]> git.sesse.net Git - movit/blobdiff - effect_chain.cpp
Unbreak multi-phase rendering after we added the render-to-FBO functionality.
[movit] / effect_chain.cpp
index 56d470fb572e7764e0c78d02bf8d8a0e0a08f506..617d1cb007f392bf6fe816c9ccbd1ead68c9722b 100644 (file)
 #define GL_GLEXT_PROTOTYPES 1
 
 #include <stdio.h>
+#include <math.h>
 #include <string.h>
 #include <assert.h>
 
-#include <GL/gl.h>
-#include <GL/glext.h>
+#include <algorithm>
+#include <set>
+#include <stack>
+#include <vector>
 
 #include "util.h"
 #include "effect_chain.h"
 #include "gamma_expansion_effect.h"
 #include "gamma_compression_effect.h"
-#include "lift_gamma_gain_effect.h"
 #include "colorspace_conversion_effect.h"
-#include "texture_enum.h"
+#include "input.h"
+#include "opengl.h"
 
-EffectChain::EffectChain(unsigned width, unsigned height)
-       : width(width), height(height), finalized(false) {}
+EffectChain::EffectChain(float aspect_nom, float aspect_denom)
+       : aspect_nom(aspect_nom),
+         aspect_denom(aspect_denom),
+         finalized(false) {}
 
-void EffectChain::add_input(const ImageFormat &format)
+Input *EffectChain::add_input(Input *input)
 {
-       input_format = format;
-       current_color_space = format.color_space;
-       current_gamma_curve = format.gamma_curve;
+       inputs.push_back(input);
+
+       Node *node = add_node(input);
+       node->output_color_space = input->get_color_space();
+       node->output_gamma_curve = input->get_gamma_curve();
+       return input;
 }
 
 void EffectChain::add_output(const ImageFormat &format)
 {
        output_format = format;
 }
-       
-Effect *instantiate_effect(EffectId effect)
+
+Node *EffectChain::add_node(Effect *effect)
 {
-       switch (effect) {
-       case GAMMA_CONVERSION:
-               return new GammaExpansionEffect();
-       case RGB_PRIMARIES_CONVERSION:
-               return new GammaExpansionEffect();
-       case LIFT_GAMMA_GAIN:
-               return new LiftGammaGainEffect();
-       }
-       assert(false);
+       char effect_id[256];
+       sprintf(effect_id, "eff%u", (unsigned)nodes.size());
+
+       Node *node = new Node;
+       node->effect = effect;
+       node->disabled = false;
+       node->effect_id = effect_id;
+       node->output_color_space = COLORSPACE_INVALID;
+       node->output_gamma_curve = GAMMA_INVALID;
+
+       nodes.push_back(node);
+       node_map[effect] = node;
+       return node;
 }
 
-void EffectChain::normalize_to_linear_gamma()
+void EffectChain::connect_nodes(Node *sender, Node *receiver)
 {
-       GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect();
-       gamma_conversion->set_int("source_curve", current_gamma_curve);
-       effects.push_back(gamma_conversion);
-       current_gamma_curve = GAMMA_LINEAR;
+       sender->outgoing_links.push_back(receiver);
+       receiver->incoming_links.push_back(sender);
 }
 
-void EffectChain::normalize_to_srgb()
+void EffectChain::replace_receiver(Node *old_receiver, Node *new_receiver)
 {
-       assert(current_gamma_curve == GAMMA_LINEAR);
-       ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect();
-       colorspace_conversion->set_int("source_space", current_color_space);
-       colorspace_conversion->set_int("destination_space", COLORSPACE_sRGB);
-       effects.push_back(colorspace_conversion);
-       current_color_space = COLORSPACE_sRGB;
+       new_receiver->incoming_links = old_receiver->incoming_links;
+       old_receiver->incoming_links.clear();
+       
+       for (unsigned i = 0; i < new_receiver->incoming_links.size(); ++i) {
+               Node *sender = new_receiver->incoming_links[i];
+               for (unsigned j = 0; j < sender->outgoing_links.size(); ++j) {
+                       if (sender->outgoing_links[j] == old_receiver) {
+                               sender->outgoing_links[j] = new_receiver;
+                       }
+               }
+       }       
 }
 
-Effect *EffectChain::add_effect(EffectId effect_id)
+void EffectChain::replace_sender(Node *old_sender, Node *new_sender)
 {
-       Effect *effect = instantiate_effect(effect_id);
+       new_sender->outgoing_links = old_sender->outgoing_links;
+       old_sender->outgoing_links.clear();
+       
+       for (unsigned i = 0; i < new_sender->outgoing_links.size(); ++i) {
+               Node *receiver = new_sender->outgoing_links[i];
+               for (unsigned j = 0; j < receiver->incoming_links.size(); ++j) {
+                       if (receiver->incoming_links[j] == old_sender) {
+                               receiver->incoming_links[j] = new_sender;
+                       }
+               }
+       }       
+}
 
-       if (effect->needs_linear_light() && current_gamma_curve != GAMMA_LINEAR) {
-               normalize_to_linear_gamma();
+void EffectChain::insert_node_between(Node *sender, Node *middle, Node *receiver)
+{
+       for (unsigned i = 0; i < sender->outgoing_links.size(); ++i) {
+               if (sender->outgoing_links[i] == receiver) {
+                       sender->outgoing_links[i] = middle;
+                       middle->incoming_links.push_back(sender);
+               }
        }
-
-       if (effect->needs_srgb_primaries() && current_color_space != COLORSPACE_sRGB) {
-               normalize_to_srgb();
+       for (unsigned i = 0; i < receiver->incoming_links.size(); ++i) {
+               if (receiver->incoming_links[i] == sender) {
+                       receiver->incoming_links[i] = middle;
+                       middle->outgoing_links.push_back(receiver);
+               }
        }
 
