]> git.sesse.net Git - movit/blobdiff - effect_chain.cpp
Convert a loop to range-based for.
[movit] / effect_chain.cpp
index 05deb76226deecb081d8953c3fc65287ff0f438a..f11a5e45a3ada2ccbbaf38a5b76630ceb2f41915 100644 (file)
-#define GL_GLEXT_PROTOTYPES 1
-
-#include <stdio.h>
+#include <epoxy/gl.h>
+#include <assert.h>
 #include <math.h>
+#include <stddef.h>
+#include <stdio.h>
+#include <stdlib.h>
 #include <string.h>
-#include <assert.h>
-#include <GL/glew.h>
-
 #include <algorithm>
 #include <set>
 #include <stack>
+#include <utility>
 #include <vector>
+#include <Eigen/Core>
 
-#include "util.h"
-#include "effect_chain.h"
-#include "gamma_expansion_effect.h"
-#include "gamma_compression_effect.h"
+#include "alpha_division_effect.h"
+#include "alpha_multiplication_effect.h"
 #include "colorspace_conversion_effect.h"
 #include "dither_effect.h"
+#include "effect.h"
+#include "effect_chain.h"
+#include "effect_util.h"
+#include "gamma_compression_effect.h"
+#include "gamma_expansion_effect.h"
+#include "init.h"
 #include "input.h"
+#include "resource_pool.h"
+#include "util.h"
+#include "ycbcr_conversion_effect.h"
+
+using namespace Eigen;
+using namespace std;
 
-EffectChain::EffectChain(float aspect_nom, float aspect_denom)
+namespace movit {
+
+namespace {
+
+// An effect whose only purpose is to sit in a phase on its own and take the
+// texture output from a compute shader and display it to the normal backbuffer
+// (or any FBO). That phase can be skipped when rendering using render_to_textures().
+class ComputeShaderOutputDisplayEffect : public Effect {
+public:
+       ComputeShaderOutputDisplayEffect() {}
+       string effect_type_id() const override { return "ComputeShaderOutputDisplayEffect"; }
+       string output_fragment_shader() override { return read_file("identity.frag"); }
+       bool needs_texture_bounce() const override { return true; }
+};
+
+}  // namespace
+
+EffectChain::EffectChain(float aspect_nom, float aspect_denom, ResourcePool *resource_pool)
        : aspect_nom(aspect_nom),
          aspect_denom(aspect_denom),
-         dither_effect(NULL),
-         fbo(0),
+         output_color_rgba(false),
+         num_output_color_ycbcr(0),
+         dither_effect(nullptr),
+         ycbcr_conversion_effect_node(nullptr),
+         intermediate_format(GL_RGBA16F),
+         intermediate_transformation(NO_FRAMEBUFFER_TRANSFORMATION),
          num_dither_bits(0),
-         finalized(false) {}
+         output_origin(OUTPUT_ORIGIN_BOTTOM_LEFT),
+         finalized(false),
+         resource_pool(resource_pool),
+         do_phase_timing(false) {
+       if (resource_pool == nullptr) {
+               this->resource_pool = new ResourcePool();
+               owns_resource_pool = true;
+       } else {
+               owns_resource_pool = false;
+       }
+
+       // Generate a VBO with some data in (shared position and texture coordinate data).
+       float vertices[] = {
+               0.0f, 2.0f,
+               0.0f, 0.0f,
+               2.0f, 0.0f
+       };
+       vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices);
+}
 
 EffectChain::~EffectChain()
 {
        for (unsigned i = 0; i < nodes.size(); ++i) {
-               if (nodes[i]->output_texture != 0) {
-                       glDeleteTextures(1, &nodes[i]->output_texture);
-               }
                delete nodes[i]->effect;
                delete nodes[i];
        }
        for (unsigned i = 0; i < phases.size(); ++i) {
-               glDeleteProgram(phases[i]->glsl_program_num);
-               glDeleteShader(phases[i]->vertex_shader);
-               glDeleteShader(phases[i]->fragment_shader);
+               resource_pool->release_glsl_program(phases[i]->glsl_program_num);
                delete phases[i];
        }
-       if (fbo != 0) {
-               glDeleteFramebuffers(1, &fbo);
+       if (owns_resource_pool) {
+               delete resource_pool;
        }
+       glDeleteBuffers(1, &vbo);
+       check_error();
 }
 
 Input *EffectChain::add_input(Input *input)
 {
+       assert(!finalized);
        inputs.push_back(input);
-
-       Node *node = add_node(input);
-       node->output_color_space = input->get_color_space();
-       node->output_gamma_curve = input->get_gamma_curve();
+       add_node(input);
        return input;
 }
 
-void EffectChain::add_output(const ImageFormat &format)
+void EffectChain::add_output(const ImageFormat &format, OutputAlphaFormat alpha_format)
+{
+       assert(!finalized);
+       assert(!output_color_rgba);
+       output_format = format;
+       output_alpha_format = alpha_format;
+       output_color_rgba = true;
+}
+
+void EffectChain::add_ycbcr_output(const ImageFormat &format, OutputAlphaFormat alpha_format,
+                                   const YCbCrFormat &ycbcr_format, YCbCrOutputSplitting output_splitting,
+                                   GLenum output_type)
 {
+       assert(!finalized);
+       assert(num_output_color_ycbcr < 2);
        output_format = format;
+       output_alpha_format = alpha_format;
+
+       if (num_output_color_ycbcr == 1) {
+               // Check that the format is the same.
+               assert(output_ycbcr_format.luma_coefficients == ycbcr_format.luma_coefficients);
+               assert(output_ycbcr_format.full_range == ycbcr_format.full_range);
+               assert(output_ycbcr_format.num_levels == ycbcr_format.num_levels);
+               assert(output_ycbcr_format.chroma_subsampling_x == 1);
+               assert(output_ycbcr_format.chroma_subsampling_y == 1);
+               assert(output_ycbcr_type == output_type);
+       } else {
+               output_ycbcr_format = ycbcr_format;
+               output_ycbcr_type = output_type;
+       }
+       output_ycbcr_splitting[num_output_color_ycbcr++] = output_splitting;
+
+       assert(ycbcr_format.chroma_subsampling_x == 1);
+       assert(ycbcr_format.chroma_subsampling_y == 1);
+}
+
+void EffectChain::change_ycbcr_output_format(const YCbCrFormat &ycbcr_format)
+{
+       assert(num_output_color_ycbcr > 0);
+       assert(output_ycbcr_format.chroma_subsampling_x == 1);
+       assert(output_ycbcr_format.chroma_subsampling_y == 1);
+
+       output_ycbcr_format = ycbcr_format;
+       if (finalized) {
+               YCbCrConversionEffect *effect = (YCbCrConversionEffect *)(ycbcr_conversion_effect_node->effect);
+               effect->change_output_format(ycbcr_format);
+       }
 }
 
 Node *EffectChain::add_node(Effect *effect)
 {
-       char effect_id[256];
-       sprintf(effect_id, "eff%u", (unsigned)nodes.size());
+       for (unsigned i = 0; i < nodes.size(); ++i) {
+               assert(nodes[i]->effect != effect);
+       }
 
        Node *node = new Node;
        node->effect = effect;
        node->disabled = false;
-       node->effect_id = effect_id;
        node->output_color_space = COLORSPACE_INVALID;
        node->output_gamma_curve = GAMMA_INVALID;
-       node->output_texture = 0;
+       node->output_alpha_type = ALPHA_INVALID;
+       node->needs_mipmaps = Effect::DOES_NOT_NEED_MIPMAPS;
+       node->one_to_one_sampling = false;
+       node->strong_one_to_one_sampling = false;
 
        nodes.push_back(node);
        node_map[effect] = node;
+       effect->inform_added(this);
        return node;
 }
 
@@ -134,7 +227,23 @@ void EffectChain::insert_node_between(Node *sender, Node *middle, Node *receiver
        assert(middle->incoming_links.size() == middle->effect->num_inputs());
 }
 
