]> git.sesse.net Git - movit/blobdiff - effect_chain.cpp
Add edge information about odd things, such as bounces, resizes and non-standard...
[movit] / effect_chain.cpp
index 31a7c8b128041c951f99a1624c95e9402bcee0c0..63fcdac68fc8f1a019f179cb664fee243641feb8 100644 (file)
@@ -4,9 +4,6 @@
 #include <string.h>
 #include <assert.h>
 
-#include <GL/gl.h>
-#include <GL/glext.h>
-
 #include <algorithm>
 #include <set>
 #include <stack>
 #include "effect_chain.h"
 #include "gamma_expansion_effect.h"
 #include "gamma_compression_effect.h"
-#include "lift_gamma_gain_effect.h"
 #include "colorspace_conversion_effect.h"
-#include "sandbox_effect.h"
-#include "saturation_effect.h"
-#include "mirror_effect.h"
-#include "vignette_effect.h"
-#include "blur_effect.h"
-#include "diffusion_effect.h"
-#include "glow_effect.h"
-#include "mix_effect.h"
 #include "input.h"
+#include "opengl.h"
 
 EffectChain::EffectChain(unsigned width, unsigned height)
        : width(width),
          height(height),
          finalized(false) {}
 
-Input *EffectChain::add_input(const ImageFormat &format)
+Input *EffectChain::add_input(Input *input)
 {
        char eff_id[256];
        sprintf(eff_id, "src_image%u", (unsigned)inputs.size());
 
-       Input *input = new Input(format, width, height);
-       effects.push_back(input);
        inputs.push_back(input);
-       output_color_space.insert(std::make_pair(input, format.color_space));
-       output_gamma_curve.insert(std::make_pair(input, format.gamma_curve));
-       effect_ids.insert(std::make_pair(input, eff_id));
-       incoming_links.insert(std::make_pair(input, std::vector<Effect *>()));
+
+       Node *node = new Node;
+       node->effect = input;
+       node->effect_id = eff_id;
+       node->output_color_space = input->get_color_space();
+       node->output_gamma_curve = input->get_gamma_curve();
+
+       nodes.push_back(node);
+       node_map[input] = node;
+
        return input;
 }
 
@@ -56,126 +49,128 @@ void EffectChain::add_output(const ImageFormat &format)
 void EffectChain::add_effect_raw(Effect *effect, const std::vector<Effect *> &inputs)
 {
        char effect_id[256];
-       sprintf(effect_id, "eff%u", (unsigned)effects.size());
+       sprintf(effect_id, "eff%u", (unsigned)nodes.size());
+
+       Node *node = new Node;
+       node->effect = effect;
+       node->effect_id = effect_id;
 
-       effects.push_back(effect);
-       effect_ids.insert(std::make_pair(effect, effect_id));
        assert(inputs.size() == effect->num_inputs());
+       assert(inputs.size() >= 1);
        for (unsigned i = 0; i < inputs.size(); ++i) {
-               assert(std::find(effects.begin(), effects.end(), inputs[i]) != effects.end());
-               outgoing_links[inputs[i]].push_back(effect);
+               assert(node_map.count(inputs[i]) != 0);
+               node_map[inputs[i]]->outgoing_links.push_back(node);
+               node->incoming_links.push_back(node_map[inputs[i]]);
+               if (i == 0) {
+                       node->output_gamma_curve = node_map[inputs[i]]->output_gamma_curve;
+                       node->output_color_space = node_map[inputs[i]]->output_color_space;
+               } else {
+                       assert(node->output_gamma_curve == node_map[inputs[i]]->output_gamma_curve);
+                       assert(node->output_color_space == node_map[inputs[i]]->output_color_space);
+               }
        }
-       incoming_links.insert(std::make_pair(effect, inputs));
-       output_gamma_curve[effect] = output_gamma_curve[last_added_effect()];
-       output_color_space[effect] = output_color_space[last_added_effect()];
-}
 
-Effect *instantiate_effect(EffectId effect)
-{
-       switch (effect) {
-       case EFFECT_GAMMA_EXPANSION:
-               return new GammaExpansionEffect();
-       case EFFECT_GAMMA_COMPRESSION:
-               return new GammaCompressionEffect();
-       case EFFECT_COLOR_SPACE_CONVERSION:
-               return new ColorSpaceConversionEffect();
-       case EFFECT_SANDBOX:
-               return new SandboxEffect();
-       case EFFECT_LIFT_GAMMA_GAIN:
-               return new LiftGammaGainEffect();
-       case EFFECT_SATURATION:
-               return new SaturationEffect();
-       case EFFECT_MIRROR:
-               return new MirrorEffect();
-       case EFFECT_VIGNETTE:
-               return new VignetteEffect();
-       case EFFECT_BLUR:
-               return new BlurEffect();
-       case EFFECT_DIFFUSION:
-               return new DiffusionEffect();
-       case EFFECT_GLOW:
-               return new GlowEffect();
-       case EFFECT_MIX:
-               return new MixEffect();
-       }
-       assert(false);
+       nodes.push_back(node);
+       node_map[effect] = node;
 }
 
