = effect_id;
265
266                 if (incoming_links[effect].size() == 1) {
267                         frag_shader += std::string("#define INPUT ") + effect_ids[incoming_links[effect][0]] + "\n";
268                 } else {
269                         for (unsigned j = 0; j < incoming_links[effect].size(); ++j) {
270                                 char buf[256];
271                                 sprintf(buf, "#define INPUT%d %s\n", j + 1, effect_ids[incoming_links[effect][j]].c_str());
272                                 frag_shader += buf;
273                         }
274                 }
275         
276                 frag_shader += "\n";
277                 frag_shader += std::string("#define FUNCNAME ") + effect_id + "\n";
278                 frag_shader += replace_prefix(effect->output_convenience_uniforms(), effect_id);
279                 frag_shader += replace_prefix(effect->output_fragment_shader(), effect_id);
280                 frag_shader += "#undef PREFIX\n";
281                 frag_shader += "#undef FUNCNAME\n";
282                 if (incoming_links[effect].size() == 1) {
283                         frag_shader += "#undef INPUT\n";
284                 } else {
285                         for (unsigned j = 0; j < incoming_links[effect].size(); ++j) {
286                                 char buf[256];
287                                 sprintf(buf, "#undef INPUT%d\n", j + 1);
288                                 frag_shader += buf;
289                         }
290                 }
291                 frag_shader += "\n";
292
293                 input_needs_mipmaps |= effect->needs_mipmaps();
294         }
295         for (unsigned i = 0; i < effects.size(); ++i) {
296                 Effect *effect = effects[i];
297                 if (effect->num_inputs() == 0) {
298                         effect->set_int("needs_mipmaps", input_needs_mipmaps);
299                 }
300         }
301         assert(!last_effect_id.empty());
302         frag_shader += std::string("#define INPUT ") + last_effect_id + "\n";
303         frag_shader.append(read_file("footer.frag"));
304         printf("%s\n", frag_shader.c_str());
305         
306         GLuint glsl_program_num = glCreateProgram();
307         GLuint vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
308         GLuint fs_obj = compile_shader(frag_shader, GL_FRAGMENT_SHADER);
309         glAttachShader(glsl_program_num, vs_obj);
310         check_error();
311         glAttachShader(glsl_program_num, fs_obj);
312         check_error();
313         glLinkProgram(glsl_program_num);
314         check_error();
315
316         Phase phase;
317         phase.glsl_program_num = glsl_program_num;
318         phase.input_needs_mipmaps = input_needs_mipmaps;
319         phase.inputs = true_inputs;
320         phase.effects = effects;
321
322         return phase;
323 }
324
325 // Construct GLSL programs, starting at the given effect and following
326 // the chain from there. We end a program every time we come to an effect
327 // marked as "needs texture bounce", one that is used by multiple other
328 // effects, and of course at the end.
329 //
330 // We follow a quite simple depth-first search from the output, although
331 // without any explicit recursion.
332 void EffectChain::construct_glsl_programs(Effect *output)
333 {
334         // Which effects have already been completed in this phase?
335         // We need to keep track of it, as an effect with multiple outputs
336         // could otherwise be calculate multiple times.
337         std::set<Effect *> completed_effects;
338
339         // Effects in the current phase, as well as inputs (outputs from other phases
340         // that we depend on). Note that since we start iterating from the end,
341         // the effect list will be in the reverse order.
342         std::vector<Effect *> this_phase_inputs;
343         std::vector<Effect *> this_phase_effects;
344
345         // Effects that we have yet to calculate, but that we know should
346         // be in the current phase.
347         std::stack<Effect *> effects_todo_this_phase;
348
349         // Effects that we have yet to calculate, but that come from other phases.
350         // We delay these until we have this phase done in its entirety,
351         // at which point we pick any of them and start a new phase from that.
352         std::stack<Effect *> effects_todo_other_phases;
353
354         effects_todo_this_phase.push(output);
355
356         for ( ;; ) {  // Termination condition within loop.
357                 if (!effects_todo_this_phase.empty()) {
358                         // OK, we have more to do this phase.
359                         Effect *effect = effects_todo_this_phase.top();
360                         effects_todo_this_phase.pop();
361
362                         // This should currently only happen for effects that are phase outputs,
363                         // and we throw those out separately below.
364                         assert(completed_effects.count(effect) == 0);
365
366                         this_phase_effects.push_back(effect);
367                         completed_effects.insert(effect);
368
369                         // Find all the dependencies of this effect, and add them to the stack.