-void EffectChain::find_all_nonlinear_inputs(Node *node, std::vector<Node *> *nonlinear_inputs)
+GLenum EffectChain::get_input_sampler(Node *node, unsigned input_num) const
+{
+       assert(node->effect->needs_texture_bounce());
+       assert(input_num < node->incoming_links.size());
+       assert(node->incoming_links[input_num]->bound_sampler_num >= 0);
+       assert(node->incoming_links[input_num]->bound_sampler_num < 8);
+       return GL_TEXTURE0 + node->incoming_links[input_num]->bound_sampler_num;
+}
+
+GLenum EffectChain::has_input_sampler(Node *node, unsigned input_num) const
+{
+       assert(input_num < node->incoming_links.size());
+       return node->incoming_links[input_num]->bound_sampler_num >= 0 &&
+               node->incoming_links[input_num]->bound_sampler_num < 8;
+}
+
+void EffectChain::find_all_nonlinear_inputs(Node *node, vector<Node *> *nonlinear_inputs)
 {
        if (node->output_gamma_curve == GAMMA_LINEAR &&
            node->effect->effect_type_id() != "GammaCompressionEffect") {
@@ -150,8 +259,9 @@ void EffectChain::find_all_nonlinear_inputs(Node *node, std::vector<Node *> *non
        }
 }
 
-Effect *EffectChain::add_effect(Effect *effect, const std::vector<Effect *> &inputs)
+Effect *EffectChain::add_effect(Effect *effect, const vector<Effect *> &inputs)
 {
+       assert(!finalized);
        assert(inputs.size() == effect->num_inputs());
        Node *node = add_node(effect);
        for (unsigned i = 0; i < inputs.size(); ++i) {
@@ -161,16 +271,16 @@ Effect *EffectChain::add_effect(Effect *effect, const std::vector<Effect *> &inp
        return effect;
 }
 
-// GLSL pre-1.30 doesn't support token pasting. Replace PREFIX(x) with <effect_id>_x.
-std::string replace_prefix(const std::string &text, const std::string &prefix)
+// ESSL doesn't support token pasting. Replace PREFIX(x) with <effect_id>_x.
+string replace_prefix(const string &text, const string &prefix)
 {
-       std::string output;
+       string output;
        size_t start = 0;
 
        while (start < text.size()) {
                size_t pos = text.find("PREFIX(", start);
-               if (pos == std::string::npos) {
-                       output.append(text.substr(start, std::string::npos));
+               if (pos == string::npos) {
+                       output.append(text.substr(start, string::npos));
                        break;
                }
 
@@ -202,49 +312,137 @@ std::string replace_prefix(const std::string &text, const std::string &prefix)
        return output;
 }
 
-Phase *EffectChain::compile_glsl_program(
-       const std::vector<Node *> &inputs,
-       const std::vector<Node *> &effects)
+namespace {
+
+template<class T>
+void extract_uniform_declarations(const vector<Uniform<T>> &effect_uniforms,
+                                  const string &type_specifier,
+                                  const string &effect_id,
+                                  vector<Uniform<T>> *phase_uniforms,
+                                  string *glsl_string)
+{
+       for (unsigned i = 0; i < effect_uniforms.size(); ++i) {
+               phase_uniforms->push_back(effect_uniforms[i]);
+               phase_uniforms->back().prefix = effect_id;
+
+               *glsl_string += string("uniform ") + type_specifier + " " + effect_id
+                       + "_" + effect_uniforms[i].name + ";\n";
+       }
+}
+
+template<class T>
+void extract_uniform_array_declarations(const vector<Uniform<T>> &effect_uniforms,
+                                        const string &type_specifier,
+                                        const string &effect_id,
+                                        vector<Uniform<T>> *phase_uniforms,
+                                        string *glsl_string)
 {
-       assert(!effects.empty());
+       for (unsigned i = 0; i < effect_uniforms.size(); ++i) {
+               phase_uniforms->push_back(effect_uniforms[i]);
+               phase_uniforms->back().prefix = effect_id;
+
+               char buf[256];
+               snprintf(buf, sizeof(buf), "uniform %s %s_%s[%d];\n",
+                       type_specifier.c_str(), effect_id.c_str(),
+                       effect_uniforms[i].name.c_str(),
+                       int(effect_uniforms[i].num_values));
+               *glsl_string += buf;
+       }
+}
 
-       // Deduplicate the inputs.
-       std::vector<Node *> true_inputs = inputs;
-       std::sort(true_inputs.begin(), true_inputs.end());
-       true_inputs.erase(std::unique(true_inputs.begin(), true_inputs.end()), true_inputs.end());
+template<class T>
+void collect_uniform_locations(GLuint glsl_program_num, vector<Uniform<T>> *phase_uniforms)
+{
+       for (unsigned i = 0; i < phase_uniforms->size(); ++i) {
+               Uniform<T> &uniform = (*phase_uniforms)[i];
+               uniform.location = get_uniform_location(glsl_program_num, uniform.prefix, uniform.name);
+       }
+}
 
-       bool input_needs_mipmaps = false;
-       std::string frag_shader = read_file("header.frag");
+}  // namespace
 
-       // Create functions for all the texture inputs that we need.
-       for (unsigned i = 0; i < true_inputs.size(); ++i) {
-               Node *input = true_inputs[i];
+void EffectChain::compile_glsl_program(Phase *phase)
+{
+       string frag_shader_header;
+       if (phase->is_compute_shader) {
+               frag_shader_header = read_file("header.comp");
+       } else {
+               frag_shader_header = read_version_dependent_file("header", "frag");
+       }
+       string frag_shader = "";
+
+       // Create functions and uniforms for all the texture inputs that we need.
+       for (unsigned i = 0; i < phase->inputs.size(); ++i) {
+               Node *input = phase->inputs[i]->output_node;
+               char effect_id[256];
+               sprintf(effect_id, "in%u", i);
+               phase->effect_ids.insert(make_pair(make_pair(input, IN_ANOTHER_PHASE), effect_id));
        
-               frag_shader += std::string("uniform sampler2D tex_") + input->effect_id + ";\n";
-               frag_shader += std::string("vec4 ") + input->effect_id + "(vec2 tc) {\n";
-               frag_shader += "\treturn texture2D(tex_" + input->effect_id + ", tc);\n";
+               frag_shader += string("uniform sampler2D tex_") + effect_id + ";\n";
+               frag_shader += string("vec4 ") + effect_id + "(vec2 tc) {\n";
+               frag_shader += "\tvec4 tmp = tex2D(tex_" + string(effect_id) + ", tc);\n";
+
+               if (intermediate_transformation == SQUARE_ROOT_FRAMEBUFFER_TRANSFORMATION &&
+                   phase->inputs[i]->output_node->output_gamma_curve == GAMMA_LINEAR) {
+                       frag_shader += "\ttmp.rgb *= tmp.rgb;\n";
+               }
+
+               frag_shader += "\treturn tmp;\n";
                frag_shader += "}\n";
                frag_shader += "\n";
+
+               Uniform<int> uniform;
+               uniform.name = effect_id;
+               uniform.value = &phase->input_samplers[i];
+               uniform.prefix = "tex";
+               uniform.num_values = 1;
+               uniform.location = -1;
+               phase->uniforms_sampler2d.push_back(uniform);
        }
 
-       for (unsigned i = 0; i < effects.size(); ++i) {
-               Node *node = effects[i];
+       // Give each effect in the phase its own ID.
+       for (unsigned i = 0; i < phase->effects.size(); ++i) {
+               Node *node = phase->effects[i];
+               char effect_id[256];
+               sprintf(effect_id, "eff%u", i);
+               bool inserted = phase->effect_ids.insert(make_pair(make_pair(node, IN_SAME_PHASE), effect_id)).second;
+               assert(inserted);
+       }
 
