]> git.sesse.net Git - movit/blobdiff - effect_chain.cpp
Make Input an abstract base class, and move the current functionality into FlatInput...
[movit] / effect_chain.cpp
index 19c485c32aea33acb2d6fc8fd57cf848288380f5..82e9c5d705e09b2b1ff5552baf13f1996b8e4e50 100644 (file)
 #include <GL/gl.h>
 #include <GL/glext.h>
 
+#include <algorithm>
+#include <set>
+#include <stack>
+#include <vector>
+
 #include "util.h"
 #include "effect_chain.h"
 #include "gamma_expansion_effect.h"
 #include "gamma_compression_effect.h"
-#include "lift_gamma_gain_effect.h"
 #include "colorspace_conversion_effect.h"
-#include "saturation_effect.h"
-#include "mirror_effect.h"
-#include "vignette_effect.h"
-#include "blur_effect.h"
+#include "input.h"
 
 EffectChain::EffectChain(unsigned width, unsigned height)
-       : width(width), height(height), use_srgb_texture_format(false), finalized(false) {}
+       : width(width),
+         height(height),
+         finalized(false) {}
 
-void EffectChain::add_input(const ImageFormat &format)
+Input *EffectChain::add_input(Input *input)
 {
-       input_format = format;
-       current_color_space = format.color_space;
-       current_gamma_curve = format.gamma_curve;
+       char eff_id[256];
+       sprintf(eff_id, "src_image%u", (unsigned)inputs.size());
+
+       effects.push_back(input);
+       inputs.push_back(input);
+       output_color_space.insert(std::make_pair(input, input->get_color_space()));
+       output_gamma_curve.insert(std::make_pair(input, input->get_gamma_curve()));
+       effect_ids.insert(std::make_pair(input, eff_id));
+       incoming_links.insert(std::make_pair(input, std::vector<Effect *>()));
+       return input;
 }
 
 void EffectChain::add_output(const ImageFormat &format)
 {
        output_format = format;
 }
-       
-Effect *instantiate_effect(EffectId effect)
+
+void EffectChain::add_effect_raw(Effect *effect, const std::vector<Effect *> &inputs)
 {
-       switch (effect) {
-       case EFFECT_GAMMA_EXPANSION:
-               return new GammaExpansionEffect();
-       case EFFECT_GAMMA_COMPRESSION:
-               return new GammaCompressionEffect();
-       case EFFECT_COLOR_SPACE_CONVERSION:
-               return new ColorSpaceConversionEffect();
-       case EFFECT_LIFT_GAMMA_GAIN:
-               return new LiftGammaGainEffect();
-       case EFFECT_SATURATION:
-               return new SaturationEffect();
-       case EFFECT_MIRROR:
-               return new MirrorEffect();
-       case EFFECT_VIGNETTE:
-               return new VignetteEffect();
-       case EFFECT_BLUR:
-               return new BlurEffect();
+       char effect_id[256];
+       sprintf(effect_id, "eff%u", (unsigned)effects.size());
+
+       effects.push_back(effect);
+       effect_ids.insert(std::make_pair(effect, effect_id));
+       assert(inputs.size() == effect->num_inputs());
+       for (unsigned i = 0; i < inputs.size(); ++i) {
+               assert(std::find(effects.begin(), effects.end(), inputs[i]) != effects.end());
+               outgoing_links[inputs[i]].push_back(effect);
        }
-       assert(false);
+       incoming_links.insert(std::make_pair(effect, inputs));
+       output_gamma_curve[effect] = output_gamma_curve[last_added_effect()];
+       output_color_space[effect] = output_color_space[last_added_effect()];
 }
 