-       // not handled yet
-       assert(!effect->needs_many_samples());
-       assert(!effect->needs_mipmaps());
+       assert(middle->incoming_links.size() == middle->effect->num_inputs());
+}
 
-       effects.push_back(effect);
+void EffectChain::find_all_nonlinear_inputs(Node *node, std::vector<Node *> *nonlinear_inputs)
+{
+       if (node->output_gamma_curve == GAMMA_LINEAR &&
+           node->effect->effect_type_id() != "GammaCompressionEffect") {
+               return;
+       }
+       if (node->effect->num_inputs() == 0) {
+               nonlinear_inputs->push_back(node);
+       } else {
+               assert(node->effect->num_inputs() == node->incoming_links.size());
+               for (unsigned i = 0; i < node->incoming_links.size(); ++i) {
+                       find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs);
+               }
+       }
+}
+
+Effect *EffectChain::add_effect(Effect *effect, const std::vector<Effect *> &inputs)
+{
+       assert(inputs.size() == effect->num_inputs());
+       Node *node = add_node(effect);
+       for (unsigned i = 0; i < inputs.size(); ++i) {
+               assert(node_map.count(inputs[i]) != 0);
+               connect_nodes(node_map[inputs[i]], node);
+       }
        return effect;
 }
 
@@ -122,43 +177,87 @@ std::string replace_prefix(const std::string &text, const std::string &prefix)
        return output;
 }
 
-void EffectChain::finalize()
+Phase *EffectChain::compile_glsl_program(
+       const std::vector<Node *> &inputs,
+       const std::vector<Node *> &effects)
 {
-       // TODO: If we want a non-sRGB output color space, convert.
+       assert(!effects.empty());
 
-       if (current_gamma_curve != output_format.gamma_curve) {
-               if (current_gamma_curve != GAMMA_LINEAR) {
-                       normalize_to_linear_gamma();
-               }
-               assert(current_gamma_curve == GAMMA_LINEAR);
-               GammaCompressionEffect *gamma_conversion = new GammaCompressionEffect();
-               gamma_conversion->set_int("destination_curve", output_format.gamma_curve);
-               effects.push_back(gamma_conversion);
-               current_gamma_curve = output_format.gamma_curve;
-       }
+       // Deduplicate the inputs.
+       std::vector<Node *> true_inputs = inputs;
+       std::sort(true_inputs.begin(), true_inputs.end());
+       true_inputs.erase(std::unique(true_inputs.begin(), true_inputs.end()), true_inputs.end());
 
-       std::string frag_shader = read_file("header.glsl");
+       bool input_needs_mipmaps = false;
+       std::string frag_shader = read_file("header.frag");
+
+       // Create functions for all the texture inputs that we need.
+       for (unsigned i = 0; i < true_inputs.size(); ++i) {
+               Node *input = true_inputs[i];
+       
+               frag_shader += std::string("uniform sampler2D tex_") + input->effect_id + ";\n";
+               frag_shader += std::string("vec4 ") + input->effect_id + "(vec2 tc) {\n";
+               frag_shader += "\treturn texture2D(tex_" + input->effect_id + ", tc);\n";
+               frag_shader += "}\n";
+               frag_shader += "\n";
+       }
 
        for (unsigned i = 0; i < effects.size(); ++i) {
-               char effect_id[256];
-               sprintf(effect_id, "eff%d", i);
+               Node *node = effects[i];
+
+               if (node->incoming_links.size() == 1) {
+                       frag_shader += std::string("#define INPUT ") + node->incoming_links[0]->effect_id + "\n";
+               } else {
+                       for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
+                               char buf[256];
+                               sprintf(buf, "#define INPUT%d %s\n", j + 1, node->incoming_links[j]->effect_id.c_str());
+                               frag_shader += buf;
+                       }
+               }
        
                frag_shader += "\n";
-               frag_shader += std::string("#define FUNCNAME ") + effect_id + "\n";
-               frag_shader += replace_prefix(effects[i]->output_convenience_uniforms(), effect_id);
-               frag_shader += replace_prefix(effects[i]->output_glsl(), effect_id);
+               frag_shader += std::string("#define FUNCNAME ") + node->effect_id + "\n";
+               frag_shader += replace_prefix(node->effect->output_convenience_uniforms(), node->effect_id);
+               frag_shader += replace_prefix(node->effect->output_fragment_shader(), node->effect_id);
                frag_shader += "#undef PREFIX\n";
                frag_shader += "#undef FUNCNAME\n";
-               frag_shader += "#undef LAST_INPUT\n";
-               frag_shader += std::string("#define LAST_INPUT ") + effect_id + "\n";
+               if (node->incoming_links.size() == 1) {
+                       frag_shader += "#undef INPUT\n";
+               } else {
+                       for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
+                               char buf[256];
+                               sprintf(buf, "#undef INPUT%d\n", j + 1);
+                               frag_shader += buf;
+                       }
+               }
                frag_shader += "\n";
+
+               input_needs_mipmaps |= node->effect->needs_mipmaps();
+       }
+       for (unsigned i = 0; i < effects.size(); ++i) {
+               Node *node = effects[i];
+               if (node->effect->num_inputs() == 0) {
+                       node->effect->set_int("needs_mipmaps", input_needs_mipmaps);
+               }
        }
-       frag_shader.append(read_file("footer.glsl"));
-       printf("%s\n", frag_shader.c_str());
+       frag_shader += std::string("#define INPUT ") + effects.back()->effect_id + "\n";
+       frag_shader.append(read_file("footer.frag"));
+
+       // Output shader to a temporary file, for easier debugging.
+       static int compiled_shader_num = 0;
+       char filename[256];
+       sprintf(filename, "chain-%03d.frag", compiled_shader_num++);
+       FILE *fp = fopen(filename, "w");
+       if (fp == NULL) {
+               perror(filename);
+               exit(1);
+       }
+       fprintf(fp, "%s\n", frag_shader.c_str());
+       fclose(fp);
        