-               if (node->incoming_links.size() == 1) {
-                       frag_shader += std::string("#define INPUT ") + node->incoming_links[0]->effect_id + "\n";
-               } else {
-                       for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
+       for (unsigned i = 0; i < phase->effects.size(); ++i) {
+               Node *node = phase->effects[i];
+               const string effect_id = phase->effect_ids[make_pair(node, IN_SAME_PHASE)];
+               for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
+                       if (node->incoming_links.size() == 1) {
+                               frag_shader += "#define INPUT";
+                       } else {
                                char buf[256];
-                               sprintf(buf, "#define INPUT%d %s\n", j + 1, node->incoming_links[j]->effect_id.c_str());
+                               sprintf(buf, "#define INPUT%d", j + 1);
                                frag_shader += buf;
                        }
+
+                       Node *input = node->incoming_links[j];
+                       NodeLinkType link_type = node->incoming_link_type[j];
+                       if (i != 0 &&
+                           input->effect->is_compute_shader() &&
+                           node->incoming_link_type[j] == IN_SAME_PHASE) {
+                               // First effect after the compute shader reads the value
+                               // that cs_output() wrote to a global variable,
+                               // ignoring the tc (since all such effects have to be
+                               // strong one-to-one).
+                               frag_shader += "(tc) CS_OUTPUT_VAL\n";
+                       } else {
+                               assert(phase->effect_ids.count(make_pair(input, link_type)));
+                               frag_shader += string(" ") + phase->effect_ids[make_pair(input, link_type)] + "\n";
+                       }
                }
        
                frag_shader += "\n";
-               frag_shader += std::string("#define FUNCNAME ") + node->effect_id + "\n";
-               frag_shader += replace_prefix(node->effect->output_convenience_uniforms(), node->effect_id);
-               frag_shader += replace_prefix(node->effect->output_fragment_shader(), node->effect_id);
-               frag_shader += "#undef PREFIX\n";
+               frag_shader += string("#define FUNCNAME ") + effect_id + "\n";
+               if (node->effect->is_compute_shader()) {
+                       frag_shader += string("#define NORMALIZE_TEXTURE_COORDS(tc) ((tc) * ") + effect_id + "_inv_output_size + " + effect_id + "_output_texcoord_adjust)\n";
+               }
+               frag_shader += replace_prefix(node->effect->output_fragment_shader(), effect_id);
                frag_shader += "#undef FUNCNAME\n";
                if (node->incoming_links.size() == 1) {
                        frag_shader += "#undef INPUT\n";
@@ -256,249 +454,468 @@ Phase *EffectChain::compile_glsl_program(
                        }
                }
                frag_shader += "\n";
+       }
+       if (phase->is_compute_shader) {
+               assert(phase->effect_ids.count(make_pair(phase->compute_shader_node, IN_SAME_PHASE)));
+               frag_shader += string("#define INPUT ") + phase->effect_ids[make_pair(phase->compute_shader_node, IN_SAME_PHASE)] + "\n";
+               if (phase->compute_shader_node == phase->effects.back()) {
+                       // No postprocessing.
+                       frag_shader += "#define CS_POSTPROC(tc) CS_OUTPUT_VAL\n";
+               } else {
+                       frag_shader += string("#define CS_POSTPROC ") + phase->effect_ids[make_pair(phase->effects.back(), IN_SAME_PHASE)] + "\n";
+               }
+       } else {
+               assert(phase->effect_ids.count(make_pair(phase->effects.back(), IN_SAME_PHASE)));
+               frag_shader += string("#define INPUT ") + phase->effect_ids[make_pair(phase->effects.back(), IN_SAME_PHASE)] + "\n";
+       }
+
+       // If we're the last phase, add the right #defines for Y'CbCr multi-output as needed.
+       vector<string> frag_shader_outputs;  // In order.
+       if (phase->output_node->outgoing_links.empty() && num_output_color_ycbcr > 0) {
+               switch (output_ycbcr_splitting[0]) {
+               case YCBCR_OUTPUT_INTERLEAVED:
+                       // No #defines set.
+                       frag_shader_outputs.push_back("FragColor");
+                       break;
+               case YCBCR_OUTPUT_SPLIT_Y_AND_CBCR:
+                       frag_shader += "#define YCBCR_OUTPUT_SPLIT_Y_AND_CBCR 1\n";
+                       frag_shader_outputs.push_back("Y");
+                       frag_shader_outputs.push_back("Chroma");
+                       break;
+               case YCBCR_OUTPUT_PLANAR:
+                       frag_shader += "#define YCBCR_OUTPUT_PLANAR 1\n";
+                       frag_shader_outputs.push_back("Y");
+                       frag_shader_outputs.push_back("Cb");
+                       frag_shader_outputs.push_back("Cr");
+                       break;
+               default:
+                       assert(false);
+               }
+
+               if (num_output_color_ycbcr > 1) {
+                       switch (output_ycbcr_splitting[1]) {
+                       case YCBCR_OUTPUT_INTERLEAVED:
+                               frag_shader += "#define SECOND_YCBCR_OUTPUT_INTERLEAVED 1\n";
+                               frag_shader_outputs.push_back("YCbCr2");
+                               break;
+                       case YCBCR_OUTPUT_SPLIT_Y_AND_CBCR:
+                               frag_shader += "#define SECOND_YCBCR_OUTPUT_SPLIT_Y_AND_CBCR 1\n";
+                               frag_shader_outputs.push_back("Y2");
+                               frag_shader_outputs.push_back("Chroma2");
+                               break;
+                       case YCBCR_OUTPUT_PLANAR:
+                               frag_shader += "#define SECOND_YCBCR_OUTPUT_PLANAR 1\n";
+                               frag_shader_outputs.push_back("Y2");
+                               frag_shader_outputs.push_back("Cb2");
+                               frag_shader_outputs.push_back("Cr2");
+                               break;
+                       default:
+                               assert(false);
+                       }
+               }
 
-               input_needs_mipmaps |= node->effect->needs_mipmaps();
+               if (output_color_rgba) {
+                       // Note: Needs to come in the header, because not only the
+                       // output needs to see it (YCbCrConversionEffect and DitherEffect
+                       // do, too).
+                       frag_shader_header += "#define YCBCR_ALSO_OUTPUT_RGBA 1\n";
+                       frag_shader_outputs.push_back("RGBA");
+               }
        }
-       for (unsigned i = 0; i < effects.size(); ++i) {
-               Node *node = effects[i];
-               if (node->effect->num_inputs() == 0) {
-                       CHECK(node->effect->set_int("needs_mipmaps", input_needs_mipmaps));
+
+       // If we're bouncing to a temporary texture, signal transformation if desired.
+       if (!phase->output_node->outgoing_links.empty()) {
+               if (intermediate_transformation == SQUARE_ROOT_FRAMEBUFFER_TRANSFORMATION &&
+                   phase->output_node->output_gamma_curve == GAMMA_LINEAR) {
+                       frag_shader += "#define SQUARE_ROOT_TRANSFORMATION 1\n";
                }
        }
-       frag_shader += std::string("#define INPUT ") + effects.back()->effect_id + "\n";
-       frag_shader.append(read_file("footer.frag"));
 
-       // Output shader to a temporary file, for easier debugging.
-       static int compiled_shader_num = 0;
-       char filename[256];
-       sprintf(filename, "chain-%03d.frag", compiled_shader_num++);
-       FILE *fp = fopen(filename, "w");
-       if (fp == NULL) {
-               perror(filename);
-               exit(1);
+       if (phase->is_compute_shader) {
+               frag_shader.append(read_file("footer.comp"));
+               phase->compute_shader_node->effect->register_uniform_ivec2("output_size", phase->uniform_output_size);
+               phase->compute_shader_node->effect->register_uniform_vec2("inv_output_size", (float *)&phase->inv_output_size);
+               phase->compute_shader_node->effect->register_uniform_vec2("output_texcoord_adjust", (float *)&phase->output_texcoord_adjust);
+       } else {
+               frag_shader.append(read_file("footer.frag"));
        }
-       fprintf(fp, "%s\n", frag_shader.c_str());
-       fclose(fp);
-       
-       GLuint glsl_program_num = glCreateProgram();
-       GLuint vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER);
-       GLuint fs_obj = compile_shader(frag_shader, GL_FRAGMENT_SHADER);
-       glAttachShader(glsl_program_num, vs_obj);
-       check_error();
-       glAttachShader(glsl_program_num, fs_obj);
-       check_error();
-       glLinkProgram(glsl_program_num);
-       check_error();
 