-// Set the "use_srgb_texture_format" option on all inputs that feed into this node,
-// and update the output_gamma_curve[] map as we go.
-//
-// NOTE: We assume that the only way we could actually get GAMMA_sRGB from an
-// effect (except from GammaCompressionCurve, which should never be inserted
-// into a chain when this is called) is by pass-through from a texture.
-// Thus, we can simply feed the flag up towards all inputs.
-void EffectChain::set_use_srgb_texture_format(Effect *effect)
+void EffectChain::find_all_nonlinear_inputs(Node *node,
+                                            std::vector<Node *> *nonlinear_inputs,
+                                            std::vector<Node *> *intermediates)
 {
-       assert(output_gamma_curve.count(effect) != 0);
-       assert(output_gamma_curve[effect] == GAMMA_sRGB);
-       if (effect->num_inputs() == 0) {
-               effect->set_int("use_srgb_texture_format", 1);
+       if (node->output_gamma_curve == GAMMA_LINEAR) {
+               return;
+       }
+       if (node->effect->num_inputs() == 0) {
+               nonlinear_inputs->push_back(node);
        } else {
-               assert(incoming_links.count(effect) == 1);
-               std::vector<Effect *> deps = incoming_links[effect];
-               assert(effect->num_inputs() == deps.size());
-               for (unsigned i = 0; i < deps.size(); ++i) {
-                       set_use_srgb_texture_format(deps[i]);
-                       assert(output_gamma_curve[deps[i]] == GAMMA_LINEAR);
+               intermediates->push_back(node);
+               assert(node->effect->num_inputs() == node->incoming_links.size());
+               for (unsigned i = 0; i < node->incoming_links.size(); ++i) {
+                       find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs, intermediates);
                }
        }
-       output_gamma_curve[effect] = GAMMA_LINEAR;
 }
 
-Effect *EffectChain::normalize_to_linear_gamma(Effect *input)
+Node *EffectChain::normalize_to_linear_gamma(Node *input)
 {
-       assert(output_gamma_curve.count(input) != 0);
-       if (output_gamma_curve[input] == GAMMA_sRGB) {
-               // TODO: check if the extension exists
-               set_use_srgb_texture_format(input);
-               output_gamma_curve[input] = GAMMA_LINEAR;
+       // Find out if all the inputs can be set to deliver sRGB inputs.
+       // If so, we can just ask them to do that instead of inserting a
+       // (possibly expensive) conversion operation.
+       //
+       // NOTE: We assume that effects generally don't mess with the gamma
+       // curve (except GammaCompressionEffect, which should never be
+       // inserted into a chain when this is called), so that we can just
+       // update the output gamma as we go.
+       //
+       // TODO: Setting this flag for one source might confuse a different
+       // part of the pipeline using the same source.
+       std::vector<Node *> nonlinear_inputs;
+       std::vector<Node *> intermediates;
+       find_all_nonlinear_inputs(input, &nonlinear_inputs, &intermediates);
+
+       bool all_ok = true;
+       for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
+               Input *input = static_cast<Input *>(nonlinear_inputs[i]->effect);
+               all_ok &= input->can_output_linear_gamma();
+       }
+
+       if (all_ok) {
+               for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) {
+                       bool ok = nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1);
+                       assert(ok);
+                       nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR;
+               }
+               for (unsigned i = 0; i < intermediates.size(); ++i) {
+                       intermediates[i]->output_gamma_curve = GAMMA_LINEAR;
+               }
                return input;
-       } else {
-               GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect();
-               gamma_conversion->set_int("source_curve", output_gamma_curve[input]);
-               std::vector<Effect *> inputs;
-               inputs.push_back(input);
-               gamma_conversion->add_self_to_effect_chain(this, inputs);
-               output_gamma_curve[gamma_conversion] = GAMMA_LINEAR;
-               return gamma_conversion;
        }
+
+       // OK, that didn't work. Insert a conversion effect.
+       GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect();
+       gamma_conversion->set_int("source_curve", input->output_gamma_curve);
+       std::vector<Effect *> inputs;
+       inputs.push_back(input->effect);
+       gamma_conversion->add_self_to_effect_chain(this, inputs);
+
+       assert(node_map.count(gamma_conversion) != 0);
+       Node *node = node_map[gamma_conversion];
+       node->output_gamma_curve = GAMMA_LINEAR;
+       return node;
 }
 