-void EffectChain::normalize_to_linear_gamma()
+// Set the "use_srgb_texture_format" option on all inputs that feed into this node,
+// and update the output_gamma_curve[] map as we go.
+//
+// NOTE: We assume that the only way we could actually get GAMMA_sRGB from an
+// effect (except from GammaCompressionCurve, which should never be inserted
+// into a chain when this is called) is by pass-through from a texture.
+// Thus, we can simply feed the flag up towards all inputs.
+void EffectChain::set_use_srgb_texture_format(Effect *effect)
 {
-       if (current_gamma_curve == GAMMA_sRGB) {
+       assert(output_gamma_curve.count(effect) != 0);
+       assert(output_gamma_curve[effect] == GAMMA_sRGB);
+       if (effect->num_inputs() == 0) {
+               effect->set_int("use_srgb_texture_format", 1);
+       } else {
+               assert(incoming_links.count(effect) == 1);
+               std::vector<Effect *> deps = incoming_links[effect];
+               assert(effect->num_inputs() == deps.size());
+               for (unsigned i = 0; i < deps.size(); ++i) {
+                       set_use_srgb_texture_format(deps[i]);
+                       assert(output_gamma_curve[deps[i]] == GAMMA_LINEAR);
+               }
+       }
+       output_gamma_curve[effect] = GAMMA_LINEAR;
+}
+
+Effect *EffectChain::normalize_to_linear_gamma(Effect *input)
+{
+       assert(output_gamma_curve.count(input) != 0);
+       if (output_gamma_curve[input] == GAMMA_sRGB) {
                // TODO: check if the extension exists
-               use_srgb_texture_format = true;
+               set_use_srgb_texture_format(input);
+               output_gamma_curve[input] = GAMMA_LINEAR;
+               return input;
        } else {
                GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect();
-               gamma_conversion->set_int("source_curve", current_gamma_curve);
-               effects.push_back(gamma_conversion);
+               gamma_conversion->set_int("source_curve", output_gamma_curve[input]);
+               std::vector<Effect *> inputs;
+               inputs.push_back(input);
+               gamma_conversion->add_self_to_effect_chain(this, inputs);
+               output_gamma_curve[gamma_conversion] = GAMMA_LINEAR;
+               return gamma_conversion;
        }
-       current_gamma_curve = GAMMA_LINEAR;
 }
 
-void EffectChain::normalize_to_srgb()
+Effect *EffectChain::normalize_to_srgb(Effect *input)
 {
-       assert(current_gamma_curve == GAMMA_LINEAR);
+       assert(output_gamma_curve.count(input) != 0);
+       assert(output_color_space.count(input) != 0);
+       assert(output_gamma_curve[input] == GAMMA_LINEAR);
        ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect();
-       colorspace_conversion->set_int("source_space", current_color_space);
+       colorspace_conversion->set_int("source_space", output_color_space[input]);
        colorspace_conversion->set_int("destination_space", COLORSPACE_sRGB);
-       effects.push_back(colorspace_conversion);
-       current_color_space = COLORSPACE_sRGB;
+       std::vector<Effect *> inputs;
+       inputs.push_back(input);
+       colorspace_conversion->add_self_to_effect_chain(this, inputs);
+       output_color_space[colorspace_conversion] = COLORSPACE_sRGB;
+       return colorspace_conversion;
 }
 
-Effect *EffectChain::add_effect(EffectId effect_id)
+Effect *EffectChain::add_effect(Effect *effect, const std::vector<Effect *> &inputs)
 {
-       Effect *effect = instantiate_effect(effect_id);
+       assert(inputs.size() == effect->num_inputs());
 
-       if (effect->needs_linear_light() && current_gamma_curve != GAMMA_LINEAR) {
-               normalize_to_linear_gamma();
-       }
-
-       if (effect->needs_srgb_primaries() && current_color_space != COLORSPACE_sRGB) {
-               normalize_to_srgb();
+       std::vector<Effect *> normalized_inputs = inputs;
+       for (unsigned i = 0; i < normalized_inputs.size(); ++i) {
+               assert(output_gamma_curve.count(normalized_inputs[i]) != 0);
+               if (effect->needs_linear_light() && output_gamma_curve[normalized_inputs[i]] != GAMMA_LINEAR) {
+                       normalized_inputs[i] = normalize_to_linear_gamma(normalized_inputs[i]);
+               }
+               assert(output_color_space.count(normalized_inputs[i]) != 0);
+               if (effect->needs_srgb_primaries() && output_color_space[normalized_inputs[i]] != COLORSPACE_sRGB) {
+                       normalized_inputs[i] = normalize_to_srgb(normalized_inputs[i]);
+               }
        }
 
-       effects.push_back(effect);
+       effect->add_self_to_effect_chain(this, normalized_inputs);
        return effect;
 }
 