-       glsl_program_num = glCreateProgram();
-       GLhandleARB vs_obj = compile_shader(read_file("vs.glsl"), GL_VERTEX_SHADER);
-       GLhandleARB fs_obj = compile_shader(frag_shader, GL_FRAGMENT_SHADER);
+       GLuint glsl_program_num = glCreateProgram();
+       GLuint vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
+       GLuint fs_obj = compile_shader(frag_shader, GL_FRAGMENT_SHADER);
        glAttachShader(glsl_program_num, vs_obj);
        check_error();
        glAttachShader(glsl_program_num, fs_obj);
@@ -166,35 +265,731 @@ void EffectChain::finalize()
        glLinkProgram(glsl_program_num);
        check_error();
 
-       finalized = true;
+       Phase *phase = new Phase;
+       phase->glsl_program_num = glsl_program_num;
+       phase->input_needs_mipmaps = input_needs_mipmaps;
+       phase->inputs = true_inputs;
+       phase->effects = effects;
+
+       return phase;
 }
 
-void EffectChain::render_to_screen(unsigned char *src)
+// Construct GLSL programs, starting at the given effect and following
+// the chain from there. We end a program every time we come to an effect
+// marked as "needs texture bounce", one that is used by multiple other
+// effects, every time an effect wants to change the output size,
+// and of course at the end.
+//
+// We follow a quite simple depth-first search from the output, although
+// without any explicit recursion.
+void EffectChain::construct_glsl_programs(Node *output)
 {
-       assert(finalized);
+       // Which effects have already been completed in this phase?
+       // We need to keep track of it, as an effect with multiple outputs
+       // could otherwise be calculate multiple times.
+       std::set<Node *> completed_effects;
 
-       check_error();
-       glUseProgram(glsl_program_num);
-       check_error();
+       // Effects in the current phase, as well as inputs (outputs from other phases
+       // that we depend on). Note that since we start iterating from the end,
+       // the effect list will be in the reverse order.
+       std::vector<Node *> this_phase_inputs;
+       std::vector<Node *> this_phase_effects;
+
+       // Effects that we have yet to calculate, but that we know should
+       // be in the current phase.
+       std::stack<Node *> effects_todo_this_phase;
 
-       glActiveTexture(GL_TEXTURE0);
-       glBindTexture(GL_TEXTURE_2D, SOURCE_IMAGE);
+       // Effects that we have yet to calculate, but that come from other phases.
+       // We delay these until we have this phase done in its entirety,
+       // at which point we pick any of them and start a new phase from that.
+       std::stack<Node *> effects_todo_other_phases;
+
+       effects_todo_this_phase.push(output);
+
+       for ( ;; ) {  // Termination condition within loop.
+               if (!effects_todo_this_phase.empty()) {
+                       // OK, we have more to do this phase.
+                       Node *node = effects_todo_this_phase.top();
+                       effects_todo_this_phase.pop();
+
+                       // This should currently only happen for effects that are phase outputs,
+                       // and we throw those out separately below.
+                       assert(completed_effects.count(node) == 0);
+
+                       this_phase_effects.push_back(node);
+                       completed_effects.insert(node);
+
+                       // Find all the dependencies of this effect, and add them to the stack.
+                       std::vector<Node *> deps = node->incoming_links;
+                       assert(node->effect->num_inputs() == deps.size());
+                       for (unsigned i = 0; i < deps.size(); ++i) {
+                               bool start_new_phase = false;
+
+                               // FIXME: If we sample directly from a texture, we won't need this.
+                               if (node->effect->needs_texture_bounce()) {
+                                       start_new_phase = true;
+                               }
+
+                               if (deps[i]->outgoing_links.size() > 1 && deps[i]->effect->num_inputs() > 0) {
+                                       // More than one effect uses this as the input,
+                                       // and it is not a texture itself.
+                                       // The easiest thing to do (and probably also the safest
+                                       // performance-wise in most cases) is to bounce it to a texture
+                                       // and then let the next passes read from that.
+                                       start_new_phase = true;
+                               }
+
+                               if (deps[i]->effect->changes_output_size()) {
+                                       start_new_phase = true;
+                               }
+
+                               if (start_new_phase) {
+                                       effects_todo_other_phases.push(deps[i]);
+                                       this_phase_inputs.push_back(deps[i]);
+                               } else {
+                                       effects_todo_this_phase.push(deps[i]);
+                               }
+                       }
+                       continue;
+               }
+
+               // No more effects to do this phase. Take all the ones we have,
+               // and create a GLSL program for it.
+               if (!this_phase_effects.empty()) {
+                       reverse(this_phase_effects.begin(), this_phase_effects.end());
+                       phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects));
+                       this_phase_effects.back()->phase = phases.back();
+                       this_phase_inputs.clear();
+                       this_phase_effects.clear();
+               }
+               assert(this_phase_inputs.empty());
+               assert(this_phase_effects.empty());
 