-Effect *EffectChain::normalize_to_srgb(Effect *input)
+Node *EffectChain::normalize_to_srgb(Node *input)
 {
-       assert(output_gamma_curve.count(input) != 0);
-       assert(output_color_space.count(input) != 0);
-       assert(output_gamma_curve[input] == GAMMA_LINEAR);
+       assert(input->output_gamma_curve == GAMMA_LINEAR);
        ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect();
-       colorspace_conversion->set_int("source_space", output_color_space[input]);
+       colorspace_conversion->set_int("source_space", input->output_color_space);
        colorspace_conversion->set_int("destination_space", COLORSPACE_sRGB);
        std::vector<Effect *> inputs;
-       inputs.push_back(input);
+       inputs.push_back(input->effect);
        colorspace_conversion->add_self_to_effect_chain(this, inputs);
-       output_color_space[colorspace_conversion] = COLORSPACE_sRGB;
-       return colorspace_conversion;
+
+       assert(node_map.count(colorspace_conversion) != 0);
+       Node *node = node_map[colorspace_conversion];
+       node->output_color_space = COLORSPACE_sRGB;
+       return node;
 }
 
-Effect *EffectChain::add_effect(EffectId effect_id, const std::vector<Effect *> &inputs)
+Effect *EffectChain::add_effect(Effect *effect, const std::vector<Effect *> &inputs)
 {
-       Effect *effect = instantiate_effect(effect_id);
-
        assert(inputs.size() == effect->num_inputs());
 
        std::vector<Effect *> normalized_inputs = inputs;
        for (unsigned i = 0; i < normalized_inputs.size(); ++i) {
-               assert(output_gamma_curve.count(normalized_inputs[i]) != 0);
-               if (effect->needs_linear_light() && output_gamma_curve[normalized_inputs[i]] != GAMMA_LINEAR) {
-                       normalized_inputs[i] = normalize_to_linear_gamma(normalized_inputs[i]);
+               assert(node_map.count(normalized_inputs[i]) != 0);
+               Node *input = node_map[normalized_inputs[i]];
+               if (effect->needs_linear_light() && input->output_gamma_curve != GAMMA_LINEAR) {
+                       input = normalize_to_linear_gamma(input);
                }
-               assert(output_color_space.count(normalized_inputs[i]) != 0);
-               if (effect->needs_srgb_primaries() && output_color_space[normalized_inputs[i]] != COLORSPACE_sRGB) {
-                       normalized_inputs[i] = normalize_to_srgb(normalized_inputs[i]);
+               if (effect->needs_srgb_primaries() && input->output_color_space != COLORSPACE_sRGB) {
+                       input = normalize_to_srgb(input);
                }
+               normalized_inputs[i] = input->effect;
        }
 
        effect->add_self_to_effect_chain(this, normalized_inputs);
@@ -223,12 +218,14 @@ std::string replace_prefix(const std::string &text, const std::string &prefix)
        return output;
 }
 
-EffectChain::Phase EffectChain::compile_glsl_program(const std::vector<Effect *> &inputs, const std::vector<Effect *> &effects)
+Phase *EffectChain::compile_glsl_program(
+       const std::vector<Node *> &inputs,
+       const std::vector<Node *> &effects)
 {
        assert(!effects.empty());
 
        // Deduplicate the inputs.
-       std::vector<Effect *> true_inputs = inputs;
+       std::vector<Node *> true_inputs = inputs;
        std::sort(true_inputs.begin(), true_inputs.end());
        true_inputs.erase(std::unique(true_inputs.begin(), true_inputs.end()), true_inputs.end());
 
@@ -237,52 +234,38 @@ EffectChain::Phase EffectChain::compile_glsl_program(const std::vector<Effect *>
 
        // Create functions for all the texture inputs that we need.
        for (unsigned i = 0; i < true_inputs.size(); ++i) {
-               Effect *effect = true_inputs[i];
-               assert(effect_ids.count(effect) != 0);
-               std::string effect_id = effect_ids[effect];
+               Node *input = true_inputs[i];
        
