]> git.sesse.net Git - movit/blobdiff - effect_chain.cpp
Redo the phase generation; we now start at the output end instead of at the inputs...
[movit] / effect_chain.cpp
index 1244ecb341f1c81a147db5dfba8497360c6aa7d4..b1dea4b9391b62375919e2bbfa6401668769014a 100644 (file)
@@ -9,6 +9,8 @@
 
 #include <algorithm>
 #include <set>
+#include <stack>
+#include <vector>
 
 #include "util.h"
 #include "effect_chain.h"
 #include "mirror_effect.h"
 #include "vignette_effect.h"
 #include "blur_effect.h"
+#include "diffusion_effect.h"
+#include "glow_effect.h"
+#include "mix_effect.h"
+#include "input.h"
 
 EffectChain::EffectChain(unsigned width, unsigned height)
        : width(width),
          height(height),
-         last_added_effect(NULL),
-         use_srgb_texture_format(false),
          finalized(false) {}
 
-void EffectChain::add_input(const ImageFormat &format)
+Input *EffectChain::add_input(const ImageFormat &format)
 {
-       input_format = format;
-       output_color_space.insert(std::make_pair(static_cast<Effect *>(NULL), format.color_space));
-       output_gamma_curve.insert(std::make_pair(static_cast<Effect *>(NULL), format.gamma_curve));
-       effect_ids.insert(std::make_pair(static_cast<Effect *>(NULL), "src_image"));
+       char eff_id[256];
+       sprintf(eff_id, "src_image%d", inputs.size());
+
+       Input *input = new Input(format, width, height);
+       effects.push_back(input);
+       inputs.push_back(input);
+       output_color_space.insert(std::make_pair(input, format.color_space));
+       output_gamma_curve.insert(std::make_pair(input, format.gamma_curve));
+       effect_ids.insert(std::make_pair(input, eff_id));
+       incoming_links.insert(std::make_pair(input, std::vector<Effect *>()));
+       return input;
 }
 
 void EffectChain::add_output(const ImageFormat &format)
@@ -51,13 +62,12 @@ void EffectChain::add_effect_raw(Effect *effect, const std::vector<Effect *> &in
        effect_ids.insert(std::make_pair(effect, effect_id));
        assert(inputs.size() == effect->num_inputs());
        for (unsigned i = 0; i < inputs.size(); ++i) {
-               if (inputs[i] != NULL) {
-                       assert(std::find(effects.begin(), effects.end(), inputs[i]) != effects.end());
-               }
+               assert(std::find(effects.begin(), effects.end(), inputs[i]) != effects.end());
                outgoing_links[inputs[i]].push_back(effect);
        }
        incoming_links.insert(std::make_pair(effect, inputs));
-       last_added_effect = effect;
+       output_gamma_curve[effect] = output_gamma_curve[last_added_effect()];
+       output_color_space[effect] = output_color_space[last_added_effect()];
 }
 
 Effect *instantiate_effect(EffectId effect)
@@ -81,41 +91,72 @@ Effect *instantiate_effect(EffectId effect)
                return new VignetteEffect();
        case EFFECT_BLUR:
                return new BlurEffect();
+       case EFFECT_DIFFUSION:
+               return new DiffusionEffect();
+       case EFFECT_GLOW:
+               return new GlowEffect();
+       case EFFECT_MIX:
+               return new MixEffect();
        }
        assert(false);
 }
 