-       Phase *phase = new Phase;
-       phase->glsl_program_num = glsl_program_num;
-       phase->vertex_shader = vs_obj;
-       phase->fragment_shader = fs_obj;
-       phase->input_needs_mipmaps = input_needs_mipmaps;
-       phase->inputs = true_inputs;
-       phase->effects = effects;
+       // Collect uniforms from all effects and output them. Note that this needs
+       // to happen after output_fragment_shader(), even though the uniforms come
+       // before in the output source, since output_fragment_shader() is allowed
+       // to register new uniforms (e.g. arrays that are of unknown length until
+       // finalization time).
+       // TODO: Make a uniform block for platforms that support it.
+       string frag_shader_uniforms = "";
+       for (unsigned i = 0; i < phase->effects.size(); ++i) {
+               Node *node = phase->effects[i];
+               Effect *effect = node->effect;
+               const string effect_id = phase->effect_ids[make_pair(node, IN_SAME_PHASE)];
+               extract_uniform_declarations(effect->uniforms_image2d, "image2D", effect_id, &phase->uniforms_image2d, &frag_shader_uniforms);
+               extract_uniform_declarations(effect->uniforms_sampler2d, "sampler2D", effect_id, &phase->uniforms_sampler2d, &frag_shader_uniforms);
+               extract_uniform_declarations(effect->uniforms_bool, "bool", effect_id, &phase->uniforms_bool, &frag_shader_uniforms);
+               extract_uniform_declarations(effect->uniforms_int, "int", effect_id, &phase->uniforms_int, &frag_shader_uniforms);
+               extract_uniform_declarations(effect->uniforms_ivec2, "ivec2", effect_id, &phase->uniforms_ivec2, &frag_shader_uniforms);
+               extract_uniform_declarations(effect->uniforms_float, "float", effect_id, &phase->uniforms_float, &frag_shader_uniforms);
+               extract_uniform_declarations(effect->uniforms_vec2, "vec2", effect_id, &phase->uniforms_vec2, &frag_shader_uniforms);
+               extract_uniform_declarations(effect->uniforms_vec3, "vec3", effect_id, &phase->uniforms_vec3, &frag_shader_uniforms);
+               extract_uniform_declarations(effect->uniforms_vec4, "vec4", effect_id, &phase->uniforms_vec4, &frag_shader_uniforms);
+               extract_uniform_array_declarations(effect->uniforms_float_array, "float", effect_id, &phase->uniforms_float, &frag_shader_uniforms);
+               extract_uniform_array_declarations(effect->uniforms_vec2_array, "vec2", effect_id, &phase->uniforms_vec2, &frag_shader_uniforms);
+               extract_uniform_array_declarations(effect->uniforms_vec3_array, "vec3", effect_id, &phase->uniforms_vec3, &frag_shader_uniforms);
+               extract_uniform_array_declarations(effect->uniforms_vec4_array, "vec4", effect_id, &phase->uniforms_vec4, &frag_shader_uniforms);
+               extract_uniform_declarations(effect->uniforms_mat3, "mat3", effect_id, &phase->uniforms_mat3, &frag_shader_uniforms);
+       }
 
-       return phase;
+       string vert_shader = read_version_dependent_file("vs", "vert");
+
+       // If we're the last phase and need to flip the picture to compensate for
+       // the origin, tell the vertex or compute shader so.
+       bool is_last_phase;
+       if (has_dummy_effect) {
+               is_last_phase = (phase->output_node->outgoing_links.size() == 1 &&
+                       phase->output_node->outgoing_links[0]->effect->effect_type_id() == "ComputeShaderOutputDisplayEffect");
+       } else {
+               is_last_phase = phase->output_node->outgoing_links.empty();
+       }
+       if (is_last_phase && output_origin == OUTPUT_ORIGIN_TOP_LEFT) {
+               if (phase->is_compute_shader) {
+                       frag_shader_header += "#define FLIP_ORIGIN 1\n";
+               } else {
+                       const string needle = "#define FLIP_ORIGIN 0";
+                       size_t pos = vert_shader.find(needle);
+                       assert(pos != string::npos);
+
+                       vert_shader[pos + needle.size() - 1] = '1';
+               }
+       }
+
+       frag_shader = frag_shader_header + frag_shader_uniforms + frag_shader;
+
+       if (phase->is_compute_shader) {
+               phase->glsl_program_num = resource_pool->compile_glsl_compute_program(frag_shader);
+
+               Uniform<int> uniform;
+               uniform.name = "outbuf";
+               uniform.value = &phase->outbuf_image_unit;
+               uniform.prefix = "tex";
+               uniform.num_values = 1;
+               uniform.location = -1;
+               phase->uniforms_image2d.push_back(uniform);
+       } else {
+               phase->glsl_program_num = resource_pool->compile_glsl_program(vert_shader, frag_shader, frag_shader_outputs);
+       }
+       GLint position_attribute_index = glGetAttribLocation(phase->glsl_program_num, "position");
+       GLint texcoord_attribute_index = glGetAttribLocation(phase->glsl_program_num, "texcoord");
+       if (position_attribute_index != -1) {
+               phase->attribute_indexes.insert(position_attribute_index);
+       }
+       if (texcoord_attribute_index != -1) {
+               phase->attribute_indexes.insert(texcoord_attribute_index);
+       }
+
+       // Collect the resulting location numbers for each uniform.
+       collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_image2d);
+       collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_sampler2d);
+       collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_bool);
+       collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_int);
+       collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_ivec2);
+       collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_float);
+       collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec2);
+       collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec3);
+       collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec4);
+       collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_mat3);
 }
 
 // Construct GLSL programs, starting at the given effect and following
 // the chain from there. We end a program every time we come to an effect
 // marked as "needs texture bounce", one that is used by multiple other
-// effects, every time an effect wants to change the output size,
-// and of course at the end.
+// effects, every time we need to bounce due to output size change
+// (not all size changes require ending), and of course at the end.
 //
 // We follow a quite simple depth-first search from the output, although
-// without any explicit recursion.
-void EffectChain::construct_glsl_programs(Node *output)
+// without recursing explicitly within each phase.
+Phase *EffectChain::construct_phase(Node *output, map<Node *, Phase *> *completed_effects)
 {
-       // Which effects have already been completed in this phase?
-       // We need to keep track of it, as an effect with multiple outputs
-       // could otherwise be calculate multiple times.
-       std::set<Node *> completed_effects;
+       if (completed_effects->count(output)) {
+               return (*completed_effects)[output];
+       }
 
-       // Effects in the current phase, as well as inputs (outputs from other phases
-       // that we depend on). Note that since we start iterating from the end,
-       // the effect list will be in the reverse order.
-       std::vector<Node *> this_phase_inputs;
-       std::vector<Node *> this_phase_effects;
+       Phase *phase = new Phase;
+       phase->output_node = output;
+       phase->is_compute_shader = false;
+       phase->compute_shader_node = nullptr;
+
+       // If the output effect has one-to-one sampling, we try to trace this
+       // status down through the dependency chain. This is important in case
+       // we hit an effect that changes output size (and not sets a virtual
+       // output size); if we have one-to-one sampling, we don't have to break
+       // the phase.
+       output->one_to_one_sampling = output->effect->one_to_one_sampling();
+       output->strong_one_to_one_sampling = output->effect->strong_one_to_one_sampling();
 
        // Effects that we have yet to calculate, but that we know should
        // be in the current phase.
-       std::stack<Node *> effects_todo_this_phase;
+       stack<Node *> effects_todo_this_phase;
+       effects_todo_this_phase.push(output);
 
-       // Effects that we have yet to calculate, but that come from other phases.
-       // We delay these until we have this phase done in its entirety,
-       // at which point we pick any of them and start a new phase from that.
-       std::stack<Node *> effects_todo_other_phases;
+       while (!effects_todo_this_phase.empty()) {
+               Node *node = effects_todo_this_phase.top();
+               effects_todo_this_phase.pop();
 
-       effects_todo_this_phase.push(output);
+               assert(node->effect->one_to_one_sampling() >= node->effect->strong_one_to_one_sampling());
 
-       for ( ;; ) {  // Termination condition within loop.
-               if (!effects_todo_this_phase.empty()) {
-                       // OK, we have more to do this phase.
-                       Node *node = effects_todo_this_phase.top();
-                       effects_todo_this_phase.pop();
+               if (node->effect->needs_mipmaps() != Effect::DOES_NOT_NEED_MIPMAPS) {
+                       // Can't have incompatible requirements imposed on us from a dependent effect;
+                       // if so, it should have started a new phase instead.
+                       assert(node->needs_mipmaps == Effect::DOES_NOT_NEED_MIPMAPS ||
+                              node->needs_mipmaps == node->effect->needs_mipmaps());
+                       node->needs_mipmaps = node->effect->needs_mipmaps();
+               }
 