@@ -136,26 +180,83 @@ std::string replace_prefix(const std::string &text, const std::string &prefix)
        return output;
 }
 
-EffectChain::Phase EffectChain::compile_glsl_program(unsigned start_index, unsigned end_index)
+EffectChain::Phase EffectChain::compile_glsl_program(const std::vector<Effect *> &inputs, const std::vector<Effect *> &effects)
 {
+       assert(!effects.empty());
+
+       // Deduplicate the inputs.
+       std::vector<Effect *> true_inputs = inputs;
+       std::sort(true_inputs.begin(), true_inputs.end());
+       true_inputs.erase(std::unique(true_inputs.begin(), true_inputs.end()), true_inputs.end());
+
        bool input_needs_mipmaps = false;
        std::string frag_shader = read_file("header.frag");
-       for (unsigned i = start_index; i < end_index; ++i) {
-               char effect_id[256];
-               sprintf(effect_id, "eff%d", i);
+
+       // Create functions for all the texture inputs that we need.
+       for (unsigned i = 0; i < true_inputs.size(); ++i) {
+               Effect *effect = true_inputs[i];
+               assert(effect_ids.count(effect) != 0);
+               std::string effect_id = effect_ids[effect];
+       
+               frag_shader += std::string("uniform sampler2D tex_") + effect_id + ";\n";       
+               frag_shader += std::string("vec4 ") + effect_id + "(vec2 tc) {\n";
+               if (effect->num_inputs() == 0) {
+                       // OpenGL's origin is bottom-left, but most graphics software assumes
+                       // a top-left origin. Thus, for inputs that come from the user,
+                       // we flip the y coordinate. However, for FBOs, the origin
+                       // is all correct, so don't do anything.
+                       frag_shader += "\ttc.y = 1.0f - tc.y;\n";
+               }
+               frag_shader += "\treturn texture2D(tex_" + effect_id + ", tc);\n";
+               frag_shader += "}\n";
+               frag_shader += "\n";
+       }
+
+       std::string last_effect_id;
+       for (unsigned i = 0; i < effects.size(); ++i) {
+               Effect *effect = effects[i];
+               assert(effect != NULL);
+               assert(effect_ids.count(effect) != 0);
+               std::string effect_id = effect_ids[effect];
+               last_effect_id = effect_id;
+
+               if (incoming_links[effect].size() == 1) {
+                       frag_shader += std::string("#define INPUT ") + effect_ids[incoming_links[effect][0]] + "\n";
+               } else {
+                       for (unsigned j = 0; j < incoming_links[effect].size(); ++j) {
+                               char buf[256];
+                               sprintf(buf, "#define INPUT%d %s\n", j + 1, effect_ids[incoming_links[effect][j]].c_str());
+                               frag_shader += buf;
+                       }
+               }
        
                frag_shader += "\n";
                frag_shader += std::string("#define FUNCNAME ") + effect_id + "\n";
-               frag_shader += replace_prefix(effects[i]->output_convenience_uniforms(), effect_id);
-               frag_shader += replace_prefix(effects[i]->output_fragment_shader(), effect_id);
+               frag_shader += replace_prefix(effect->output_convenience_uniforms(), effect_id);
+               frag_shader += replace_prefix(effect->output_fragment_shader(), effect_id);
                frag_shader += "#undef PREFIX\n";
                frag_shader += "#undef FUNCNAME\n";
-               frag_shader += "#undef LAST_INPUT\n";
-               frag_shader += std::string("#define LAST_INPUT ") + effect_id + "\n";
+               if (incoming_links[effect].size() == 1) {
+                       frag_shader += "#undef INPUT\n";
+               } else {
+                       for (unsigned j = 0; j < incoming_links[effect].size(); ++j) {
+                               char buf[256];
+                               sprintf(buf, "#undef INPUT%d\n", j + 1);
+                               frag_shader += buf;
+                       }
+               }
                frag_shader += "\n";
 
-               input_needs_mipmaps |= effects[i]->needs_mipmaps();
+               input_needs_mipmaps |= effect->needs_mipmaps();
+       }
+       for (unsigned i = 0; i < effects.size(); ++i) {
+               Effect *effect = effects[i];
+               if (effect->num_inputs() == 0) {
+                       effect->set_int("needs_mipmaps", input_needs_mipmaps);
+               }
        }
+       assert(!last_effect_id.empty());
+       frag_shader += std::string("#define INPUT ") + last_effect_id + "\n";
        frag_shader.append(read_file("footer.frag"));
        printf("%s\n", frag_shader.c_str());
        