-               frag_shader += std::string("uniform sampler2D tex_") + effect_id + ";\n";       
-               frag_shader += std::string("vec4 ") + effect_id + "(vec2 tc) {\n";
-               if (effect->num_inputs() == 0) {
-                       // OpenGL's origin is bottom-left, but most graphics software assumes
-                       // a top-left origin. Thus, for inputs that come from the user,
-                       // we flip the y coordinate. However, for FBOs, the origin
-                       // is all correct, so don't do anything.
-                       frag_shader += "\ttc.y = 1.0f - tc.y;\n";
-               }
-               frag_shader += "\treturn texture2D(tex_" + effect_id + ", tc);\n";
+               frag_shader += std::string("uniform sampler2D tex_") + input->effect_id + ";\n";
+               frag_shader += std::string("vec4 ") + input->effect_id + "(vec2 tc) {\n";
+               frag_shader += "\treturn texture2D(tex_" + input->effect_id + ", tc);\n";
                frag_shader += "}\n";
                frag_shader += "\n";
        }
 
-       std::string last_effect_id;
        for (unsigned i = 0; i < effects.size(); ++i) {
-               Effect *effect = effects[i];
-               assert(effect != NULL);
-               assert(effect_ids.count(effect) != 0);
-               std::string effect_id = effect_ids[effect];
-               last_effect_id = effect_id;
-
-               if (incoming_links[effect].size() == 1) {
-                       frag_shader += std::string("#define INPUT ") + effect_ids[incoming_links[effect][0]] + "\n";
+               Node *node = effects[i];
+
+               if (node->incoming_links.size() == 1) {
+                       frag_shader += std::string("#define INPUT ") + node->incoming_links[0]->effect_id + "\n";
                } else {
-                       for (unsigned j = 0; j < incoming_links[effect].size(); ++j) {
+                       for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
                                char buf[256];
-                               sprintf(buf, "#define INPUT%d %s\n", j + 1, effect_ids[incoming_links[effect][j]].c_str());
+                               sprintf(buf, "#define INPUT%d %s\n", j + 1, node->incoming_links[j]->effect_id.c_str());
                                frag_shader += buf;
                        }
                }
        
                frag_shader += "\n";
-               frag_shader += std::string("#define FUNCNAME ") + effect_id + "\n";
-               frag_shader += replace_prefix(effect->output_convenience_uniforms(), effect_id);
-               frag_shader += replace_prefix(effect->output_fragment_shader(), effect_id);
+               frag_shader += std::string("#define FUNCNAME ") + node->effect_id + "\n";
+               frag_shader += replace_prefix(node->effect->output_convenience_uniforms(), node->effect_id);
+               frag_shader += replace_prefix(node->effect->output_fragment_shader(), node->effect_id);
                frag_shader += "#undef PREFIX\n";
                frag_shader += "#undef FUNCNAME\n";
-               if (incoming_links[effect].size() == 1) {
+               if (node->incoming_links.size() == 1) {
                        frag_shader += "#undef INPUT\n";
                } else {
-                       for (unsigned j = 0; j < incoming_links[effect].size(); ++j) {
+                       for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
                                char buf[256];
                                sprintf(buf, "#undef INPUT%d\n", j + 1);
                                frag_shader += buf;
@@ -290,16 +273,15 @@ EffectChain::Phase EffectChain::compile_glsl_program(const std::vector<Effect *>
                }
                frag_shader += "\n";
 
-               input_needs_mipmaps |= effect->needs_mipmaps();
+               input_needs_mipmaps |= node->effect->needs_mipmaps();
        }
        for (unsigned i = 0; i < effects.size(); ++i) {
-               Effect *effect = effects[i];
-               if (effect->num_inputs() == 0) {
-                       effect->set_int("needs_mipmaps", input_needs_mipmaps);
+               Node *node = effects[i];
+               if (node->effect->num_inputs() == 0) {
+                       node->effect->set_int("needs_mipmaps", input_needs_mipmaps);
                }
        }
-       assert(!last_effect_id.empty());
-       frag_shader += std::string("#define INPUT ") + last_effect_id + "\n";
+       frag_shader += std::string("#define INPUT ") + effects.back()->effect_id + "\n";
        frag_shader.append(read_file("footer.frag"));
        printf("%s\n", frag_shader.c_str());
        
@@ -313,11 +295,11 @@ EffectChain::Phase EffectChain::compile_glsl_program(const std::vector<Effect *>
        glLinkProgram(glsl_program_num);
        check_error();
 