-                       // This should currently only happen for effects that are phase outputs,
-                       // and we throw those out separately below.
-                       assert(completed_effects.count(node) == 0);
+               // This should currently only happen for effects that are inputs
+               // (either true inputs or phase outputs). We special-case inputs,
+               // and then deduplicate phase outputs below.
+               if (node->effect->num_inputs() == 0) {
+                       if (find(phase->effects.begin(), phase->effects.end(), node) != phase->effects.end()) {
+                               continue;
+                       }
+               } else {
+                       assert(completed_effects->count(node) == 0);
+               }
 
-                       this_phase_effects.push_back(node);
-                       completed_effects.insert(node);
+               phase->effects.push_back(node);
+               if (node->effect->is_compute_shader()) {
+                       assert(phase->compute_shader_node == nullptr ||
+                              phase->compute_shader_node == node);
+                       phase->is_compute_shader = true;
+                       phase->compute_shader_node = node;
+               }
 
-                       // Find all the dependencies of this effect, and add them to the stack.
-                       std::vector<Node *> deps = node->incoming_links;
-                       assert(node->effect->num_inputs() == deps.size());
-                       for (unsigned i = 0; i < deps.size(); ++i) {
-                               bool start_new_phase = false;
+               // Find all the dependencies of this effect, and add them to the stack.
+               assert(node->effect->num_inputs() == node->incoming_links.size());
+               for (Node *dep : node->incoming_links) {
+                       bool start_new_phase = false;
 
-                               // FIXME: If we sample directly from a texture, we won't need this.
-                               if (node->effect->needs_texture_bounce()) {
-                                       start_new_phase = true;
-                               }
+                       Effect::MipmapRequirements save_needs_mipmaps = dep->needs_mipmaps;
 
-                               if (deps[i]->outgoing_links.size() > 1) {
-                                       if (deps[i]->effect->num_inputs() > 0) {
-                                               // More than one effect uses this as the input,
-                                               // and it is not a texture itself.
-                                               // The easiest thing to do (and probably also the safest
-                                               // performance-wise in most cases) is to bounce it to a texture
-                                               // and then let the next passes read from that.
-                                               start_new_phase = true;
+                       if (node->effect->needs_texture_bounce() &&
+                           !dep->effect->is_single_texture() &&
+                           !dep->effect->override_disable_bounce()) {
+                               start_new_phase = true;
+                       }
+
+                       // Propagate information about needing mipmaps down the chain,
+                       // breaking the phase if we notice an incompatibility.
+                       //
+                       // Note that we cannot do this propagation as a normal pass,
+                       // because it needs information about where the phases end
+                       // (we should not propagate the flag across phases).
+                       if (node->needs_mipmaps != Effect::DOES_NOT_NEED_MIPMAPS) {
+                               // The node can have a value set (ie. not DOES_NOT_NEED_MIPMAPS)
+                               // if we have diamonds in the graph; if so, choose that.
+                               // If not, the effect on the node can also decide (this is the
+                               // more common case).
+                               Effect::MipmapRequirements dep_mipmaps = dep->needs_mipmaps;
+                               if (dep_mipmaps == Effect::DOES_NOT_NEED_MIPMAPS) {
+                                       if (dep->effect->num_inputs() == 0) {
+                                               Input *input = static_cast<Input *>(dep->effect);
+                                               dep_mipmaps = input->can_supply_mipmaps() ? Effect::DOES_NOT_NEED_MIPMAPS : Effect::CANNOT_ACCEPT_MIPMAPS;
                                        } else {
-                                               // For textures, we try to be slightly more clever;
-                                               // if none of our outputs need a bounce, we don't bounce
-                                               // but instead simply use the effect many times.
-                                               //
-                                               // Strictly speaking, we could bounce it for some outputs
-                                               // and use it directly for others, but the processing becomes
-                                               // somewhat simpler if the effect is only used in one such way.
-                                               for (unsigned j = 0; j < deps[i]->outgoing_links.size(); ++j) {
-                                                       Node *rdep = deps[i]->outgoing_links[j];
-                                                       start_new_phase |= rdep->effect->needs_texture_bounce();
-                                               }
+                                               dep_mipmaps = dep->effect->needs_mipmaps();
                                        }
                                }
-
-                               if (deps[i]->effect->changes_output_size()) {
+                               if (dep_mipmaps == Effect::DOES_NOT_NEED_MIPMAPS) {
+                                       dep->needs_mipmaps = node->needs_mipmaps;
+                               } else if (dep_mipmaps != node->needs_mipmaps) {
+                                       // The dependency cannot supply our mipmap demands
+                                       // (either because it's an input that can't do mipmaps,
+                                       // or because there's a conflict between mipmap-needing
+                                       // and mipmap-refusing effects somewhere in the graph),
+                                       // so they cannot be in the same phase.
                                        start_new_phase = true;
                                }
+                       }
 
-                               if (start_new_phase) {
-                                       effects_todo_other_phases.push(deps[i]);
-                                       this_phase_inputs.push_back(deps[i]);
+                       if (dep->outgoing_links.size() > 1) {
+                               if (!dep->effect->is_single_texture()) {
+                                       // More than one effect uses this as the input,
+                                       // and it is not a texture itself.
+                                       // The easiest thing to do (and probably also the safest
+                                       // performance-wise in most cases) is to bounce it to a texture
+                                       // and then let the next passes read from that.
+                                       start_new_phase = true;
                                } else {
-                                       effects_todo_this_phase.push(deps[i]);
+                                       assert(dep->effect->num_inputs() == 0);
+
+                                       // For textures, we try to be slightly more clever;
+                                       // if none of our outputs need a bounce, we don't bounce
+                                       // but instead simply use the effect many times.
+                                       //
+                                       // Strictly speaking, we could bounce it for some outputs
+                                       // and use it directly for others, but the processing becomes
+                                       // somewhat simpler if the effect is only used in one such way.
+                                       for (unsigned j = 0; j < dep->outgoing_links.size(); ++j) {
+                                               Node *rdep = dep->outgoing_links[j];
+                                               start_new_phase |= rdep->effect->needs_texture_bounce();
+                                       }
                                }
                        }
-                       continue;
-               }
 
-               // No more effects to do this phase. Take all the ones we have,
-               // and create a GLSL program for it.
-               if (!this_phase_effects.empty()) {
-                       reverse(this_phase_effects.begin(), this_phase_effects.end());
-                       phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects));
-                       this_phase_effects.back()->phase = phases.back();
-                       this_phase_inputs.clear();
-                       this_phase_effects.clear();
+                       if (dep->effect->is_compute_shader()) {
+                               if (phase->is_compute_shader) {
+                                       // Only one compute shader per phase.
+                                       start_new_phase = true;
+                               } else if (!node->strong_one_to_one_sampling) {
+                                       // If all nodes so far are strong one-to-one, we can put them after
+                                       // the compute shader (ie., process them on the output).
+                                       start_new_phase = true;
+                               } else if (!start_new_phase) {
+                                       phase->is_compute_shader = true;
+                                       phase->compute_shader_node = dep;
+                               }
+                       } else if (dep->effect->sets_virtual_output_size()) {
+                               assert(dep->effect->changes_output_size());
+                               // If the next effect sets a virtual size to rely on OpenGL's
+                               // bilinear sampling, we'll really need to break the phase here.
+                               start_new_phase = true;
+                       } else if (dep->effect->changes_output_size() && !node->one_to_one_sampling) {
+                               // If the next effect changes size and we don't have one-to-one sampling,
+                               // we also need to break here.
+                               start_new_phase = true;
+                       }
+
+                       if (start_new_phase) {
+                               // Since we're starting a new phase here, we don't need to impose any
+                               // new demands on this effect. Restore the status we had before we
+                               // started looking at it.
+                               dep->needs_mipmaps = save_needs_mipmaps;
+
+                               phase->inputs.push_back(construct_phase(dep, completed_effects));
+                       } else {
+                               effects_todo_this_phase.push(dep);
+
+                               // Propagate the one-to-one status down through the dependency.
+                               dep->one_to_one_sampling = node->one_to_one_sampling &&
+                                       dep->effect->one_to_one_sampling();
+                               dep->strong_one_to_one_sampling = node->strong_one_to_one_sampling &&
+                                       dep->effect->strong_one_to_one_sampling();
+                       }
+
+                       node->incoming_link_type.push_back(start_new_phase ? IN_ANOTHER_PHASE : IN_SAME_PHASE);
                }
-               assert(this_phase_inputs.empty());
-               assert(this_phase_effects.empty());
+       }
 