@@ -172,141 +273,200 @@ EffectChain::Phase EffectChain::compile_glsl_program(unsigned start_index, unsig
        Phase phase;
        phase.glsl_program_num = glsl_program_num;
        phase.input_needs_mipmaps = input_needs_mipmaps;
-       phase.start = start_index;
-       phase.end = end_index;
+       phase.inputs = true_inputs;
+       phase.effects = effects;
 
        return phase;
 }
 
+// Construct GLSL programs, starting at the given effect and following
+// the chain from there. We end a program every time we come to an effect
+// marked as "needs texture bounce", one that is used by multiple other
+// effects, and of course at the end.
+//
+// We follow a quite simple depth-first search from the output, although
+// without any explicit recursion.
+void EffectChain::construct_glsl_programs(Effect *output)
+{
+       // Which effects have already been completed in this phase?
+       // We need to keep track of it, as an effect with multiple outputs
+       // could otherwise be calculate multiple times.
+       std::set<Effect *> completed_effects;
+
+       // Effects in the current phase, as well as inputs (outputs from other phases
+       // that we depend on). Note that since we start iterating from the end,
+       // the effect list will be in the reverse order.
+       std::vector<Effect *> this_phase_inputs;
+       std::vector<Effect *> this_phase_effects;
+
+       // Effects that we have yet to calculate, but that we know should
+       // be in the current phase.
+       std::stack<Effect *> effects_todo_this_phase;
+
+       // Effects that we have yet to calculate, but that come from other phases.
+       // We delay these until we have this phase done in its entirety,
+       // at which point we pick any of them and start a new phase from that.
+       std::stack<Effect *> effects_todo_other_phases;
+
+       effects_todo_this_phase.push(output);
+
+       for ( ;; ) {  // Termination condition within loop.
+               if (!effects_todo_this_phase.empty()) {
+                       // OK, we have more to do this phase.
+                       Effect *effect = effects_todo_this_phase.top();
+                       effects_todo_this_phase.pop();
+
+                       // This should currently only happen for effects that are phase outputs,
+                       // and we throw those out separately below.
+                       assert(completed_effects.count(effect) == 0);
+
+                       this_phase_effects.push_back(effect);
+                       completed_effects.insert(effect);
+
+                       // Find all the dependencies of this effect, and add them to the stack.
+                       assert(incoming_links.count(effect) == 1);
+                       std::vector<Effect *> deps = incoming_links[effect];
+                       assert(effect->num_inputs() == deps.size());
+                       for (unsigned i = 0; i < deps.size(); ++i) {
+                               bool start_new_phase = false;
+
+                               if (effect->needs_texture_bounce()) {
+                                       start_new_phase = true;
+                               }
+
+                               assert(outgoing_links.count(deps[i]) == 1);
+                               if (outgoing_links[deps[i]].size() > 1 && deps[i]->num_inputs() > 0) {
+                                       // More than one effect uses this as the input,
+                                       // and it is not a texture itself.
+                                       // The easiest thing to do (and probably also the safest
+                                       // performance-wise in most cases) is to bounce it to a texture
+                                       // and then let the next passes read from that.
+                                       start_new_phase = true;
+                               }
+
+                               if (start_new_phase) {
+                                       effects_todo_other_phases.push(deps[i]);
+                                       this_phase_inputs.push_back(deps[i]);
+                               } else {