-       // TODO: use sRGB textures if applicable
-       if (input_format.pixel_format == FORMAT_RGB) {
-               glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, src);
-       } else if (input_format.pixel_format == FORMAT_RGBA) {
-               glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, src);
+               // If we have no effects left, exit.
+               if (effects_todo_other_phases.empty()) {
+                       break;
+               }
+
+               Node *node = effects_todo_other_phases.top();
+               effects_todo_other_phases.pop();
+
+               if (completed_effects.count(node) == 0) {
+                       // Start a new phase, calculating from this effect.
+                       effects_todo_this_phase.push(node);
+               }
+       }
+
+       // Finally, since the phases are found from the output but must be executed
+       // from the input(s), reverse them, too.
+       std::reverse(phases.begin(), phases.end());
+}
+
+void EffectChain::output_dot(const char *filename)
+{
+       FILE *fp = fopen(filename, "w");
+       if (fp == NULL) {
+               perror(filename);
+               exit(1);
+       }
+
+       fprintf(fp, "digraph G {\n");
+       for (unsigned i = 0; i < nodes.size(); ++i) {
+               fprintf(fp, "  n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str());
+               for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) {
+                       std::vector<std::string> labels;
+
+                       if (nodes[i]->outgoing_links[j]->effect->needs_texture_bounce()) {
+                               labels.push_back("needs_bounce");
+                       }
+                       if (nodes[i]->effect->changes_output_size()) {
+                               labels.push_back("resize");
+                       }
+
+                       switch (nodes[i]->output_color_space) {
+                       case COLORSPACE_INVALID:
+                               labels.push_back("spc[invalid]");
+                               break;
+                       case COLORSPACE_REC_601_525:
+                               labels.push_back("spc[rec601-525]");
+                               break;
+                       case COLORSPACE_REC_601_625:
+                               labels.push_back("spc[rec601-625]");
+                               break;
+                       default:
+                               break;
+                       }
+
+                       switch (nodes[i]->output_gamma_curve) {
+                       case GAMMA_INVALID:
+                               labels.push_back("gamma[invalid]");
+                               break;
+                       case GAMMA_sRGB:
+                               labels.push_back("gamma[sRGB]");
+                               break;
+                       case GAMMA_REC_601:  // and GAMMA_REC_709
+                               labels.push_back("gamma[rec601/709]");
+                               break;
+                       default:
+                               break;
+                       }
+
+                       if (labels.empty()) {
+                               fprintf(fp, "  n%ld -> n%ld;\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j]);
+                       } else {
+                               std::string label = labels[0];
+                               for (unsigned k = 1; k < labels.size(); ++k) {
+                                       label += ", " + labels[k];
+                               }
+                               fprintf(fp, "  n%ld -> n%ld [label=\"%s\"];\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j], label.c_str());
+                       }
+               }
+       }
+       fprintf(fp, "}\n");
+
+       fclose(fp);
+}
+
+unsigned EffectChain::fit_rectangle_to_aspect(unsigned width, unsigned height)
+{
+       if (float(width) * aspect_denom >= float(height) * aspect_nom) {
+               // Same aspect, or W/H > aspect (image is wider than the frame).
+               // In either case, keep width.
+               return width;
        } else {
-               assert(false);
+               // W/H < aspect (image is taller than the frame), so keep height,
+               // and adjust width correspondingly.
+               return lrintf(height * aspect_nom / aspect_denom);
        }
-       check_error();
-       glUniform1i(glGetUniformLocation(glsl_program_num, "input_tex"), 0);
+}
+
+// Propagate input texture sizes throughout, and inform effects downstream.
+// (Like a lot of other code, we depend on effects being in topological order.)
+void EffectChain::inform_input_sizes(Phase *phase)
+{
+       // All effects that have a defined size (inputs and RTT inputs)
+       // get that. Reset all others.
+       for (unsigned i = 0; i < phase->effects.size(); ++i) {
+               Node *node = phase->effects[i];
+               if (node->effect->num_inputs() == 0) {
+                       Input *input = static_cast<Input *>(node->effect);
+                       node->output_width = input->get_width();
+                       node->output_height = input->get_height();
+                       assert(node->output_width != 0);
+                       assert(node->output_height != 0);
+               } else {
+                       node->output_width = node->output_height = 0;
+               }
+       }
+       for (unsigned i = 0; i < phase->inputs.size(); ++i) {
+               Node *input = phase->inputs[i];
+               input->output_width = input->phase->output_width;
+               input->output_height = input->phase->output_height;
+               assert(input->output_width != 0);
+               assert(input->output_height != 0);
+       }
+
+       // Now propagate from the inputs towards the end, and inform as we go.
+       // The rules are simple:
+       //
+       //   1. Don't touch effects that already have given sizes (ie., inputs).
+       //   2. If all of your inputs have the same size, that will be your output size.
+       //   3. Otherwise, your output size is 0x0.
+       for (unsigned i = 0; i < phase->effects.size(); ++i) {
+               Node *node = phase->effects[i];
+               if (node->effect->num_inputs() == 0) {
+                       continue;