-               // If we have no effects left, exit.
-               if (effects_todo_other_phases.empty()) {
-                       break;
+       // No more effects to do this phase. Take all the ones we have,
+       // and create a GLSL program for it.
+       assert(!phase->effects.empty());
+
+       // Deduplicate the inputs, but don't change the ordering e.g. by sorting;
+       // that would be nondeterministic and thus reduce cacheability.
+       // TODO: Make this even more deterministic.
+       vector<Phase *> dedup_inputs;
+       set<Phase *> seen_inputs;
+       for (size_t i = 0; i < phase->inputs.size(); ++i) {
+               if (seen_inputs.insert(phase->inputs[i]).second) {
+                       dedup_inputs.push_back(phase->inputs[i]);
                }
+       }
+       swap(phase->inputs, dedup_inputs);
+
+       // Allocate samplers for each input.
+       phase->input_samplers.resize(phase->inputs.size());
 
-               Node *node = effects_todo_other_phases.top();
-               effects_todo_other_phases.pop();
+       // We added the effects from the output and back, but we need to output
+       // them in topological sort order in the shader.
+       phase->effects = topological_sort(phase->effects);
 
-               if (completed_effects.count(node) == 0) {
-                       // Start a new phase, calculating from this effect.
-                       effects_todo_this_phase.push(node);
+       // Figure out if we need mipmaps or not, and if so, tell the inputs that.
+       // (RTT inputs have different logic, which is checked in execute_phase().)
+       for (unsigned i = 0; i < phase->effects.size(); ++i) {
+               Node *node = phase->effects[i];
+               if (node->effect->num_inputs() == 0) {
+                       Input *input = static_cast<Input *>(node->effect);
+                       assert(node->needs_mipmaps != Effect::NEEDS_MIPMAPS || input->can_supply_mipmaps());
+                       CHECK(input->set_int("needs_mipmaps", node->needs_mipmaps == Effect::NEEDS_MIPMAPS));
                }
        }
 
-       // Finally, since the phases are found from the output but must be executed
-       // from the input(s), reverse them, too.
-       std::reverse(phases.begin(), phases.end());
+       // Tell each node which phase it ended up in, so that the unit test
+       // can check that the phases were split in the right place.
+       // Note that this ignores that effects may be part of multiple phases;
+       // if the unit tests need to test such cases, we'll reconsider.
+       for (unsigned i = 0; i < phase->effects.size(); ++i) {
+               phase->effects[i]->containing_phase = phase;
+       }
+
+       // Actually make the shader for this phase.
+       compile_glsl_program(phase);
+
+       // Initialize timers.
+       if (movit_timer_queries_supported) {
+               phase->time_elapsed_ns = 0;
+               phase->num_measured_iterations = 0;
+       }
+
+       assert(completed_effects->count(output) == 0);
+       completed_effects->insert(make_pair(output, phase));
+       phases.push_back(phase);
+       return phase;
 }
 
 void EffectChain::output_dot(const char *filename)
 {
+       if (movit_debug_level != MOVIT_DEBUG_ON) {
+               return;
+       }
+
        FILE *fp = fopen(filename, "w");
-       if (fp == NULL) {
+       if (fp == nullptr) {
                perror(filename);
                exit(1);
        }
 
        fprintf(fp, "digraph G {\n");
+       fprintf(fp, "  output [shape=box label=\"(output)\"];\n");
        for (unsigned i = 0; i < nodes.size(); ++i) {
                // Find out which phase this event belongs to.
-               int in_phase = -1;
+               vector<int> in_phases;
                for (unsigned j = 0; j < phases.size(); ++j) {
                        const Phase* p = phases[j];
-                       if (std::find(p->effects.begin(), p->effects.end(), nodes[i]) != p->effects.end()) {
-                               assert(in_phase == -1);
-                               in_phase = j;
+                       if (find(p->effects.begin(), p->effects.end(), nodes[i]) != p->effects.end()) {
+                               in_phases.push_back(j);
                        }
                }
 
-               if (in_phase == -1) {
+               if (in_phases.empty()) {
                        fprintf(fp, "  n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str());
-               } else {
+               } else if (in_phases.size() == 1) {
                        fprintf(fp, "  n%ld [label=\"%s\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n",
                                (long)nodes[i], nodes[i]->effect->effect_type_id().c_str(),
-                               (in_phase % 8) + 1);
+                               (in_phases[0] % 8) + 1);
+               } else {
+                       // If we had new enough Graphviz, style="wedged" would probably be ideal here.
+                       // But alas.
+                       fprintf(fp, "  n%ld [label=\"%s [in multiple phases]\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n",
+                               (long)nodes[i], nodes[i]->effect->effect_type_id().c_str(),
+                               (in_phases[0] % 8) + 1);
                }
-               for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) {
-                       std::vector<std::string> labels;
 
-                       if (nodes[i]->outgoing_links[j]->effect->needs_texture_bounce()) {
-                               labels.push_back("needs_bounce");
-                       }
-                       if (nodes[i]->effect->changes_output_size()) {
-                               labels.push_back("resize");
-                       }
+               char from_node_id[256];
+               snprintf(from_node_id, 256, "n%ld", (long)nodes[i]);
 
-                       switch (nodes[i]->output_color_space) {
-                       case COLORSPACE_INVALID:
-                               labels.push_back("spc[invalid]");
-                               break;
-                       case COLORSPACE_REC_601_525:
-                               labels.push_back("spc[rec601-525]");
-                               break;
-                       case COLORSPACE_REC_601_625:
-                               labels.push_back("spc[rec601-625]");
-                               break;
-                       default:
-                               break;
-                       }
+               for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) {
+                       char to_node_id[256];
+                       snprintf(to_node_id, 256, "n%ld", (long)nodes[i]->outgoing_links[j]);
 
-                       switch (nodes[i]->output_gamma_curve) {
-                       case GAMMA_INVALID:
-                               labels.push_back("gamma[invalid]");
-                               break;
-                       case GAMMA_sRGB:
-                               labels.push_back("gamma[sRGB]");
-                               break;
-                       case GAMMA_REC_601:  // and GAMMA_REC_709
-                               labels.push_back("gamma[rec601/709]");
-                               break;
-                       default:
-                               break;
-                       }
+                       vector<string> labels = get_labels_for_edge(nodes[i], nodes[i]->outgoing_links[j]);
+                       output_dot_edge(fp, from_node_id, to_node_id, labels);
+               }
 
-                       if (labels.empty()) {
-                               fprintf(fp, "  n%ld -> n%ld;\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j]);
-                       } else {
-                               std::string label = labels[0];
-                               for (unsigned k = 1; k < labels.size(); ++k) {
-                                       label += ", " + labels[k];
-                               }
-                               fprintf(fp, "  n%ld -> n%ld [label=\"%s\"];\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j], label.c_str());
-                       }
+               if (nodes[i]->outgoing_links.empty() && !nodes[i]->disabled) {
+                       // Output node.
+                       vector<string> labels = get_labels_for_edge(nodes[i], nullptr);
+                       output_dot_edge(fp, from_node_id, "output", labels);
                }
        }
        fprintf(fp, "}\n");
@@ -506,16 +923,102 @@ void EffectChain::output_dot(const char *filename)
        fclose(fp);
 }
 
