]> git.sesse.net Git - movit/blobdiff - blur_effect.cpp
Factorize the code to compute sampling points for bilinear sampling into a shared...
[movit] / blur_effect.cpp
index 17044f12f35c54681148814f38efebac4d37f5e0..90d1b68653b9af51c009c1fae48a7e007998da8d 100644 (file)
-#define GL_GLEXT_PROTOTYPES 1
-
 #include <math.h>
-#include <GL/gl.h>
-#include <GL/glext.h>
 #include <assert.h>
 
 #include "blur_effect.h"
+#include "effect_chain.h"
 #include "util.h"
+#include "opengl.h"
 
+// Must match blur_effect.frag.
+#define NUM_TAPS 16
+       
 BlurEffect::BlurEffect()
        : radius(3.0f),
-         direction(HORIZONTAL)
+         input_width(1280),
+         input_height(720)
+{
+       // The first blur pass will forward resolution information to us.
+       hpass = new SingleBlurPassEffect(this);
+       hpass->set_int("direction", SingleBlurPassEffect::HORIZONTAL);
+       vpass = new SingleBlurPassEffect(NULL);
+       vpass->set_int("direction", SingleBlurPassEffect::VERTICAL);
+
+       update_radius();
+}
+
+void BlurEffect::rewrite_graph(EffectChain *graph, Node *self)
+{
+       Node *hpass_node = graph->add_node(hpass);
+       Node *vpass_node = graph->add_node(vpass);
+       graph->connect_nodes(hpass_node, vpass_node);
+       graph->replace_receiver(self, hpass_node);
+       graph->replace_sender(self, vpass_node);
+       self->disabled = true;
+} 
+
+// We get this information forwarded from the first blur pass,
+// since we are not part of the chain ourselves.
+void BlurEffect::inform_input_size(unsigned input_num, unsigned width, unsigned height)
+{
+       assert(input_num == 0);
+       assert(width != 0);
+       assert(height != 0);
+       input_width = width;
+       input_height = height;
+       update_radius();
+}
+               
+void BlurEffect::update_radius()
+{
+       // We only have 16 taps to work with on each side, and we want that to
+       // reach out to about 2.5*sigma. Bump up the mipmap levels (giving us
+       // box blurs) until we have what we need.
+       unsigned mipmap_width = input_width, mipmap_height = input_height;
+       float adjusted_radius = radius;
+       while ((mipmap_width > 1 || mipmap_height > 1) && adjusted_radius * 1.5f > NUM_TAPS / 2) {
+               // Find the next mipmap size (round down, minimum 1 pixel).
+               mipmap_width = std::max(mipmap_width / 2, 1u);
+               mipmap_height = std::max(mipmap_height / 2, 1u);
+
+               // Approximate when mipmap sizes are odd, but good enough.
+               adjusted_radius = radius * float(mipmap_width) / float(input_width);
+       }
+       
+       bool ok = hpass->set_float("radius", adjusted_radius);
+       ok |= hpass->set_int("width", mipmap_width);
+       ok |= hpass->set_int("height", mipmap_height);
+
+       ok |= vpass->set_float("radius", adjusted_radius);
+       ok |= vpass->set_int("width", mipmap_width);
+       ok |= vpass->set_int("height", mipmap_height);
+
+       assert(ok);
+}
+
+bool BlurEffect::set_float(const std::string &key, float value) {
+       if (key == "radius") {
+               radius = value;
+               update_radius();
+               return true;
+       }
+       return false;
+}
+
+SingleBlurPassEffect::SingleBlurPassEffect(BlurEffect *parent)
+       : parent(parent),
+         radius(3.0f),
+         direction(HORIZONTAL),
+         width(1280),
+         height(720)
 {
-       register_float("radius", (float *)&radius);
+       register_float("radius", &radius);
        register_int("direction", (int *)&direction);
+       register_int("width", &width);
+       register_int("height", &height);
 }
 
-std::string BlurEffect::output_fragment_shader()
+std::string SingleBlurPassEffect::output_fragment_shader()
 {
        return read_file("blur_effect.frag");
 }
 
-void BlurEffect::set_uniforms(GLuint glsl_program_num, const std::string &prefix, unsigned *sampler_num)
+void SingleBlurPassEffect::set_gl_state(GLuint glsl_program_num, const std::string &prefix, unsigned *sampler_num)
 {
-       Effect::set_uniforms(glsl_program_num, prefix, sampler_num);
-
-       // We only have 15 taps to work with, and we want that to reach out to about 2.5*sigma.
-       // Bump up the mipmap levels (giving us box blurs) until we have what we need.
-       unsigned base_mipmap_level = 0;
-       float adjusted_radius = radius;
-       float pixel_size = 1.0f;
-       while (adjusted_radius * 2.5f > 7.0f) {
-               ++base_mipmap_level;
-               adjusted_radius *= 0.5f;
-               pixel_size *= 2.0f;
-       }       
-
-       // In the second pass, we do the same, but don't sample from a mipmap;
-       // that would re-blur the other direction in an ugly fashion, and we already
-       // have the vertical box blur we need from that pass.
-       //
-       // TODO: We really need to present horizontal+vertical as a unit;
-       // currently, there's really no guarantee vertical blur is the second pass.
-       if (direction == VERTICAL) {
-               base_mipmap_level = 0;
-       }
+       Effect::set_gl_state(glsl_program_num, prefix, sampler_num);
 