+               }
+               unsigned this_output_width = 0;
+               unsigned this_output_height = 0;
+               for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
+                       Node *input = node->incoming_links[j];
+                       node->effect->inform_input_size(j, input->output_width, input->output_height);
+                       if (j == 0) {
+                               this_output_width = input->output_width;
+                               this_output_height = input->output_height;
+                       } else if (input->output_width != this_output_width || input->output_height != this_output_height) {
+                               // Inputs disagree.
+                               this_output_width = 0;
+                               this_output_height = 0;
+                       }
+               }
+               node->output_width = this_output_width;
+               node->output_height = this_output_height;
+       }
+}
+
+// Note: You should call inform_input_sizes() before this, as the last effect's
+// desired output size might change based on the inputs.
+void EffectChain::find_output_size(Phase *phase)
+{
+       Node *output_node = phase->effects.back();
+
+       // If the last effect explicitly sets an output size, use that.
+       if (output_node->effect->changes_output_size()) {
+               output_node->effect->get_output_size(&phase->output_width, &phase->output_height);
+               return;
+       }
+
+       // If not, look at the input phases and textures.
+       // We select the largest one (by fit into the current aspect).
+       unsigned best_width = 0;
+       for (unsigned i = 0; i < phase->inputs.size(); ++i) {
+               Node *input = phase->inputs[i];
+               assert(input->phase->output_width != 0);
+               assert(input->phase->output_height != 0);
+               unsigned width = fit_rectangle_to_aspect(input->phase->output_width, input->phase->output_height);
+               if (width > best_width) {
+                       best_width = width;
+               }
+       }
+       for (unsigned i = 0; i < phase->effects.size(); ++i) {
+               Effect *effect = phase->effects[i]->effect;
+               if (effect->num_inputs() != 0) {
+                       continue;
+               }
+
+               Input *input = static_cast<Input *>(effect);
+               unsigned width = fit_rectangle_to_aspect(input->get_width(), input->get_height());
+               if (width > best_width) {
+                       best_width = width;
+               }
+       }
+       assert(best_width != 0);
+       phase->output_width = best_width;
+       phase->output_height = best_width * aspect_denom / aspect_nom;
+}
+
+void EffectChain::sort_nodes_topologically()
+{
+       std::set<Node *> visited_nodes;
+       std::vector<Node *> sorted_list;
+       for (unsigned i = 0; i < nodes.size(); ++i) {
+               if (nodes[i]->incoming_links.size() == 0) {
+                       topological_sort_visit_node(nodes[i], &visited_nodes, &sorted_list);
+               }
+       }
+       reverse(sorted_list.begin(), sorted_list.end());
+       nodes = sorted_list;
+}
+
+void EffectChain::topological_sort_visit_node(Node *node, std::set<Node *> *visited_nodes, std::vector<Node *> *sorted_list)
+{
+       if (visited_nodes->count(node) != 0) {
+               return;
+       }
+       visited_nodes->insert(node);
+       for (unsigned i = 0; i < node->outgoing_links.size(); ++i) {
+               topological_sort_visit_node(node->outgoing_links[i], visited_nodes, sorted_list);
+       }
+       sorted_list->push_back(node);
+}
+
+// Propagate gamma and color space information as far as we can in the graph.
+// The rules are simple: Anything where all the inputs agree, get that as
+// output as well. Anything else keeps having *_INVALID.
+void EffectChain::propagate_gamma_and_color_space()
+{
+       // We depend on going through the nodes in order.
+       sort_nodes_topologically();
+
+       for (unsigned i = 0; i < nodes.size(); ++i) {
+               Node *node = nodes[i];
+               if (node->disabled) {
+                       continue;
+               }
+               assert(node->incoming_links.size() == node->effect->num_inputs());
+               if (node->incoming_links.size() == 0) {
+                       assert(node->output_color_space != COLORSPACE_INVALID);
+                       assert(node->output_gamma_curve != GAMMA_INVALID);
+                       continue;
+               }
+
+               ColorSpace color_space = node->incoming_links[0]->output_color_space;
+               GammaCurve gamma_curve = node->incoming_links[0]->output_gamma_curve;
+               for (unsigned j = 1; j < node->incoming_links.size(); ++j) {
+                       if (node->incoming_links[j]->output_color_space != color_space) {
+                               color_space = COLORSPACE_INVALID;
+                       }
+                       if (node->incoming_links[j]->output_gamma_curve != gamma_curve) {
+                               gamma_curve = GAMMA_INVALID;
+                       }
+               }
+
+               // The conversion effects already have their outputs set correctly,
+               // so leave them alone.
+               if (node->effect->effect_type_id() != "ColorSpaceConversionEffect") {
+                       node->output_color_space = color_space;
+               }               
+               if (node->effect->effect_type_id() != "GammaCompressionEffect" &&
+                   node->effect->effect_type_id() != "GammaExpansionEffect") {
+                       node->output_gamma_curve = gamma_curve;
+               }               
+       }
+}
+
+bool EffectChain::node_needs_colorspace_fix(Node *node)
+{
+       if (node->disabled) {
+               return false;
+       }
+       if (node->effect->num_inputs() == 0) {
+               return false;
+       }
+
+       // propagate_gamma_and_color_space() has already set our output
+       // to COLORSPACE_INVALID if the inputs differ, so we can rely on that.
+       if (node->output_color_space == COLORSPACE_INVALID) {
+               return true;
+       }
+       return (node->effect->needs_srgb_primaries() && node->output_color_space != COLORSPACE_sRGB);