+// Set the "use_srgb_texture_format" option on all inputs that feed into this node,
+// and update the output_gamma_curve[] map as we go.
+//
+// NOTE: We assume that the only way we could actually get GAMMA_sRGB from an
+// effect (except from GammaCompressionCurve, which should never be inserted
+// into a chain when this is called) is by pass-through from a texture.
+// Thus, we can simply feed the flag up towards all inputs.
+void EffectChain::set_use_srgb_texture_format(Effect *effect)
+{
+       assert(output_gamma_curve.count(effect) != 0);
+       assert(output_gamma_curve[effect] == GAMMA_sRGB);
+       if (effect->num_inputs() == 0) {
+               effect->set_int("use_srgb_texture_format", 1);
+       } else {
+               assert(incoming_links.count(effect) == 1);
+               std::vector<Effect *> deps = incoming_links[effect];
+               assert(effect->num_inputs() == deps.size());
+               for (unsigned i = 0; i < deps.size(); ++i) {
+                       set_use_srgb_texture_format(deps[i]);
+                       assert(output_gamma_curve[deps[i]] == GAMMA_LINEAR);
+               }
+       }
+       output_gamma_curve[effect] = GAMMA_LINEAR;
+}
+
 Effect *EffectChain::normalize_to_linear_gamma(Effect *input)
 {
-       GammaCurve current_gamma_curve = output_gamma_curve[input];
-       if (current_gamma_curve == GAMMA_sRGB) {
+       assert(output_gamma_curve.count(input) != 0);
+       if (output_gamma_curve[input] == GAMMA_sRGB) {
                // TODO: check if the extension exists
-               use_srgb_texture_format = true;
-               current_gamma_curve = GAMMA_LINEAR;
+               set_use_srgb_texture_format(input);
+               output_gamma_curve[input] = GAMMA_LINEAR;
                return input;
        } else {
                GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect();
-               gamma_conversion->set_int("source_curve", current_gamma_curve);
+               gamma_conversion->set_int("source_curve", output_gamma_curve[input]);
                std::vector<Effect *> inputs;
                inputs.push_back(input);
                gamma_conversion->add_self_to_effect_chain(this, inputs);
-               current_gamma_curve = GAMMA_LINEAR;
+               output_gamma_curve[gamma_conversion] = GAMMA_LINEAR;
                return gamma_conversion;
        }
 }
 
 Effect *EffectChain::normalize_to_srgb(Effect *input)
 {
-       GammaCurve current_gamma_curve = output_gamma_curve[input];
-       ColorSpace current_color_space = output_color_space[input];
-       assert(current_gamma_curve == GAMMA_LINEAR);
+       assert(output_gamma_curve.count(input) != 0);
+       assert(output_color_space.count(input) != 0);
+       assert(output_gamma_curve[input] == GAMMA_LINEAR);
        ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect();
-       colorspace_conversion->set_int("source_space", current_color_space);
+       colorspace_conversion->set_int("source_space", output_color_space[input]);
        colorspace_conversion->set_int("destination_space", COLORSPACE_sRGB);
        std::vector<Effect *> inputs;
        inputs.push_back(input);
        colorspace_conversion->add_self_to_effect_chain(this, inputs);
-       current_color_space = COLORSPACE_sRGB;
+       output_color_space[colorspace_conversion] = COLORSPACE_sRGB;
        return colorspace_conversion;
 }
 
@@ -127,9 +168,11 @@ Effect *EffectChain::add_effect(EffectId effect_id, const std::vector<Effect *>
 
        std::vector<Effect *> normalized_inputs = inputs;
        for (unsigned i = 0; i < normalized_inputs.size(); ++i) {
+               assert(output_gamma_curve.count(normalized_inputs[i]) != 0);
                if (effect->needs_linear_light() && output_gamma_curve[normalized_inputs[i]] != GAMMA_LINEAR) {
                        normalized_inputs[i] = normalize_to_linear_gamma(normalized_inputs[i]);
                }
+               assert(output_color_space.count(normalized_inputs[i]) != 0);
                if (effect->needs_srgb_primaries() && output_color_space[normalized_inputs[i]] != COLORSPACE_sRGB) {
                        normalized_inputs[i] = normalize_to_srgb(normalized_inputs[i]);
                }
@@ -182,17 +225,12 @@ std::string replace_prefix(const std::string &text, const std::string &prefix)
 
 EffectChain::Phase EffectChain::compile_glsl_program(const std::vector<Effect *> &inputs, const std::vector<Effect *> &effects)
 {
-       assert(!inputs.empty());
        assert(!effects.empty());
 