+                                       effects_todo_this_phase.push(deps[i]);
+                               }
+                       }
+                       continue;
+               }
+
+               // No more effects to do this phase. Take all the ones we have,
+               // and create a GLSL program for it.
+               if (!this_phase_effects.empty()) {
+                       reverse(this_phase_effects.begin(), this_phase_effects.end());
+                       phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects));
+                       this_phase_inputs.clear();
+                       this_phase_effects.clear();
+               }
+               assert(this_phase_inputs.empty());
+               assert(this_phase_effects.empty());
+
+               // If we have no effects left, exit.
+               if (effects_todo_other_phases.empty()) {
+                       break;
+               }
+
+               Effect *effect = effects_todo_other_phases.top();
+               effects_todo_other_phases.pop();
+
+               if (completed_effects.count(effect) == 0) {
+                       // Start a new phase, calculating from this effect.
+                       effects_todo_this_phase.push(effect);
+               }
+       }
+
+       // Finally, since the phases are found from the output but must be executed
+       // from the input(s), reverse them, too.
+       std::reverse(phases.begin(), phases.end());
+}
+
 void EffectChain::finalize()
 {
+       // Find the output effect. This is, simply, one that has no outgoing links.
+       // If there are multiple ones, the graph is malformed (we do not support
+       // multiple outputs right now).
+       std::vector<Effect *> output_effects;
+       for (unsigned i = 0; i < effects.size(); ++i) {
+               Effect *effect = effects[i];
+               if (outgoing_links.count(effect) == 0 || outgoing_links[effect].size() == 0) {
+                       output_effects.push_back(effect);
+               }
+       }
+       assert(output_effects.size() == 1);
+       Effect *output_effect = output_effects[0];
+
        // Add normalizers to get the output format right.
+       assert(output_gamma_curve.count(output_effect) != 0);
+       assert(output_color_space.count(output_effect) != 0);
+       ColorSpace current_color_space = output_color_space[output_effect];
        if (current_color_space != output_format.color_space) {
                ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect();
                colorspace_conversion->set_int("source_space", current_color_space);
                colorspace_conversion->set_int("destination_space", output_format.color_space);
-               effects.push_back(colorspace_conversion);
-               current_color_space = output_format.color_space;
+               std::vector<Effect *> inputs;
+               inputs.push_back(output_effect);
+               colorspace_conversion->add_self_to_effect_chain(this, inputs);
+               output_color_space[colorspace_conversion] = output_format.color_space;
+               output_effect = colorspace_conversion;
        }
+       GammaCurve current_gamma_curve = output_gamma_curve[output_effect];
        if (current_gamma_curve != output_format.gamma_curve) {
                if (current_gamma_curve != GAMMA_LINEAR) {
-                       normalize_to_linear_gamma();
+                       output_effect = normalize_to_linear_gamma(output_effect);
+                       current_gamma_curve = GAMMA_LINEAR;
                }
-               assert(current_gamma_curve == GAMMA_LINEAR);
                GammaCompressionEffect *gamma_conversion = new GammaCompressionEffect();
                gamma_conversion->set_int("destination_curve", output_format.gamma_curve);
-               effects.push_back(gamma_conversion);
-               current_gamma_curve = output_format.gamma_curve;
+               std::vector<Effect *> inputs;
+               inputs.push_back(output_effect);
+               gamma_conversion->add_self_to_effect_chain(this, inputs);
+               output_gamma_curve[gamma_conversion] = output_format.gamma_curve;
+               output_effect = gamma_conversion;
        }
 