-       Phase phase;
-       phase.glsl_program_num = glsl_program_num;
-       phase.input_needs_mipmaps = input_needs_mipmaps;
-       phase.inputs = true_inputs;
-       phase.effects = effects;
+       Phase *phase = new Phase;
+       phase->glsl_program_num = glsl_program_num;
+       phase->input_needs_mipmaps = input_needs_mipmaps;
+       phase->inputs = true_inputs;
+       phase->effects = effects;
 
        return phase;
 }
@@ -325,60 +307,60 @@ EffectChain::Phase EffectChain::compile_glsl_program(const std::vector<Effect *>
 // Construct GLSL programs, starting at the given effect and following
 // the chain from there. We end a program every time we come to an effect
 // marked as "needs texture bounce", one that is used by multiple other
-// effects, and of course at the end.
+// effects, every time an effect wants to change the output size,
+// and of course at the end.
 //
 // We follow a quite simple depth-first search from the output, although
 // without any explicit recursion.
-void EffectChain::construct_glsl_programs(Effect *output)
+void EffectChain::construct_glsl_programs(Node *output)
 {
        // Which effects have already been completed in this phase?
        // We need to keep track of it, as an effect with multiple outputs
        // could otherwise be calculate multiple times.
-       std::set<Effect *> completed_effects;
+       std::set<Node *> completed_effects;
 
        // Effects in the current phase, as well as inputs (outputs from other phases
        // that we depend on). Note that since we start iterating from the end,
        // the effect list will be in the reverse order.
-       std::vector<Effect *> this_phase_inputs;
-       std::vector<Effect *> this_phase_effects;
+       std::vector<Node *> this_phase_inputs;
+       std::vector<Node *> this_phase_effects;
 
        // Effects that we have yet to calculate, but that we know should
        // be in the current phase.
-       std::stack<Effect *> effects_todo_this_phase;
+       std::stack<Node *> effects_todo_this_phase;
 
        // Effects that we have yet to calculate, but that come from other phases.
        // We delay these until we have this phase done in its entirety,
        // at which point we pick any of them and start a new phase from that.
-       std::stack<Effect *> effects_todo_other_phases;
+       std::stack<Node *> effects_todo_other_phases;
 
        effects_todo_this_phase.push(output);
 
        for ( ;; ) {  // Termination condition within loop.
                if (!effects_todo_this_phase.empty()) {
                        // OK, we have more to do this phase.
-                       Effect *effect = effects_todo_this_phase.top();
+                       Node *node = effects_todo_this_phase.top();
                        effects_todo_this_phase.pop();
 
                        // This should currently only happen for effects that are phase outputs,
                        // and we throw those out separately below.
-                       assert(completed_effects.count(effect) == 0);
+                       assert(completed_effects.count(node) == 0);
 
-                       this_phase_effects.push_back(effect);
-                       completed_effects.insert(effect);
+                       this_phase_effects.push_back(node);
+                       completed_effects.insert(node);
 
                        // Find all the dependencies of this effect, and add them to the stack.
-                       assert(incoming_links.count(effect) == 1);
-                       std::vector<Effect *> deps = incoming_links[effect];
-                       assert(effect->num_inputs() == deps.size());
+                       std::vector<Node *> deps = node->incoming_links;
+                       assert(node->effect->num_inputs() == deps.size());
                        for (unsigned i = 0; i < deps.size(); ++i) {
                                bool start_new_phase = false;
 
-                               if (effect->needs_texture_bounce()) {
+                               // FIXME: If we sample directly from a texture, we won't need this.
+                               if (node->effect->needs_texture_bounce()) {
                                        start_new_phase = true;
                                }
 
-                               assert(outgoing_links.count(deps[i]) == 1);
-                               if (outgoing_links[deps[i]].size() > 1 && deps[i]->num_inputs() > 0) {
+                               if (deps[i]->outgoing_links.size() > 1 && deps[i]->effect->num_inputs() > 0) {
                                        // More than one effect uses this as the input,
                                        // and it is not a texture itself.
                                        // The easiest thing to do (and probably also the safest
@@ -387,6 +369,10 @@ void EffectChain::construct_glsl_programs(Effect *output)
                                        start_new_phase = true;
                                }
 
+                               if (deps[i]->effect->changes_output_size()) {
+                                       start_new_phase = true;
+                               }
+
                                if (start_new_phase) {
                                        effects_todo_other_phases.push(deps[i]);
                                        this_phase_inputs.push_back(deps[i]);
@@ -402,6 +388,7 @@ void EffectChain::construct_glsl_programs(Effect *output)
                if (!this_phase_effects.empty()) {
                        reverse(this_phase_effects.begin(), this_phase_effects.end());
                        phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects));
+                       this_phase_effects.back()->phase = phases.back();
                        this_phase_inputs.clear();
                        this_phase_effects.clear();
                }
@@ -413,12 +400,12 @@ void EffectChain::construct_glsl_programs(Effect *output)
                        break;
                }
 