-       // Figure out the true set of inputs to this phase. These are the ones
-       // that we need somehow but don't calculate ourselves.
-       std::set<Effect *> effect_set(effects.begin(), effects.end());
-       std::set<Effect *> input_set(inputs.begin(), inputs.end());
-       std::vector<Effect *> true_inputs;
-       std::set_difference(input_set.begin(), input_set.end(),
-               effect_set.begin(), effect_set.end(),
-               std::back_inserter(true_inputs));
+       // Deduplicate the inputs.
+       std::vector<Effect *> true_inputs = inputs;
+       std::sort(true_inputs.begin(), true_inputs.end());
+       true_inputs.erase(std::unique(true_inputs.begin(), true_inputs.end()), true_inputs.end());
 
        bool input_needs_mipmaps = false;
        std::string frag_shader = read_file("header.frag");
@@ -205,7 +243,7 @@ EffectChain::Phase EffectChain::compile_glsl_program(const std::vector<Effect *>
        
                frag_shader += std::string("uniform sampler2D tex_") + effect_id + ";\n";       
                frag_shader += std::string("vec4 ") + effect_id + "(vec2 tc) {\n";
-               if (effect == NULL) {
+               if (effect->num_inputs() == 0) {
                        // OpenGL's origin is bottom-left, but most graphics software assumes
                        // a top-left origin. Thus, for inputs that come from the user,
                        // we flip the y coordinate. However, for FBOs, the origin
@@ -254,6 +292,12 @@ EffectChain::Phase EffectChain::compile_glsl_program(const std::vector<Effect *>
 
                input_needs_mipmaps |= effect->needs_mipmaps();
        }
+       for (unsigned i = 0; i < effects.size(); ++i) {
+               Effect *effect = effects[i];
+               if (effect->num_inputs() == 0) {
+                       effect->set_int("needs_mipmaps", input_needs_mipmaps);
+               }
+       }
        assert(!last_effect_id.empty());
        frag_shader += std::string("#define INPUT ") + last_effect_id + "\n";
        frag_shader.append(read_file("footer.frag"));
@@ -282,108 +326,153 @@ EffectChain::Phase EffectChain::compile_glsl_program(const std::vector<Effect *>
 // the chain from there. We end a program every time we come to an effect
 // marked as "needs texture bounce", one that is used by multiple other
 // effects, and of course at the end.
-void EffectChain::construct_glsl_programs(Effect *start, std::set<Effect *> *completed_effects)
+//
+// We follow a quite simple depth-first search from the output, although
+// without any explicit recursion.
+void EffectChain::construct_glsl_programs(Effect *output)
 {
-       if (completed_effects->count(start) != 0) {
-               // This has already been done for us.
-               return;
-       }
+       // Which effects have already been completed in this phase?
+       // We need to keep track of it, as an effect with multiple outputs
+       // could otherwise be calculate multiple times.
+       std::set<Effect *> completed_effects;
 