370                         assert(incoming_links.count(effect) == 1);
371                         std::vector<Effect *> deps = incoming_links[effect];
372                         assert(effect->num_inputs() == deps.size());
373                         for (unsigned i = 0; i < deps.size(); ++i) {
374                                 bool start_new_phase = false;
375
376                                 if (effect->needs_texture_bounce()) {
377                                         start_new_phase = true;
378                                 }
379
380                                 assert(outgoing_links.count(deps[i]) == 1);
381                                 if (outgoing_links[deps[i]].size() > 1 && deps[i]->num_inputs() > 0) {
382                                         // More than one effect uses this as the input,
383                                         // and it is not a texture itself.
384                                         // The easiest thing to do (and probably also the safest
385                                         // performance-wise in most cases) is to bounce it to a texture
386                                         // and then let the next passes read from that.
387                                         start_new_phase = true;
388                                 }
389
390                                 if (start_new_phase) {
391                                         effects_todo_other_phases.push(deps[i]);
392                                         this_phase_inputs.push_back(deps[i]);
393                                 } else {
394                                         effects_todo_this_phase.push(deps[i]);
395                                 }
396                         }
397                         continue;
398                 }
399
400                 // No more effects to do this phase. Take all the ones we have,
401                 // and create a GLSL program for it.
402                 if (!this_phase_effects.empty()) {
403                         reverse(this_phase_effects.begin(), this_phase_effects.end());
404                         phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects));
405                         this_phase_inputs.clear();
406                         this_phase_effects.clear();
407                 }
408                 assert(this_phase_inputs.empty());
409                 assert(this_phase_effects.empty());
410
411                 // If we have no effects left, exit.
412                 if (effects_todo_other_phases.empty()) {
413                         break;
414                 }
415
416                 Effect *effect = effects_todo_other_phases.top();
417                 effects_todo_other_phases.pop();
418
419                 if (completed_effects.count(effect) == 0) {
420                         // Start a new phase, calculating from this effect.
421                         effects_todo_this_phase.push(effect);
422                 }
423         }
424
425         // Finally, since the phases are found from the output but must be executed
426         // from the input(s), reverse them, too.
427         std::reverse(phases.begin(), phases.end());
428 }
429
430 void EffectChain::finalize()
431 {
432         // Find the output effect. This is, simply, one that has no outgoing links.
433         // If there are multiple ones, the graph is malformed (we do not support
434         // multiple outputs right now).
435         std::vector<Effect *> output_effects;
436         for (unsigned i = 0; i < effects.size(); ++i) {
437                 Effect *effect = effects[i];
438                 if (outgoing_links.count(effect) == 0 || outgoing_links[effect].size() == 0) {
439                         output_effects.push_back(effect);
440                 }
441         }
442         assert(output_effects.size() == 1);
443         Effect *output_effect = output_effects[0];
444
445         // Add normalizers to get the output format right.
446         assert(output_gamma_curve.count(output_effect) != 0);
447         assert(output_color_space.count(output_effect) != 0);
448         ColorSpace current_color_space = output_color_space[output_effect];
449         if (current_color_space != output_format.color_space) {
450                 ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect();
451                 colorspace_conversion->set_int("source_space", current_color_space);
452                 colorspace_conversion->set_int("destination_space", output_format.color_space);
453                 std::vector<Effect *> inputs;
454                 inputs.push_back(output_effect);
455                 colorspace_conversion->add_self_to_effect_chain(this, inputs);
456                 output_color_space[colorspace_conversion] = output_format.color_space;
457                 output_effect = colorspace_conversion;
458         }
459         GammaCurve current_gamma_curve = output_gamma_curve[output_effect];
460         if (current_gamma_curve != output_format.gamma_curve) {
461                 if (current_gamma_curve != GAMMA_LINEAR) {
462                         output_effect = normalize_to_linear_gamma(output_effect);
463                         current_gamma_curve = GAMMA_LINEAR;
464                 }
465                 GammaCompressionEffect *gamma_conversion = new GammaCompressionEffect();
466                 gamma_conversion->set_int("destination_curve", output_format.gamma_curve);
467                 std::vector<Effect *> inputs;
468                 inputs.push_back(output_effect);
469                 gamma_conversion->add_self_to_effect_chain(this, inputs);
470                 output_gamma_curve[gamma_conversion] = output_format.gamma_curve;
471                 output_effect = gamma_conversion;
472         }
473
474         // Construct all needed GLSL programs, starting at the output.
475         construct_glsl_programs(output_effect);
476
477         // If we have more than one phase, we need intermediate render-to-texture.
478         // Construct an FBO, and then as many textures as we need.
479         // We choose the simplest option of having one texture per output,
480         // since otherwise this turns into an (albeit simple)
481         // register allocation problem.