-               Effect *effect = effects_todo_other_phases.top();
+               Node *node = effects_todo_other_phases.top();
                effects_todo_other_phases.pop();
 
-               if (completed_effects.count(effect) == 0) {
+               if (completed_effects.count(node) == 0) {
                        // Start a new phase, calculating from this effect.
-                       effects_todo_this_phase.push(effect);
+                       effects_todo_this_phase.push(node);
                }
        }
 
@@ -427,52 +414,152 @@ void EffectChain::construct_glsl_programs(Effect *output)
        std::reverse(phases.begin(), phases.end());
 }
 
+void EffectChain::output_dot(const char *filename)
+{
+       FILE *fp = fopen(filename, "w");
+       if (fp == NULL) {
+               perror(filename);
+               exit(1);
+       }
+
+       fprintf(fp, "digraph G {\n");
+       for (unsigned i = 0; i < nodes.size(); ++i) {
+               fprintf(fp, "  n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str());
+               for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) {
+                       std::vector<std::string> labels;
+
+                       if (nodes[i]->outgoing_links[j]->effect->needs_texture_bounce()) {
+                               labels.push_back("needs_bounce");
+                       }
+                       if (nodes[i]->effect->changes_output_size()) {
+                               labels.push_back("resize");
+                       }
+
+                       switch (nodes[i]->output_color_space) {
+                       case COLORSPACE_REC_709:
+                               labels.push_back("spc[rec709]");
+                               break;
+                       case COLORSPACE_REC_601_525:
+                               labels.push_back("spc[rec601-525]");
+                               break;
+                       case COLORSPACE_REC_601_625:
+                               labels.push_back("spc[rec601-625]");
+                               break;
+                       default:
+                               break;
+                       }
+
+                       switch (nodes[i]->output_gamma_curve) {
+                       case GAMMA_sRGB:
+                               labels.push_back("gamma[sRGB]");
+                               break;
+                       case GAMMA_REC_601:  // and GAMMA_REC_709
+                               labels.push_back("gamma[rec601/709]");
+                               break;
+                       default:
+                               break;
+                       }
+
+                       if (labels.empty()) {
+                               fprintf(fp, "  n%ld -> n%ld;\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j]);
+                       } else {
+                               std::string label = labels[0];
+                               for (unsigned k = 1; k < labels.size(); ++k) {
+                                       label += ", " + labels[k];
+                               }
+                               fprintf(fp, "  n%ld -> n%ld [label=\"%s\"];\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j], label.c_str());
+                       }
+               }
+       }
+       fprintf(fp, "}\n");
+
+       fclose(fp);
+}
+
+void EffectChain::find_output_size(Phase *phase)
+{
+       Node *output_node = phase->effects.back();
+
+       // If the last effect explicitly sets an output size,
+       // use that.
+       if (output_node->effect->changes_output_size()) {
+               output_node->effect->get_output_size(&phase->output_width, &phase->output_height);
+               return;
+       }
+
+       // If not, look at the input phases, if any. We select the largest one
+       // (really assuming they all have the same aspect currently), by pixel count.
+       if (!phase->inputs.empty()) {
+               unsigned best_width = 0, best_height = 0;
+               for (unsigned i = 0; i < phase->inputs.size(); ++i) {
+                       Node *input = phase->inputs[i];
+                       assert(input->phase->output_width != 0);
+                       assert(input->phase->output_height != 0);
+                       if (input->phase->output_width * input->phase->output_height > best_width * best_height) {
+                               best_width = input->phase->output_width;
+                               best_height = input->phase->output_height;
+                       }
+               }
+               assert(best_width != 0);
+               assert(best_height != 0);
+               phase->output_width = best_width;
+               phase->output_height = best_height;
+               return;
+       }
+
+       // OK, no inputs. Just use the global width/height.
+       // TODO: We probably want to use the texture's size eventually.
+       phase->output_width = width;
+       phase->output_height = height;
+}
+
 void EffectChain::finalize()
 {
+       output_dot("final.dot");
+
        // Find the output effect. This is, simply, one that has no outgoing links.
        // If there are multiple ones, the graph is malformed (we do not support
        // multiple outputs right now).
-       std::vector<Effect *> output_effects;
-       for (unsigned i = 0; i < effects.size(); ++i) {
-               Effect *effect = effects[i];
-               if (outgoing_links.count(effect) == 0 || outgoing_links[effect].size() == 0) {
-                       output_effects.push_back(effect);
+       std::vector<Node *> output_nodes;
+       for (unsigned i = 0; i < nodes.size(); ++i) {
+               Node *node = nodes[i];
+               if (node->outgoing_links.empty()) {
+                       output_nodes.push_back(node);
                }
        }
-       assert(output_effects.size() == 1);
-       Effect *output_effect = output_effects[0];
+       assert(output_nodes.size() == 1);
+       Node *output_node = output_nodes[0];
 