-       std::vector<Effect *> this_phase_inputs;  // Also includes all intermediates; these will be filtered away later.
+       // Effects in the current phase, as well as inputs (outputs from other phases
+       // that we depend on). Note that since we start iterating from the end,
+       // the effect list will be in the reverse order.
+       std::vector<Effect *> this_phase_inputs;
        std::vector<Effect *> this_phase_effects;
-       Effect *node = start;
+
+       // Effects that we have yet to calculate, but that we know should
+       // be in the current phase.
+       std::stack<Effect *> effects_todo_this_phase;
+
+       // Effects that we have yet to calculate, but that come from other phases.
+       // We delay these until we have this phase done in its entirety,
+       // at which point we pick any of them and start a new phase from that.
+       std::stack<Effect *> effects_todo_other_phases;
+
+       effects_todo_this_phase.push(output);
+
        for ( ;; ) {  // Termination condition within loop.
-               if (node == NULL) {
-                       this_phase_inputs.push_back(node);
-               } else {
-                       // Check that we have all the inputs we need for this effect.
-                       // If not, we end the phase here right away; the other side
-                       // of the input chain will eventually come and pick the effect up.
-                       assert(incoming_links.count(node) != 0);
-                       std::vector<Effect *> deps = incoming_links[node];
-                       assert(!deps.empty());
-                       bool have_all_deps = true;
+               if (!effects_todo_this_phase.empty()) {
+                       // OK, we have more to do this phase.
+                       Effect *effect = effects_todo_this_phase.top();
+                       effects_todo_this_phase.pop();
+
+                       // This should currently only happen for effects that are phase outputs,
+                       // and we throw those out separately below.
+                       assert(completed_effects.count(effect) == 0);
+
+                       this_phase_effects.push_back(effect);
+                       completed_effects.insert(effect);
+
+                       // Find all the dependencies of this effect, and add them to the stack.
+                       assert(incoming_links.count(effect) == 1);
+                       std::vector<Effect *> deps = incoming_links[effect];
+                       assert(effect->num_inputs() == deps.size());
                        for (unsigned i = 0; i < deps.size(); ++i) {
-                               if (completed_effects->count(deps[i]) == 0) {
-                                       have_all_deps = false;
-                                       break;
+                               bool start_new_phase = false;
+
+                               if (effect->needs_texture_bounce()) {
+                                       start_new_phase = true;
                                }
-                       }
-               
-                       if (!have_all_deps) {
-                               if (!this_phase_effects.empty()) {
-                                       phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects));
+
+                               assert(outgoing_links.count(deps[i]) == 1);
+                               if (outgoing_links[deps[i]].size() > 1 && deps[i]->num_inputs() > 0) {
+                                       // More than one effect uses this as the input,
+                                       // and it is not a texture itself.
+                                       // The easiest thing to do (and probably also the safest
+                                       // performance-wise in most cases) is to bounce it to a texture
+                                       // and then let the next passes read from that.
+                                       start_new_phase = true;
+                               }
+
+                               if (start_new_phase) {
+                                       effects_todo_other_phases.push(deps[i]);
+                                       this_phase_inputs.push_back(deps[i]);
+                               } else {
+                                       effects_todo_this_phase.push(deps[i]);
                                }
-                               return;
                        }
-                       this_phase_inputs.insert(this_phase_inputs.end(), deps.begin(), deps.end());    
-                       this_phase_effects.push_back(node);
+                       continue;
                }
-               completed_effects->insert(node);        
 
-               // Find all the effects that use this one as a direct input.
-               if (outgoing_links.count(node) == 0) {
-                       // End of the line; output.
+               // No more effects to do this phase. Take all the ones we have,
+               // and create a GLSL program for it.
+               if (!this_phase_effects.empty()) {
+                       reverse(this_phase_effects.begin(), this_phase_effects.end());
                        phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects));
-                       return;
+                       this_phase_inputs.clear();
+                       this_phase_effects.clear();
                }
+               assert(this_phase_inputs.empty());
+               assert(this_phase_effects.empty());
 
-               std::vector<Effect *> next = outgoing_links[node];
-               assert(!next.empty());
-               if (next.size() > 1) {
-                       // More than one effect uses this as the input.
-                       // The easiest thing to do (and probably also the safest
-                       // performance-wise in most cases) is to bounce it to a texture
-                       // and then let the next passes read from that.
-                       if (node != NULL) {
-                               phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects));
-                       }
-
-                       // Start phases for all the effects that need us (in arbitrary order).
-                       for (unsigned i = 0; i < next.size(); ++i) {
-                               construct_glsl_programs(next[i], completed_effects);
-                       }
-                       return;
+               // If we have no effects left, exit.
+               if (effects_todo_other_phases.empty()) {
+                       break;
                }
-       
-               // OK, only one effect uses this as the input. Keep iterating,
-               // but first see if it requires a texture bounce; if so, give it
-               // one by starting a new phase.
-               node = next[0];
-               if (node->needs_texture_bounce()) {
-                       phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects));
-                       this_phase_inputs.clear();
-                       this_phase_effects.clear();
+
+               Effect *effect = effects_todo_other_phases.top();
+               effects_todo_other_phases.pop();
+
+               if (completed_effects.count(effect) == 0) {
+                       // Start a new phase, calculating from this effect.
+                       effects_todo_this_phase.push(effect);
                }
        }
+
+       // Finally, since the phases are found from the output but must be executed
+       // from the input(s), reverse them, too.
+       std::reverse(phases.begin(), phases.end());
 }
 