-unsigned EffectChain::fit_rectangle_to_aspect(unsigned width, unsigned height)
+vector<string> EffectChain::get_labels_for_edge(const Node *from, const Node *to)
+{
+       vector<string> labels;
+
+       if (to != nullptr && to->effect->needs_texture_bounce()) {
+               labels.push_back("needs_bounce");
+       }
+       if (from->effect->changes_output_size()) {
+               labels.push_back("resize");
+       }
+
+       switch (from->output_color_space) {
+       case COLORSPACE_INVALID:
+               labels.push_back("spc[invalid]");
+               break;
+       case COLORSPACE_REC_601_525:
+               labels.push_back("spc[rec601-525]");
+               break;
+       case COLORSPACE_REC_601_625:
+               labels.push_back("spc[rec601-625]");
+               break;
+       default:
+               break;
+       }
+
+       switch (from->output_gamma_curve) {
+       case GAMMA_INVALID:
+               labels.push_back("gamma[invalid]");
+               break;
+       case GAMMA_sRGB:
+               labels.push_back("gamma[sRGB]");
+               break;
+       case GAMMA_REC_601:  // and GAMMA_REC_709
+               labels.push_back("gamma[rec601/709]");
+               break;
+       default:
+               break;
+       }
+
+       switch (from->output_alpha_type) {
+       case ALPHA_INVALID:
+               labels.push_back("alpha[invalid]");
+               break;
+       case ALPHA_BLANK:
+               labels.push_back("alpha[blank]");
+               break;
+       case ALPHA_POSTMULTIPLIED:
+               labels.push_back("alpha[postmult]");
+               break;
+       default:
+               break;
+       }
+
+       return labels;
+}
+
+void EffectChain::output_dot_edge(FILE *fp,
+                                  const string &from_node_id,
+                                  const string &to_node_id,
+                                  const vector<string> &labels)
 {
+       if (labels.empty()) {
+               fprintf(fp, "  %s -> %s;\n", from_node_id.c_str(), to_node_id.c_str());
+       } else {
+               string label = labels[0];
+               for (unsigned k = 1; k < labels.size(); ++k) {
+                       label += ", " + labels[k];
+               }
+               fprintf(fp, "  %s -> %s [label=\"%s\"];\n", from_node_id.c_str(), to_node_id.c_str(), label.c_str());
+       }
+}
+
+void EffectChain::size_rectangle_to_fit(unsigned width, unsigned height, unsigned *output_width, unsigned *output_height)
+{
+       unsigned scaled_width, scaled_height;
+
        if (float(width) * aspect_denom >= float(height) * aspect_nom) {
                // Same aspect, or W/H > aspect (image is wider than the frame).
-               // In either case, keep width.
-               return width;
+               // In either case, keep width, and adjust height.
+               scaled_width = width;
+               scaled_height = lrintf(width * aspect_denom / aspect_nom);
        } else {
                // W/H < aspect (image is taller than the frame), so keep height,
-               // and adjust width correspondingly.
-               return lrintf(height * aspect_nom / aspect_denom);
+               // and adjust width.
+               scaled_width = lrintf(height * aspect_nom / aspect_denom);
+               scaled_height = height;
+       }
+
+       // We should be consistently larger or smaller then the existing choice,
+       // since we have the same aspect.
+       assert(!(scaled_width < *output_width && scaled_height > *output_height));
+       assert(!(scaled_height < *output_height && scaled_width > *output_width));
+
+       if (scaled_width >= *output_width && scaled_height >= *output_height) {
+               *output_width = scaled_width;
+               *output_height = scaled_height;
        }
 }
 
@@ -538,17 +1041,18 @@ void EffectChain::inform_input_sizes(Phase *phase)
                }
        }
        for (unsigned i = 0; i < phase->inputs.size(); ++i) {
-               Node *input = phase->inputs[i];
-               input->output_width = input->phase->output_width;
-               input->output_height = input->phase->output_height;
-               assert(input->output_width != 0);
-               assert(input->output_height != 0);
+               Phase *input = phase->inputs[i];
+               input->output_node->output_width = input->virtual_output_width;
+               input->output_node->output_height = input->virtual_output_height;
+               assert(input->output_node->output_width != 0);
+               assert(input->output_node->output_height != 0);
        }
 
        // Now propagate from the inputs towards the end, and inform as we go.
        // The rules are simple:
        //
-       //   1. Don't touch effects that already have given sizes (ie., inputs).
+       //   1. Don't touch effects that already have given sizes (ie., inputs
+       //      or effects that change the output size).
        //   2. If all of your inputs have the same size, that will be your output size.
        //   3. Otherwise, your output size is 0x0.
        for (unsigned i = 0; i < phase->effects.size(); ++i) {
@@ -570,8 +1074,19 @@ void EffectChain::inform_input_sizes(Phase *phase)
                                this_output_height = 0;
                        }
                }
-               node->output_width = this_output_width;
-               node->output_height = this_output_height;
+               if (node->effect->changes_output_size()) {
+                       // We cannot call get_output_size() before we've done inform_input_size()
+                       // on all inputs.
+                       unsigned real_width, real_height;
+                       node->effect->get_output_size(&real_width, &real_height,
+                                                     &node->output_width, &node->output_height);
+                       assert(node->effect->sets_virtual_output_size() ||
+                              (real_width == node->output_width &&
+                               real_height == node->output_height));
+               } else {
+                       node->output_width = this_output_width;
+                       node->output_height = this_output_height;
+               }
        }
 }
 
@@ -579,24 +1094,32 @@ void EffectChain::inform_input_sizes(Phase *phase)
 // desired output size might change based on the inputs.
 void EffectChain::find_output_size(Phase *phase)
 {
-       Node *output_node = phase->effects.back();
+       Node *output_node = phase->is_compute_shader ? phase->compute_shader_node : phase->effects.back();
 
        // If the last effect explicitly sets an output size, use that.
        if (output_node->effect->changes_output_size()) {
-               output_node->effect->get_output_size(&phase->output_width, &phase->output_height);
+               output_node->effect->get_output_size(&phase->output_width, &phase->output_height,
+                                                    &phase->virtual_output_width, &phase->virtual_output_height);
+               assert(output_node->effect->sets_virtual_output_size() ||
+                      (phase->output_width == phase->virtual_output_width &&
+                       phase->output_height == phase->virtual_output_height));
                return;
        }
 
-       // If not, look at the input phases and textures.
-       // We select the largest one (by fit into the current aspect).
-       unsigned best_width = 0;
+       // If all effects have the same size, use that.
+       unsigned output_width = 0, output_height = 0;
+       bool all_inputs_same_size = true;
+
        for (unsigned i = 0; i < phase->inputs.size(); ++i) {
-               Node *input = phase->inputs[i];
-               assert(input->phase->output_width != 0);
-               assert(input->phase->output_height != 0);
-               unsigned width = fit_rectangle_to_aspect(input->phase->output_width, input->phase->output_height);
-               if (width > best_width) {
-                       best_width = width;
+               Phase *input = phase->inputs[i];
+               assert(input->output_width != 0);
+               assert(input->output_height != 0);
+               if (output_width == 0 && output_height == 0) {
+                       output_width = input->virtual_output_width;
+                       output_height = input->virtual_output_height;
+               } else if (output_width != input->virtual_output_width ||
+                          output_height != input->virtual_output_height) {
+                       all_inputs_same_size = false;
                }
        }
        for (unsigned i = 0; i < phase->effects.size(); ++i) {
@@ -606,48 +1129,118 @@ void EffectChain::find_output_size(Phase *phase)
                }
 
                Input *input = static_cast<Input *>(effect);
-               unsigned width = fit_rectangle_to_aspect(input->get_width(), input->get_height());
-               if (width > best_width) {
-                       best_width = width;
+               if (output_width == 0 && output_height == 0) {
+                       output_width = input->get_width();
+                       output_height = input->get_height();
+               } else if (output_width != input->get_width() ||
+                          output_height != input->get_height()) {
+                       all_inputs_same_size = false;
+               }
+       }
+
+       if (all_inputs_same_size) {
+               assert(output_width != 0);
+               assert(output_height != 0);
+               phase->virtual_output_width = phase->output_width = output_width;
+               phase->virtual_output_height = phase->output_height = output_height;
+               return;
+       }
+
+       // If not, fit all the inputs into the current aspect, and select the largest one. 
+       output_width = 0;
+       output_height = 0;
+       for (unsigned i = 0; i < phase->inputs.size(); ++i) {
+               Phase *input = phase->inputs[i];
+               assert(input->output_width != 0);
+               assert(input->output_height != 0);
+               size_rectangle_to_fit(input->output_width, input->output_height, &output_width, &output_height);
+       }
+       for (unsigned i = 0; i < phase->effects.size(); ++i) {
+               Effect *effect = phase->effects[i]->effect;
+               if (effect->num_inputs() != 0) {
+                       continue;
                }
+
+               Input *input = static_cast<Input *>(effect);
+               size_rectangle_to_fit(input->get_width(), input->get_height(), &output_width, &output_height);
        }
-       assert(best_width != 0);
-       phase->output_width = best_width;
-       phase->output_height = best_width * aspect_denom / aspect_nom;
+       assert(output_width != 0);
+       assert(output_height != 0);
+       phase->virtual_output_width = phase->output_width = output_width;
+       phase->virtual_output_height = phase->output_height = output_height;
+}
+
+void EffectChain::sort_all_nodes_topologically()
+{
+       nodes = topological_sort(nodes);
 }
 