        // Add normalizers to get the output format right.
-       assert(output_gamma_curve.count(output_effect) != 0);
-       assert(output_color_space.count(output_effect) != 0);
-       ColorSpace current_color_space = output_color_space[output_effect];
-       if (current_color_space != output_format.color_space) {
+       if (output_node->output_color_space != output_format.color_space) {
                ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect();
-               colorspace_conversion->set_int("source_space", current_color_space);
+               colorspace_conversion->set_int("source_space", output_node->output_color_space);
                colorspace_conversion->set_int("destination_space", output_format.color_space);
                std::vector<Effect *> inputs;
-               inputs.push_back(output_effect);
+               inputs.push_back(output_node->effect);
                colorspace_conversion->add_self_to_effect_chain(this, inputs);
-               output_color_space[colorspace_conversion] = output_format.color_space;
-               output_effect = colorspace_conversion;
+
+               assert(node_map.count(colorspace_conversion) != 0);
+               output_node = node_map[colorspace_conversion];
+               output_node->output_color_space = output_format.color_space;
        }
-       GammaCurve current_gamma_curve = output_gamma_curve[output_effect];
-       if (current_gamma_curve != output_format.gamma_curve) {
-               if (current_gamma_curve != GAMMA_LINEAR) {
-                       output_effect = normalize_to_linear_gamma(output_effect);
-                       current_gamma_curve = GAMMA_LINEAR;
+       if (output_node->output_gamma_curve != output_format.gamma_curve) {
+               if (output_node->output_gamma_curve != GAMMA_LINEAR) {
+                       output_node = normalize_to_linear_gamma(output_node);
                }
                GammaCompressionEffect *gamma_conversion = new GammaCompressionEffect();
                gamma_conversion->set_int("destination_curve", output_format.gamma_curve);
                std::vector<Effect *> inputs;
-               inputs.push_back(output_effect);
+               inputs.push_back(output_node->effect);
                gamma_conversion->add_self_to_effect_chain(this, inputs);
-               output_gamma_curve[gamma_conversion] = output_format.gamma_curve;
-               output_effect = gamma_conversion;
+
+               assert(node_map.count(gamma_conversion) != 0);
+               output_node = node_map[gamma_conversion];
+               output_node->output_gamma_curve = output_format.gamma_curve;
        }
 
        // Construct all needed GLSL programs, starting at the output.
-       construct_glsl_programs(output_effect);
+       construct_glsl_programs(output_node);
 
        // If we have more than one phase, we need intermediate render-to-texture.
        // Construct an FBO, and then as many textures as we need.
@@ -483,25 +570,30 @@ void EffectChain::finalize()
                glGenFramebuffers(1, &fbo);
 
                for (unsigned i = 0; i < phases.size() - 1; ++i) {
-                       Effect *output_effect = phases[i].effects.back();
-                       GLuint temp_texture;
-                       glGenTextures(1, &temp_texture);
+                       find_output_size(phases[i]);
+
+                       Node *output_node = phases[i]->effects.back();
+                       glGenTextures(1, &output_node->output_texture);
                        check_error();
-                       glBindTexture(GL_TEXTURE_2D, temp_texture);
+                       glBindTexture(GL_TEXTURE_2D, output_node->output_texture);
                        check_error();
                        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
                        check_error();
                        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
                        check_error();
-                       glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
+                       glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, phases[i]->output_width, phases[i]->output_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
                        check_error();
-                       effect_output_textures.insert(std::make_pair(output_effect, temp_texture));
+
+                       output_node->output_texture_width = phases[i]->output_width;
+                       output_node->output_texture_height = phases[i]->output_height;
                }
        }
                
        for (unsigned i = 0; i < inputs.size(); ++i) {
                inputs[i]->finalize();
        }
+
+       assert(phases[0]->inputs.empty());
        
        finalized = true;
 }
@@ -530,25 +622,42 @@ void EffectChain::render_to_screen()
                check_error();
        }
 