+}
+
+// Fix up color spaces so that there are no COLORSPACE_INVALID nodes left in
+// the graph. Our strategy is not always optimal, but quite simple:
+// Find an effect that's as early as possible where the inputs are of
+// unacceptable colorspaces (that is, either different, or, if the effect only
+// wants sRGB, not sRGB.) Add appropriate conversions on all its inputs,
+// propagate the information anew, and repeat until there are no more such
+// effects.
+void EffectChain::fix_internal_color_spaces()
+{
+       unsigned colorspace_propagation_pass = 0;
+       bool found_any;
+       do {
+               found_any = false;
+               for (unsigned i = 0; i < nodes.size(); ++i) {
+                       Node *node = nodes[i];
+                       if (!node_needs_colorspace_fix(node)) {
+                               continue;
+                       }
+
+                       // Go through each input that is not sRGB, and insert
+                       // a colorspace conversion before it.
+                       for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
+                               Node *input = node->incoming_links[j];
+                               assert(input->output_color_space != COLORSPACE_INVALID);
+                               if (input->output_color_space == COLORSPACE_sRGB) {
+                                       continue;
+                               }
+                               Node *conversion = add_node(new ColorSpaceConversionEffect());
+                               conversion->effect->set_int("source_space", input->output_color_space);
+                               conversion->effect->set_int("destination_space", COLORSPACE_sRGB);
+                               conversion->output_color_space = COLORSPACE_sRGB;
+                               insert_node_between(input, conversion, node);
+                       }
+
+                       // Re-sort topologically, and propagate the new information.
+                       propagate_gamma_and_color_space();
+                       
+                       found_any = true;
+                       break;
+               }
+       
+               char filename[256];
+               sprintf(filename, "step3-colorspacefix-iter%u.dot", ++colorspace_propagation_pass);
+               output_dot(filename);
+               assert(colorspace_propagation_pass < 100);
+       } while (found_any);
+
+       for (unsigned i = 0; i < nodes.size(); ++i) {
+               Node *node = nodes[i];
+               if (node->disabled) {
+                       continue;
+               }
+               assert(node->output_color_space != COLORSPACE_INVALID);
+       }
+}
+
+// Make so that the output is in the desired color space.
+void EffectChain::fix_output_color_space()
+{
+       Node *output = find_output_node();
+       if (output->output_color_space != output_format.color_space) {
+               Node *conversion = add_node(new ColorSpaceConversionEffect());
+               conversion->effect->set_int("source_space", output->output_color_space);
+               conversion->effect->set_int("destination_space", output_format.color_space);
+               conversion->output_color_space = output_format.color_space;
+               connect_nodes(output, conversion);
+       }
+}
+
+bool EffectChain::node_needs_gamma_fix(Node *node)
+{
+       if (node->disabled) {
+               return false;
+       }
+
+       // Small hack since the output is not an explicit node:
+       // If we are the last node and our output is in the wrong
+       // space compared to EffectChain's output, we need to fix it.
+       // This will only take us to linear, but fix_output_gamma()
+       // will come and take us to the desired output gamma
+       // if it is needed.
+       //
+       // This needs to be before everything else, since it could
+       // even apply to inputs (if they are the only effect).
+       if (node->outgoing_links.empty() &&
+           node->output_gamma_curve != output_format.gamma_curve &&
+           node->output_gamma_curve != GAMMA_LINEAR) {
+               return true;
+       }
+
+       if (node->effect->num_inputs() == 0) {
+               return false;
+       }
+
+       // propagate_gamma_and_color_space() has already set our output
+       // to GAMMA_INVALID if the inputs differ, so we can rely on that,
+       // except for GammaCompressionEffect.
+       if (node->output_gamma_curve == GAMMA_INVALID) {
+               return true;
+       }
+       if (node->effect->effect_type_id() == "GammaCompressionEffect") {
+               assert(node->incoming_links.size() == 1);
+               return node->incoming_links[0]->output_gamma_curve != GAMMA_LINEAR;
+       }
+
+       return (node->effect->needs_linear_light() && node->output_gamma_curve != GAMMA_LINEAR);
+}
+
+// Very similar to fix_internal_color_spaces(), but for gamma.
+// There is one difference, though; before we start adding conversion nodes,
+// we see if we can get anything out of asking the sources to deliver
+// linear gamma directly. fix_internal_gamma_by_asking_inputs()
+// does that part, while fix_internal_gamma_by_inserting_nodes()
+// inserts nodes as needed afterwards.
+void EffectChain::fix_internal_gamma_by_asking_inputs(unsigned step)
+{
+       unsigned gamma_propagation_pass = 0;
+       bool found_any;
+       do {
+               found_any = false;
+               for (unsigned i = 0; i < nodes.size(); ++i) {
+                       Node *node = nodes[i];
+                       if (!node_needs_gamma_fix(node)) {
+                               continue;
+                       }
+
+                       // See if all inputs can give us linear gamma. If not, leave it.
+                       std::vector<Node *> nonlinear_inputs;
+                       find_all_nonlinear_inputs(node, &nonlinear_inputs);
+                       assert(!nonlinear_inputs.empty());
+
+                       bool all_ok = true;
+                       for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
+                               Input *input = static_cast<Input *>(nonlinear_inputs[i]->effect);
+                               all_ok &= input->can_output_linear_gamma();
+                       }
 