-       glActiveTexture(GL_TEXTURE0);
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, base_mipmap_level);
-       check_error();
-
-       // FIXME
-       if (direction == HORIZONTAL) {
-               float ps[] = { pixel_size / 1280.0f, 0.0f };
-               set_uniform_vec2(glsl_program_num, prefix, "pixel_offset", ps);
-       } else if (direction == VERTICAL) {
-               float ps[] = { 0.0f, pixel_size / 720.0f };
-               set_uniform_vec2(glsl_program_num, prefix, "pixel_offset", ps);
+       // Compute the weights; they will be symmetrical, so we only compute
+       // the right side.
+       float weight[NUM_TAPS + 1];
+       if (radius < 1e-3) {
+               weight[0] = 1.0f;
+               for (unsigned i = 1; i < NUM_TAPS + 1; ++i) {
+                       weight[i] = 0.0f;
+               }
        } else {
-               assert(false);
-       }
+               float sum = 0.0f;
+               for (unsigned i = 0; i < NUM_TAPS + 1; ++i) {
+                       // Gaussian blur is a common, but maybe not the prettiest choice;
+                       // it can feel a bit too blurry in the fine detail and too little
+                       // long-tail. This is a simple logistic distribution, which has
+                       // a narrower peak but longer tails.
+                       //
+                       // We interpret the radius as sigma, similar to Gaussian blur.
+                       // Wikipedia says that sigma² = pi² s² / 3, which yields:
+                       const float s = (sqrt(3.0) / M_PI) * radius;
+                       float z = i / (2.0 * s);
+
+                       weight[i] = 1.0f / (cosh(z) * cosh(z));
 
-       // Simple Gaussian weights for now.
-       float weight[15], total = 0.0f;
-       for (unsigned i = 0; i < 15; ++i) {
-               float z = (i - 7.0f) / adjusted_radius;
-               weight[i] = exp(-(z*z));
-               total += weight[i];
+                       if (i == 0) {
+                               sum += weight[i];
+                       } else {
+                               sum += 2.0f * weight[i];
+                       }
+               }
+               for (unsigned i = 0; i < NUM_TAPS + 1; ++i) {
+                       weight[i] /= sum;
+               }
        }
-       printf("[mip level %d] ", base_mipmap_level);
-       for (unsigned i = 0; i < 15; ++i) {
-               weight[i] /= total;
-               printf("%f ", weight[i]);
+
+       // Since the GPU gives us bilinear sampling for free, we can get two
+       // samples for the price of one (for every but the center sample,
+       // in which case this trick doesn't buy us anything). Simply sample
+       // between the two pixel centers, and we can do with fewer weights.
+       // (This is right even in the vertical pass where we don't actually
+       // sample between the pixels, because we have linear interpolation
+       // there too.)
+       //
+       // We pack the parameters into a float4: The relative sample coordinates
+       // in (x,y), and the weight in z. w is unused.
+       float samples[4 * (NUM_TAPS / 2 + 1)];
+
+       // Center sample.
+       samples[4 * 0 + 0] = 0.0f;
+       samples[4 * 0 + 1] = 0.0f;
+       samples[4 * 0 + 2] = weight[0];
+       samples[4 * 0 + 3] = 0.0f;
+
+       // All other samples.
+       for (unsigned i = 1; i < NUM_TAPS / 2 + 1; ++i) {
+               unsigned base_pos = i * 2 - 1;
+               float w1 = weight[base_pos];
+               float w2 = weight[base_pos + 1];
+
+               float offset, total_weight;
+               combine_two_samples(w1, w2, &offset, &total_weight);
+
+               float x = 0.0f, y = 0.0f;
+
+               if (direction == HORIZONTAL) {
+                       x = (base_pos + offset) / (float)width;
+               } else if (direction == VERTICAL) {
+                       y = (base_pos + offset) / (float)height;
+               } else {
+                       assert(false);
+               }
+
+               samples[4 * i + 0] = x;
+               samples[4 * i + 1] = y;
+               samples[4 * i + 2] = total_weight;
+               samples[4 * i + 3] = 0.0f;
        }
-       printf("\n");
-       set_uniform_float_array(glsl_program_num, prefix, "weight", weight, 15);
+
+       set_uniform_vec4_array(glsl_program_num, prefix, "samples", samples, NUM_TAPS / 2 + 1);
+}
+
+void SingleBlurPassEffect::clear_gl_state()
+{
 }