-       // Construct the GLSL programs. We end a program every time we come
-       // to an effect marked as "needs many samples" (ie. "please let me
-       // sample directly from a texture, with no arithmetic in-between"),
-       // and of course at the end.
-       unsigned start = 0;
-       for (unsigned i = 0; i < effects.size(); ++i) {
-               if (effects[i]->needs_many_samples() && i != start) {
-                       phases.push_back(compile_glsl_program(start, i));
-                       start = i;
-               }
-       }
-       phases.push_back(compile_glsl_program(start, effects.size()));
+       // Construct all needed GLSL programs, starting at the output.
+       construct_glsl_programs(output_effect);
 
        // If we have more than one phase, we need intermediate render-to-texture.
        // Construct an FBO, and then as many textures as we need.
+       // We choose the simplest option of having one texture per output,
+       // since otherwise this turns into an (albeit simple)
+       // register allocation problem.
        if (phases.size() > 1) {
                glGenFramebuffers(1, &fbo);
 
-               unsigned num_textures = std::max<int>(phases.size() - 1, 2);
-               glGenTextures(num_textures, temp_textures);
-
-               unsigned char *empty = new unsigned char[width * height * 4];
-               for (unsigned i = 0; i < num_textures; ++i) {
-                       glBindTexture(GL_TEXTURE_2D, temp_textures[i]);
+               for (unsigned i = 0; i < phases.size() - 1; ++i) {
+                       Effect *output_effect = phases[i].effects.back();
+                       GLuint temp_texture;
+                       glGenTextures(1, &temp_texture);
+                       check_error();
+                       glBindTexture(GL_TEXTURE_2D, temp_texture);
                        check_error();
                        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
                        check_error();
                        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
                        check_error();
-                       glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, empty);
+                       glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
                        check_error();
+                       effect_output_textures.insert(std::make_pair(output_effect, temp_texture));
                }
-               delete[] empty;
-       }
-       
-       // Translate the input format to OpenGL's enums.
-       GLenum internal_format;
-       if (use_srgb_texture_format) {
-               internal_format = GL_SRGB8;
-       } else {
-               internal_format = GL_RGBA8;
        }
-       if (input_format.pixel_format == FORMAT_RGB) {
-               format = GL_RGB;
-               bytes_per_pixel = 3;
-       } else if (input_format.pixel_format == FORMAT_RGBA) {
-               format = GL_RGBA;
-               bytes_per_pixel = 4;
-       } else if (input_format.pixel_format == FORMAT_BGR) {
-               format = GL_BGR;
-               bytes_per_pixel = 3;
-       } else if (input_format.pixel_format == FORMAT_BGRA) {
-               format = GL_BGRA;
-               bytes_per_pixel = 4;
-       } else {
-               assert(false);
+               
+       for (unsigned i = 0; i < inputs.size(); ++i) {
+               inputs[i]->finalize();
        }
-
-       // Create PBO to hold the texture holding the input image, and then the texture itself.
-       glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 2);
-       check_error();
-       glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, width * height * bytes_per_pixel, NULL, GL_STREAM_DRAW);
-       check_error();
-
-       void *mapped_pbo = glMapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, GL_WRITE_ONLY);
-       memset(mapped_pbo, 0, width * height * bytes_per_pixel);
-       glUnmapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB);
        
-       glGenTextures(1, &source_image_num);
-       check_error();
-       glBindTexture(GL_TEXTURE_2D, source_image_num);
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
-       check_error();
-       glTexImage2D(GL_TEXTURE_2D, 0, internal_format, width, height, 0, format, GL_UNSIGNED_BYTE, BUFFER_OFFSET(0));
-       check_error();
-       glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
-       check_error();
-
        finalized = true;
 }
 
-void EffectChain::render_to_screen(unsigned char *src)
+void EffectChain::render_to_screen()
 {
        assert(finalized);
 
-       // Copy the pixel data into the PBO.
-       glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 2);
-       check_error();
-       void *mapped_pbo = glMapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, GL_WRITE_ONLY);
-       memcpy(mapped_pbo, src, width * height * bytes_per_pixel);
-       glUnmapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB);
-       check_error();
-
-       // Re-upload the texture from the PBO.
-       glActiveTexture(GL_TEXTURE0);
-       check_error();
-       glBindTexture(GL_TEXTURE_2D, source_image_num);
-       check_error();
-       glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, format, GL_UNSIGNED_BYTE, BUFFER_OFFSET(0));
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
-       check_error();
-       glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
-       check_error();
-
        // Basic state.
        glDisable(GL_BLEND);
        check_error();
@@ -327,83 +487,88 @@ void EffectChain::render_to_screen(unsigned char *src)
                check_error();
        }
 