-       //for (unsigned i = 0; i < effects.size(); ++i) {
-       //      effects[i]->set_uniforms();
-       //}
+                       if (!all_ok) {
+                               continue;
+                       }
+
+                       for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
+                               nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1);
+                               nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR;
+                       }
 
+                       // Re-sort topologically, and propagate the new information.
+                       propagate_gamma_and_color_space();
+                       
+                       found_any = true;
+                       break;
+               }
+       
+               char filename[256];
+               sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
+               output_dot(filename);
+               assert(gamma_propagation_pass < 100);
+       } while (found_any);
+}
+
+void EffectChain::fix_internal_gamma_by_inserting_nodes(unsigned step)
+{
+       unsigned gamma_propagation_pass = 0;
+       bool found_any;
+       do {
+               found_any = false;
+               for (unsigned i = 0; i < nodes.size(); ++i) {
+                       Node *node = nodes[i];
+                       if (!node_needs_gamma_fix(node)) {
+                               continue;
+                       }
+
+                       // Special case: We could be an input and still be asked to
+                       // fix our gamma; if so, we should be the only node
+                       // (as node_needs_gamma_fix() would only return true in
+                       // for an input in that case). That means we should insert
+                       // a conversion node _after_ ourselves.
+                       if (node->incoming_links.empty()) {
+                               assert(node->outgoing_links.empty());
+                               Node *conversion = add_node(new GammaExpansionEffect());
+                               conversion->effect->set_int("source_curve", node->output_gamma_curve);
+                               conversion->output_gamma_curve = GAMMA_LINEAR;
+                               connect_nodes(node, conversion);
+                       }
+
+                       // If not, go through each input that is not linear gamma,
+                       // and insert a gamma conversion before it.
+                       for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
+                               Node *input = node->incoming_links[j];
+                               assert(input->output_gamma_curve != GAMMA_INVALID);
+                               if (input->output_gamma_curve == GAMMA_LINEAR) {
+                                       continue;
+                               }
+                               Node *conversion = add_node(new GammaExpansionEffect());
+                               conversion->effect->set_int("source_curve", input->output_gamma_curve);
+                               conversion->output_gamma_curve = GAMMA_LINEAR;
+                               insert_node_between(input, conversion, node);
+                       }
+
+                       // Re-sort topologically, and propagate the new information.
+                       propagate_gamma_and_color_space();
+                       
+                       found_any = true;
+                       break;
+               }
+       
+               char filename[256];
+               sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass);
+               output_dot(filename);
+               assert(gamma_propagation_pass < 100);
+       } while (found_any);
+
+       for (unsigned i = 0; i < nodes.size(); ++i) {
+               Node *node = nodes[i];
+               if (node->disabled) {
+                       continue;
+               }
+               assert(node->output_gamma_curve != GAMMA_INVALID);
+       }
+}
+
+// Make so that the output is in the desired gamma.
+// Note that this assumes linear input gamma, so it might create the need
+// for another pass of fix_internal_gamma().
+void EffectChain::fix_output_gamma()
+{
+       Node *output = find_output_node();
+       if (output->output_gamma_curve != output_format.gamma_curve) {
+               Node *conversion = add_node(new GammaCompressionEffect());
+               conversion->effect->set_int("destination_curve", output_format.gamma_curve);
+               conversion->output_gamma_curve = output_format.gamma_curve;
+               connect_nodes(output, conversion);
+       }
+}
+
+// Find the output node. This is, simply, one that has no outgoing links.
+// If there are multiple ones, the graph is malformed (we do not support
+// multiple outputs right now).
+Node *EffectChain::find_output_node()
+{
+       std::vector<Node *> output_nodes;
+       for (unsigned i = 0; i < nodes.size(); ++i) {
+               Node *node = nodes[i];
+               if (node->disabled) {
+                       continue;
+               }
+               if (node->outgoing_links.empty()) {
+                       output_nodes.push_back(node);
+               }
+       }
+       assert(output_nodes.size() == 1);
+       return output_nodes[0];
+}
+
+void EffectChain::finalize()
+{
+       // Output the graph as it is before we do any conversions on it.
+       output_dot("step0-start.dot");
+
+       // Give each effect in turn a chance to rewrite its own part of the graph.
+       // Note that if more effects are added as part of this, they will be
+       // picked up as part of the same for loop, since they are added at the end.
+       for (unsigned i = 0; i < nodes.size(); ++i) {
+               nodes[i]->effect->rewrite_graph(this, nodes[i]);
+       }
+       output_dot("step1-rewritten.dot");
+
+       propagate_gamma_and_color_space();
+       output_dot("step2-propagated.dot");
+
+       fix_internal_color_spaces();
+       fix_output_color_space();
+       output_dot("step4-output-colorspacefix.dot");
+
+       // Note that we need to fix gamma after colorspace conversion,
+       // because colorspace conversions might create needs for gamma conversions.
+       // Also, we need to run an extra pass of fix_internal_gamma() after 
+       // fixing the output gamma, as we only have conversions to/from linear.
+       fix_internal_gamma_by_asking_inputs(5);
+       fix_internal_gamma_by_inserting_nodes(6);
+       fix_output_gamma();
+       output_dot("step7-output-gammafix.dot");
+       fix_internal_gamma_by_asking_inputs(8);
+       fix_internal_gamma_by_inserting_nodes(9);
+
+       output_dot("step10-final.dot");
+       
+       // Construct all needed GLSL programs, starting at the output.
+       construct_glsl_programs(find_output_node());
+
+       // If we have more than one phase, we need intermediate render-to-texture.
+       // Construct an FBO, and then as many textures as we need.
+       // We choose the simplest option of having one texture per output,
+       // since otherwise this turns into an (albeit simple)
+       // register allocation problem.
+       if (phases.size() > 1) {
+               glGenFramebuffers(1, &fbo);
+
+               for (unsigned i = 0; i < phases.size() - 1; ++i) {
+                       inform_input_sizes(phases[i]);
+                       find_output_size(phases[i]);
+
+                       Node *output_node = phases[i]->effects.back();
+                       glGenTextures(1, &output_node->output_texture);
+                       check_error();
+                       glBindTexture(GL_TEXTURE_2D, output_node->output_texture);
+                       check_error();
+                       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
+                       check_error();
+                       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
+                       check_error();
+                       glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, phases[i]->output_width, phases[i]->output_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
+                       check_error();
+
+                       output_node->output_texture_width = phases[i]->output_width;
+                       output_node->output_texture_height = phases[i]->output_height;
+               }
+               inform_input_sizes(phases.back());
+       }
+               
+       for (unsigned i = 0; i < inputs.size(); ++i) {
+               inputs[i]->finalize();
+       }
+
+       assert(phases[0]->inputs.empty());
+       
+       finalized = true;
+}
+
+void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height)
+{
+       assert(finalized);
+
+       // Save original viewport.
+       GLuint x = 0, y = 0;
+
+       if (width == 0 && height == 0) {
+               GLint viewport[4];
+               glGetIntegerv(GL_VIEWPORT, viewport);
+               x = viewport[0];
+               y = viewport[1];
+               width = viewport[2];
+               height = viewport[3];
+       }
+
+       // Basic state.
        glDisable(GL_BLEND);
        check_error();
        glDisable(GL_DEPTH_TEST);
@@ -209,20 +1004,112 @@ void EffectChain::render_to_screen(unsigned char *src)
        glMatrixMode(GL_MODELVIEW);
        glLoadIdentity();
 