 void EffectChain::finalize()
 {
+       // Find the output effect. This is, simply, one that has no outgoing links.
+       // If there are multiple ones, the graph is malformed (we do not support
+       // multiple outputs right now).
+       std::vector<Effect *> output_effects;
+       for (unsigned i = 0; i < effects.size(); ++i) {
+               Effect *effect = effects[i];
+               if (outgoing_links.count(effect) == 0 || outgoing_links[effect].size() == 0) {
+                       output_effects.push_back(effect);
+               }
+       }
+       assert(output_effects.size() == 1);
+       Effect *output_effect = output_effects[0];
+
        // Add normalizers to get the output format right.
-       GammaCurve current_gamma_curve = output_gamma_curve[last_added_effect];  // FIXME
-       ColorSpace current_color_space = output_color_space[last_added_effect];  // FIXME
+       assert(output_gamma_curve.count(output_effect) != 0);
+       assert(output_color_space.count(output_effect) != 0);
+       ColorSpace current_color_space = output_color_space[output_effect];
        if (current_color_space != output_format.color_space) {
                ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect();
                colorspace_conversion->set_int("source_space", current_color_space);
                colorspace_conversion->set_int("destination_space", output_format.color_space);
-               effects.push_back(colorspace_conversion);
-               current_color_space = output_format.color_space;
+               std::vector<Effect *> inputs;
+               inputs.push_back(output_effect);
+               colorspace_conversion->add_self_to_effect_chain(this, inputs);
+               output_color_space[colorspace_conversion] = output_format.color_space;
+               output_effect = colorspace_conversion;
        }
+       GammaCurve current_gamma_curve = output_gamma_curve[output_effect];
        if (current_gamma_curve != output_format.gamma_curve) {
                if (current_gamma_curve != GAMMA_LINEAR) {
-                       normalize_to_linear_gamma(last_added_effect);  // FIXME
+                       output_effect = normalize_to_linear_gamma(output_effect);
+                       current_gamma_curve = GAMMA_LINEAR;
                }
-               assert(current_gamma_curve == GAMMA_LINEAR);
                GammaCompressionEffect *gamma_conversion = new GammaCompressionEffect();
                gamma_conversion->set_int("destination_curve", output_format.gamma_curve);
-               effects.push_back(gamma_conversion);
-               current_gamma_curve = output_format.gamma_curve;
+               std::vector<Effect *> inputs;
+               inputs.push_back(output_effect);
+               gamma_conversion->add_self_to_effect_chain(this, inputs);
+               output_gamma_curve[gamma_conversion] = output_format.gamma_curve;
+               output_effect = gamma_conversion;
        }
 
-       // Construct all needed GLSL programs, starting at the input.
-       std::set<Effect *> completed_effects;
-       construct_glsl_programs(NULL, &completed_effects);
+       // Construct all needed GLSL programs, starting at the output.
+       construct_glsl_programs(output_effect);
 
        // If we have more than one phase, we need intermediate render-to-texture.
        // Construct an FBO, and then as many textures as we need.
@@ -409,79 +498,18 @@ void EffectChain::finalize()
                        effect_output_textures.insert(std::make_pair(output_effect, temp_texture));
                }
        }
-       
-       // Translate the input format to OpenGL's enums.
-       GLenum internal_format;
-       if (use_srgb_texture_format) {
-               internal_format = GL_SRGB8;
-       } else {
-               internal_format = GL_RGBA8;
-       }
-       if (input_format.pixel_format == FORMAT_RGB) {
-               format = GL_RGB;
-               bytes_per_pixel = 3;
-       } else if (input_format.pixel_format == FORMAT_RGBA) {
-               format = GL_RGBA;
-               bytes_per_pixel = 4;
-       } else if (input_format.pixel_format == FORMAT_BGR) {
-               format = GL_BGR;
-               bytes_per_pixel = 3;
-       } else if (input_format.pixel_format == FORMAT_BGRA) {
-               format = GL_BGRA;
-               bytes_per_pixel = 4;
-       } else {
-               assert(false);
+               
+       for (unsigned i = 0; i < inputs.size(); ++i) {
+               inputs[i]->finalize();
        }
-
-       // Create PBO to hold the texture holding the input image, and then the texture itself.
-       glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 2);
-       check_error();
-       glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, width * height * bytes_per_pixel, NULL, GL_STREAM_DRAW);
-       check_error();
-       glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
-       check_error();
        