+       std::set<Effect *> generated_mipmaps;
+       for (unsigned i = 0; i < inputs.size(); ++i) {
+               // Inputs generate their own mipmaps if they need to
+               // (see input.cpp).
+               generated_mipmaps.insert(inputs[i]);
+       }
+
        for (unsigned phase = 0; phase < phases.size(); ++phase) {
-               // Set up inputs and outputs for this phase.
-               if (phase == 0) {
-                       // First phase reads from the input texture (which is already bound).
-               } else {
-                       glBindTexture(GL_TEXTURE_2D, temp_textures[(phase + 1) % 2]);
-                       check_error();
-               }
-               if (phases[phase].input_needs_mipmaps) {
-                       glGenerateMipmap(GL_TEXTURE_2D);
-                       check_error();
-                       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
+               glUseProgram(phases[phase].glsl_program_num);
+               check_error();
+
+               // Set up RTT inputs for this phase.
+               for (unsigned sampler = 0; sampler < phases[phase].inputs.size(); ++sampler) {
+                       glActiveTexture(GL_TEXTURE0 + sampler);
+                       Effect *input = phases[phase].inputs[sampler];
+                       assert(effect_output_textures.count(input) != 0);
+                       glBindTexture(GL_TEXTURE_2D, effect_output_textures[input]);
                        check_error();
-               } else {
-                       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
+                       if (phases[phase].input_needs_mipmaps) {
+                               if (generated_mipmaps.count(input) == 0) {
+                                       glGenerateMipmap(GL_TEXTURE_2D);
+                                       check_error();
+                                       generated_mipmaps.insert(input);
+                               }
+                               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
+                               check_error();
+                       } else {
+                               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
+                               check_error();
+                       }
+
+                       assert(effect_ids.count(input));
+                       std::string texture_name = std::string("tex_") + effect_ids[input];
+                       glUniform1i(glGetUniformLocation(phases[phase].glsl_program_num, texture_name.c_str()), sampler);
                        check_error();
                }
 
+               // And now the output.
                if (phase == phases.size() - 1) {
                        // Last phase goes directly to the screen.
                        glBindFramebuffer(GL_FRAMEBUFFER, 0);
                        check_error();
                } else {
+                       Effect *last_effect = phases[phase].effects.back();
+                       assert(effect_output_textures.count(last_effect) != 0);
                        glFramebufferTexture2D(
                                GL_FRAMEBUFFER,
                                GL_COLOR_ATTACHMENT0,
                                GL_TEXTURE_2D,
-                               temp_textures[phase % 2],
+                               effect_output_textures[last_effect],
                                0);
-               }
-
-               // We have baked an upside-down transform into the quad coordinates,
-               // since the typical graphics program will have the origin at the upper-left,
-               // while OpenGL uses lower-left. In the next ones, however, the origin
-               // is all right, and we need to reverse that.
-               if (phase == 1) {
-                       glTranslatef(0.0f, 1.0f, 0.0f);
-                       glScalef(1.0f, -1.0f, 1.0f);
+                       check_error();
                }
 
                // Give the required parameters to all the effects.
-               glUseProgram(phases[phase].glsl_program_num);
-               check_error();
-
-               glUniform1i(glGetUniformLocation(phases[phase].glsl_program_num, "input_tex"), 0);
-               check_error();
-
-               unsigned sampler_num = 1;
-               for (unsigned i = phases[phase].start; i < phases[phase].end; ++i) {
-                       char effect_id[256];
-                       sprintf(effect_id, "eff%d", i);
-                       effects[i]->set_uniforms(phases[phase].glsl_program_num, effect_id, &sampler_num);
+               unsigned sampler_num = phases[phase].inputs.size();
+               for (unsigned i = 0; i < phases[phase].effects.size(); ++i) {
+                       Effect *effect = phases[phase].effects[i];
+                       effect->set_gl_state(phases[phase].glsl_program_num, effect_ids[effect], &sampler_num);
                }
 
                // Now draw!
                glBegin(GL_QUADS);
 
-               glTexCoord2f(0.0f, 1.0f);
+               glTexCoord2f(0.0f, 0.0f);
                glVertex2f(0.0f, 0.0f);
 
-               glTexCoord2f(1.0f, 1.0f);
+               glTexCoord2f(1.0f, 0.0f);
                glVertex2f(1.0f, 0.0f);
 
-               glTexCoord2f(1.0f, 0.0f);
+               glTexCoord2f(1.0f, 1.0f);
                glVertex2f(1.0f, 1.0f);
 
-               glTexCoord2f(0.0f, 0.0f);
+               glTexCoord2f(0.0f, 1.0f);
                glVertex2f(0.0f, 1.0f);
 
                glEnd();
                check_error();
 
-               // HACK
-               glActiveTexture(GL_TEXTURE0);
-               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
-               check_error();
-               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1000);
-               check_error();
+               for (unsigned i = 0; i < phases[phase].effects.size(); ++i) {
+                       Effect *effect = phases[phase].effects[i];
+                       effect->clear_gl_state();
+               }
        }
 }