-       glBegin(GL_QUADS);
+       if (phases.size() > 1) {
+               glBindFramebuffer(GL_FRAMEBUFFER, fbo);
+               check_error();
+       }
 
-       glTexCoord2f(0.0f, 1.0f);
-       glVertex2f(0.0f, 0.0f);
+       std::set<Node *> generated_mipmaps;
 
-       glTexCoord2f(1.0f, 1.0f);
-       glVertex2f(1.0f, 0.0f);
+       for (unsigned phase = 0; phase < phases.size(); ++phase) {
+               // See if the requested output size has changed. If so, we need to recreate
+               // the texture (and before we start setting up inputs).
+               inform_input_sizes(phases[phase]);
+               if (phase != phases.size() - 1) {
+                       find_output_size(phases[phase]);
 
-       glTexCoord2f(1.0f, 0.0f);
-       glVertex2f(1.0f, 1.0f);
+                       Node *output_node = phases[phase]->effects.back();
 
-       glTexCoord2f(0.0f, 0.0f);
-       glVertex2f(0.0f, 1.0f);
+                       if (output_node->output_texture_width != phases[phase]->output_width ||
+                           output_node->output_texture_height != phases[phase]->output_height) {
+                               glActiveTexture(GL_TEXTURE0);
+                               check_error();
+                               glBindTexture(GL_TEXTURE_2D, output_node->output_texture);
+                               check_error();
+                               glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, phases[phase]->output_width, phases[phase]->output_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
+                               check_error();
+                               glBindTexture(GL_TEXTURE_2D, 0);
+                               check_error();
 
-       glEnd();
-       check_error();
+                               output_node->output_texture_width = phases[phase]->output_width;
+                               output_node->output_texture_height = phases[phase]->output_height;
+                       }
+               }
+
+               glUseProgram(phases[phase]->glsl_program_num);
+               check_error();
+
+               // Set up RTT inputs for this phase.
+               for (unsigned sampler = 0; sampler < phases[phase]->inputs.size(); ++sampler) {
+                       glActiveTexture(GL_TEXTURE0 + sampler);
+                       Node *input = phases[phase]->inputs[sampler];
+                       glBindTexture(GL_TEXTURE_2D, input->output_texture);
+                       check_error();
+                       if (phases[phase]->input_needs_mipmaps) {
+                               if (generated_mipmaps.count(input) == 0) {
+                                       glGenerateMipmap(GL_TEXTURE_2D);
+                                       check_error();
+                                       generated_mipmaps.insert(input);
+                               }
+                               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
+                               check_error();
+                       } else {
+                               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
+                               check_error();
+                       }
+
+                       std::string texture_name = std::string("tex_") + input->effect_id;
+                       glUniform1i(glGetUniformLocation(phases[phase]->glsl_program_num, texture_name.c_str()), sampler);
+                       check_error();
+               }
+
+               // And now the output.
+               if (phase == phases.size() - 1) {
+                       // Last phase goes to the output the user specified.
+                       glBindFramebuffer(GL_FRAMEBUFFER, dest_fbo);
+                       check_error();
+                       glViewport(x, y, width, height);
+               } else {
+                       Node *output_node = phases[phase]->effects.back();
+                       glFramebufferTexture2D(
+                               GL_FRAMEBUFFER,
+                               GL_COLOR_ATTACHMENT0,
+                               GL_TEXTURE_2D,
+                               output_node->output_texture,
+                               0);
+                       check_error();
+                       glViewport(0, 0, phases[phase]->output_width, phases[phase]->output_height);
+               }
+
+               // Give the required parameters to all the effects.
+               unsigned sampler_num = phases[phase]->inputs.size();
+               for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) {
+                       Node *node = phases[phase]->effects[i];
+                       node->effect->set_gl_state(phases[phase]->glsl_program_num, node->effect_id, &sampler_num);
+                       check_error();
+               }
+
+               // Now draw!
+               glBegin(GL_QUADS);
+
+               glTexCoord2f(0.0f, 0.0f);
+               glVertex2f(0.0f, 0.0f);
+
+               glTexCoord2f(1.0f, 0.0f);
+               glVertex2f(1.0f, 0.0f);
+
+               glTexCoord2f(1.0f, 1.0f);
+               glVertex2f(1.0f, 1.0f);
+
+               glTexCoord2f(0.0f, 1.0f);
+               glVertex2f(0.0f, 1.0f);
+
+               glEnd();
+               check_error();
+
+               for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) {
+                       Node *node = phases[phase]->effects[i];
+                       node->effect->clear_gl_state();
+               }
+       }
 }