482         if (phases.size() > 1) {
483                 glGenFramebuffers(1, &fbo);
484
485                 for (unsigned i = 0; i < phases.size() - 1; ++i) {
486                         Effect *output_effect = phases[i].effects.back();
487                         GLuint temp_texture;
488                         glGenTextures(1, &temp_texture);
489                         check_error();
490                         glBindTexture(GL_TEXTURE_2D, temp_texture);
491                         check_error();
492                         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
493                         check_error();
494                         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
495                         check_error();
496                         glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
497                         check_error();
498                         effect_output_textures.insert(std::make_pair(output_effect, temp_texture));
499                 }
500         }
501                 
502         for (unsigned i = 0; i < inputs.size(); ++i) {
503                 inputs[i]->finalize();
504         }
505         
506         finalized = true;
507 }
508
509 void EffectChain::render_to_screen()
510 {
511         assert(finalized);
512
513         // Basic state.
514         glDisable(GL_BLEND);
515         check_error();
516         glDisable(GL_DEPTH_TEST);
517         check_error();
518         glDepthMask(GL_FALSE);
519         check_error();
520
521         glMatrixMode(GL_PROJECTION);
522         glLoadIdentity();
523         glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
524
525         glMatrixMode(GL_MODELVIEW);
526         glLoadIdentity();
527
528         if (phases.size() > 1) {
529                 glBindFramebuffer(GL_FRAMEBUFFER, fbo);
530                 check_error();
531         }
532
533         std::set<Effect *> generated_mipmaps;
534         for (unsigned i = 0; i < inputs.size(); ++i) {
535                 // Inputs generate their own mipmaps if they need to
536                 // (see input.cpp).
537                 generated_mipmaps.insert(inputs[i]);
538         }
539
540         for (unsigned phase = 0; phase < phases.size(); ++phase) {
541                 glUseProgram(phases[phase].glsl_program_num);
542                 check_error();
543
544                 // Set up RTT inputs for this phase.
545                 for (unsigned sampler = 0; sampler < phases[phase].inputs.size(); ++sampler) {
546                         glActiveTexture(GL_TEXTURE0 + sampler);
547                         Effect *input = phases[phase].inputs[sampler];
548                         assert(effect_output_textures.count(input) != 0);
549                         glBindTexture(GL_TEXTURE_2D, effect_output_textures[input]);
550                         check_error();
551                         if (phases[phase].input_needs_mipmaps) {
552                                 if (generated_mipmaps.count(input) == 0) {
553                                         glGenerateMipmap(GL_TEXTURE_2D);
554                                         check_error();
555                                         generated_mipmaps.insert(input);
556                                 }
557                                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
558                                 check_error();
559                         } else {
560                                 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
561                                 check_error();
562                         }
563
564                         assert(effect_ids.count(input));
565                         std::string texture_name = std::string("tex_") + effect_ids[input];
566                         glUniform1i(glGetUniformLocation(phases[phase].glsl_program_num, texture_name.c_str()), sampler);
567                         check_error();
568                 }
569
570                 // And now the output.
571                 if (phase == phases.size() - 1) {
572                         // Last phase goes directly to the screen.
573                         glBindFramebuffer(GL_FRAMEBUFFER, 0);
574                         check_error();
575                 } else {
576                         Effect *last_effect = phases[phase].effects.back();
577                         assert(effect_output_textures.count(last_effect) != 0);
578                         glFramebufferTexture2D(
579                                 GL_FRAMEBUFFER,
580                                 GL_COLOR_ATTACHMENT0,
581                                 GL_TEXTURE_2D,
582                                 effect_output_textures[last_effect],
583                                 0);
584                         check_error();
585                 }
586
587                 // Give the required parameters to all the effects.
588                 unsigned sampler_num = phases[phase].inputs.size();
589                 for (unsigned i = 0; i < phases[phase].effects.size(); ++i) {
590                         Effect *effect = phases[phase].effects[i];
591                         effect->set_gl_state(phases[phase].glsl_program_num, effect_ids[effect], &sampler_num);
592                 }
593
594                 // Now draw!
595                 glBegin(GL_QUADS);
596
597                 glTexCoord2f(0.0f, 0.0f);
598                 glVertex2f(0.0f, 0.0f);
599
600                 glTexCoord2f(1.0f, 0.0f);
601                 glVertex2f(1.0f, 0.0f);
602
603                 glTexCoord2f(1.0f, 1.0f);
604                 glVertex2f(1.0f, 1.0f);
605
606                 glTexCoord2f(0.0f, 1.0f);
607                 glVertex2f(0.0f, 1.0f);
608
609                 glEnd();
610                 check_error();
611
612                 for (unsigned i = 0; i < phases[phase].effects.size(); ++i) {
613                         Effect *effect = phases[phase].effects[i];
614                         effect->clear_gl_state();
615                 }
616         }
617 }