-       glGenTextures(1, &source_image_num);
-       check_error();
-       glBindTexture(GL_TEXTURE_2D, source_image_num);
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
-       check_error();
-       // Intel/Mesa seems to have a broken glGenerateMipmap() for non-FBO textures, so do it here.
-       glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, phases[0].input_needs_mipmaps ? GL_TRUE : GL_FALSE);
-       check_error();
-       glTexImage2D(GL_TEXTURE_2D, 0, internal_format, width, height, 0, format, GL_UNSIGNED_BYTE, NULL);
-       check_error();
-
        finalized = true;
 }
 
-void EffectChain::render_to_screen(unsigned char *src)
+void EffectChain::render_to_screen()
 {
        assert(finalized);
 
-       // Copy the pixel data into the PBO.
-       glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 2);
-       check_error();
-       void *mapped_pbo = glMapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, GL_WRITE_ONLY);
-       memcpy(mapped_pbo, src, width * height * bytes_per_pixel);
-       glUnmapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB);
-       check_error();
-
-       // Re-upload the texture from the PBO.
-       glActiveTexture(GL_TEXTURE0);
-       check_error();
-       glBindTexture(GL_TEXTURE_2D, source_image_num);
-       check_error();
-       glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, format, GL_UNSIGNED_BYTE, BUFFER_OFFSET(0));
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
-       check_error();
-       glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
-       check_error();
-
        // Basic state.
        glDisable(GL_BLEND);
        check_error();
@@ -503,25 +531,23 @@ void EffectChain::render_to_screen(unsigned char *src)
        }
 
        std::set<Effect *> generated_mipmaps;
-       generated_mipmaps.insert(NULL);  // Already done further up.
+       for (unsigned i = 0; i < inputs.size(); ++i) {
+               // Inputs generate their own mipmaps if they need to
+               // (see input.cpp).
+               generated_mipmaps.insert(inputs[i]);
+       }
 
        for (unsigned phase = 0; phase < phases.size(); ++phase) {
                glUseProgram(phases[phase].glsl_program_num);
                check_error();
 
-               // Set up inputs for this phase.
-               assert(!phases[phase].inputs.empty());
+               // Set up RTT inputs for this phase.
                for (unsigned sampler = 0; sampler < phases[phase].inputs.size(); ++sampler) {
                        glActiveTexture(GL_TEXTURE0 + sampler);
                        Effect *input = phases[phase].inputs[sampler];
-                       if (input == NULL) {
-                               glBindTexture(GL_TEXTURE_2D, source_image_num);
-                               check_error();
-                       } else {
-                               assert(effect_output_textures.count(input) != 0);
-                               glBindTexture(GL_TEXTURE_2D, effect_output_textures[input]);
-                               check_error();
-                       }
+                       assert(effect_output_textures.count(input) != 0);
+                       glBindTexture(GL_TEXTURE_2D, effect_output_textures[input]);
+                       check_error();
                        if (phases[phase].input_needs_mipmaps) {
                                if (generated_mipmaps.count(input) == 0) {
                                        glGenerateMipmap(GL_TEXTURE_2D);
@@ -562,7 +588,7 @@ void EffectChain::render_to_screen(unsigned char *src)
                unsigned sampler_num = phases[phase].inputs.size();
                for (unsigned i = 0; i < phases[phase].effects.size(); ++i) {
                        Effect *effect = phases[phase].effects[i];
-                       effect->set_uniforms(phases[phase].glsl_program_num, effect_ids[effect], &sampler_num);
+                       effect->set_gl_state(phases[phase].glsl_program_num, effect_ids[effect], &sampler_num);
                }
 
                // Now draw!
@@ -583,11 +609,9 @@ void EffectChain::render_to_screen(unsigned char *src)
                glEnd();
                check_error();
 
-               // HACK
-               glActiveTexture(GL_TEXTURE0);
-               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
-               check_error();
-               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1000);
-               check_error();
+               for (unsigned i = 0; i < phases[phase].effects.size(); ++i) {
+                       Effect *effect = phases[phase].effects[i];
+                       effect->clear_gl_state();
+               }
        }
 }