-       std::set<Effect *> generated_mipmaps;
-       for (unsigned i = 0; i < inputs.size(); ++i) {
-               // Inputs generate their own mipmaps if they need to
-               // (see input.cpp).
-               generated_mipmaps.insert(inputs[i]);
-       }
+       std::set<Node *> generated_mipmaps;
 
        for (unsigned phase = 0; phase < phases.size(); ++phase) {
-               glUseProgram(phases[phase].glsl_program_num);
+               // See if the requested output size has changed. If so, we need to recreate
+               // the texture (and before we start setting up inputs).
+               if (phase != phases.size() - 1) {
+                       find_output_size(phases[phase]);
+
+                       Node *output_node = phases[phase]->effects.back();
+
+                       if (output_node->output_texture_width != phases[phase]->output_width ||
+                           output_node->output_texture_height != phases[phase]->output_height) {
+                               glActiveTexture(GL_TEXTURE0);
+                               check_error();
+                               glBindTexture(GL_TEXTURE_2D, output_node->output_texture);
+                               check_error();
+                               glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, phases[phase]->output_width, phases[phase]->output_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
+                               check_error();
+                               glBindTexture(GL_TEXTURE_2D, 0);
+                               check_error();
+
+                               output_node->output_texture_width = phases[phase]->output_width;
+                               output_node->output_texture_height = phases[phase]->output_height;
+                       }
+               }
+
+               glUseProgram(phases[phase]->glsl_program_num);
                check_error();
 
                // Set up RTT inputs for this phase.
-               for (unsigned sampler = 0; sampler < phases[phase].inputs.size(); ++sampler) {
+               for (unsigned sampler = 0; sampler < phases[phase]->inputs.size(); ++sampler) {
                        glActiveTexture(GL_TEXTURE0 + sampler);
-                       Effect *input = phases[phase].inputs[sampler];
-                       assert(effect_output_textures.count(input) != 0);
-                       glBindTexture(GL_TEXTURE_2D, effect_output_textures[input]);
+                       Node *input = phases[phase]->inputs[sampler];
+                       glBindTexture(GL_TEXTURE_2D, input->output_texture);
                        check_error();
-                       if (phases[phase].input_needs_mipmaps) {
+                       if (phases[phase]->input_needs_mipmaps) {
                                if (generated_mipmaps.count(input) == 0) {
                                        glGenerateMipmap(GL_TEXTURE_2D);
                                        check_error();
@@ -561,9 +670,8 @@ void EffectChain::render_to_screen()
                                check_error();
                        }
 
-                       assert(effect_ids.count(input));
-                       std::string texture_name = std::string("tex_") + effect_ids[input];
-                       glUniform1i(glGetUniformLocation(phases[phase].glsl_program_num, texture_name.c_str()), sampler);
+                       std::string texture_name = std::string("tex_") + input->effect_id;
+                       glUniform1i(glGetUniformLocation(phases[phase]->glsl_program_num, texture_name.c_str()), sampler);
                        check_error();
                }
 
@@ -572,23 +680,25 @@ void EffectChain::render_to_screen()
                        // Last phase goes directly to the screen.
                        glBindFramebuffer(GL_FRAMEBUFFER, 0);
                        check_error();
+                       glViewport(0, 0, width, height);
                } else {
-                       Effect *last_effect = phases[phase].effects.back();
-                       assert(effect_output_textures.count(last_effect) != 0);
+                       Node *output_node = phases[phase]->effects.back();
                        glFramebufferTexture2D(
                                GL_FRAMEBUFFER,
                                GL_COLOR_ATTACHMENT0,
                                GL_TEXTURE_2D,
-                               effect_output_textures[last_effect],
+                               output_node->output_texture,
                                0);
                        check_error();
+                       glViewport(0, 0, phases[phase]->output_width, phases[phase]->output_height);
                }
 
                // Give the required parameters to all the effects.
-               unsigned sampler_num = phases[phase].inputs.size();
-               for (unsigned i = 0; i < phases[phase].effects.size(); ++i) {
-                       Effect *effect = phases[phase].effects[i];
-                       effect->set_gl_state(phases[phase].glsl_program_num, effect_ids[effect], &sampler_num);
+               unsigned sampler_num = phases[phase]->inputs.size();
+               for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) {
+                       Node *node = phases[phase]->effects[i];
+                       node->effect->set_gl_state(phases[phase]->glsl_program_num, node->effect_id, &sampler_num);
+                       check_error();
                }
 
                // Now draw!
@@ -609,9 +719,9 @@ void EffectChain::render_to_screen()
                glEnd();
                check_error();
 
-               for (unsigned i = 0; i < phases[phase].effects.size(); ++i) {
-                       Effect *effect = phases[phase].effects[i];
-                       effect->clear_gl_state();
+               for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) {
+                       Node *node = phases[phase]->effects[i];
+                       node->effect->clear_gl_state();
                }
        }
 }