-void EffectChain::sort_nodes_topologically()
+vector<Node *> EffectChain::topological_sort(const vector<Node *> &nodes)
 {
-       std::set<Node *> visited_nodes;
-       std::vector<Node *> sorted_list;
+       set<Node *> nodes_left_to_visit(nodes.begin(), nodes.end());
+       vector<Node *> sorted_list;
        for (unsigned i = 0; i < nodes.size(); ++i) {
-               if (nodes[i]->incoming_links.size() == 0) {
-                       topological_sort_visit_node(nodes[i], &visited_nodes, &sorted_list);
-               }
+               topological_sort_visit_node(nodes[i], &nodes_left_to_visit, &sorted_list);
        }
        reverse(sorted_list.begin(), sorted_list.end());
-       nodes = sorted_list;
+       return sorted_list;
 }
 
-void EffectChain::topological_sort_visit_node(Node *node, std::set<Node *> *visited_nodes, std::vector<Node *> *sorted_list)
+void EffectChain::topological_sort_visit_node(Node *node, set<Node *> *nodes_left_to_visit, vector<Node *> *sorted_list)
 {
-       if (visited_nodes->count(node) != 0) {
+       if (nodes_left_to_visit->count(node) == 0) {
                return;
        }
-       visited_nodes->insert(node);
+       nodes_left_to_visit->erase(node);
        for (unsigned i = 0; i < node->outgoing_links.size(); ++i) {
-               topological_sort_visit_node(node->outgoing_links[i], visited_nodes, sorted_list);
+               topological_sort_visit_node(node->outgoing_links[i], nodes_left_to_visit, sorted_list);
        }
        sorted_list->push_back(node);
 }
 
+void EffectChain::find_color_spaces_for_inputs()
+{
+       for (unsigned i = 0; i < nodes.size(); ++i) {
+               Node *node = nodes[i];
+               if (node->disabled) {
+                       continue;
+               }
+               if (node->incoming_links.size() == 0) {
+                       Input *input = static_cast<Input *>(node->effect);
+                       node->output_color_space = input->get_color_space();
+                       node->output_gamma_curve = input->get_gamma_curve();
+
+                       Effect::AlphaHandling alpha_handling = input->alpha_handling();
+                       switch (alpha_handling) {
+                       case Effect::OUTPUT_BLANK_ALPHA:
+                               node->output_alpha_type = ALPHA_BLANK;
+                               break;
+                       case Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA:
+                               node->output_alpha_type = ALPHA_PREMULTIPLIED;
+                               break;
+                       case Effect::OUTPUT_POSTMULTIPLIED_ALPHA:
+                               node->output_alpha_type = ALPHA_POSTMULTIPLIED;
+                               break;
+                       case Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK:
+                       case Effect::DONT_CARE_ALPHA_TYPE:
+                       default:
+                               assert(false);
+                       }
+
+                       if (node->output_alpha_type == ALPHA_PREMULTIPLIED) {
+                               assert(node->output_gamma_curve == GAMMA_LINEAR);
+                       }
+               }
+       }
+}
+
 // Propagate gamma and color space information as far as we can in the graph.
 // The rules are simple: Anything where all the inputs agree, get that as
 // output as well. Anything else keeps having *_INVALID.
 void EffectChain::propagate_gamma_and_color_space()
 {
        // We depend on going through the nodes in order.
-       sort_nodes_topologically();
+       sort_all_nodes_topologically();
 
        for (unsigned i = 0; i < nodes.size(); ++i) {
                Node *node = nodes[i];
@@ -684,6 +1277,135 @@ void EffectChain::propagate_gamma_and_color_space()
        }
 }
 
+// Propagate alpha information as far as we can in the graph.
+// Similar to propagate_gamma_and_color_space().
+void EffectChain::propagate_alpha()
+{
+       // We depend on going through the nodes in order.
+       sort_all_nodes_topologically();
+
+       for (unsigned i = 0; i < nodes.size(); ++i) {
+               Node *node = nodes[i];
+               if (node->disabled) {
+                       continue;
+               }
+               assert(node->incoming_links.size() == node->effect->num_inputs());
+               if (node->incoming_links.size() == 0) {
+                       assert(node->output_alpha_type != ALPHA_INVALID);
+                       continue;
+               }
+
+               // The alpha multiplication/division effects are special cases.
+               if (node->effect->effect_type_id() == "AlphaMultiplicationEffect") {
+                       assert(node->incoming_links.size() == 1);
+                       assert(node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED);
+                       node->output_alpha_type = ALPHA_PREMULTIPLIED;
+                       continue;
+               }
+               if (node->effect->effect_type_id() == "AlphaDivisionEffect") {
+                       assert(node->incoming_links.size() == 1);
+                       assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED);
+                       node->output_alpha_type = ALPHA_POSTMULTIPLIED;
+                       continue;
+               }
+
+               // GammaCompressionEffect and GammaExpansionEffect are also a special case,
+               // because they are the only one that _need_ postmultiplied alpha.
+               if (node->effect->effect_type_id() == "GammaCompressionEffect" ||
+                   node->effect->effect_type_id() == "GammaExpansionEffect") {
+                       assert(node->incoming_links.size() == 1);
+                       if (node->incoming_links[0]->output_alpha_type == ALPHA_BLANK) {
+                               node->output_alpha_type = ALPHA_BLANK;
+                       } else if (node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED) {
+                               node->output_alpha_type = ALPHA_POSTMULTIPLIED;
+                       } else {
+                               node->output_alpha_type = ALPHA_INVALID;
+                       }
+                       continue;
+               }
+
+               // Only inputs can have unconditional alpha output (OUTPUT_BLANK_ALPHA
+               // or OUTPUT_POSTMULTIPLIED_ALPHA), and they have already been
+               // taken care of above. Rationale: Even if you could imagine
+               // e.g. an effect that took in an image and set alpha=1.0
+               // unconditionally, it wouldn't make any sense to have it as
+               // e.g. OUTPUT_BLANK_ALPHA, since it wouldn't know whether it
+               // got its input pre- or postmultiplied, so it wouldn't know
+               // whether to divide away the old alpha or not.
+               Effect::AlphaHandling alpha_handling = node->effect->alpha_handling();
+               assert(alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA ||
+                      alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK ||
+                      alpha_handling == Effect::DONT_CARE_ALPHA_TYPE);
+
+               // If the node has multiple inputs, check that they are all valid and
+               // the same.
+               bool any_invalid = false;
+               bool any_premultiplied = false;
+               bool any_postmultiplied = false;
+
+               for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
+                       switch (node->incoming_links[j]->output_alpha_type) {
+                       case ALPHA_INVALID:
+                               any_invalid = true;
+                               break;
+                       case ALPHA_BLANK:
+                               // Blank is good as both pre- and postmultiplied alpha,
+                               // so just ignore it.
+                               break;
+                       case ALPHA_PREMULTIPLIED:
+                               any_premultiplied = true;
+                               break;
+                       case ALPHA_POSTMULTIPLIED:
+                               any_postmultiplied = true;
+                               break;
+                       default:
+                               assert(false);
+                       }
+               }
+
+               if (any_invalid) {
+                       node->output_alpha_type = ALPHA_INVALID;
+                       continue;
+               }
+
+               // Inputs must be of the same type.
+               if (any_premultiplied && any_postmultiplied) {
+                       node->output_alpha_type = ALPHA_INVALID;
+                       continue;
+               }
+
+               if (alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA ||
+                   alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) {
+                       // This combination (requiring premultiplied alpha, but _not_ requiring
+                       // linear light) is illegal, since the combination of premultiplied alpha
+                       // and nonlinear inputs is meaningless.
+                       assert(node->effect->needs_linear_light());
+
+                       // If the effect has asked for premultiplied alpha, check that it has got it.
+                       if (any_postmultiplied) {
+                               node->output_alpha_type = ALPHA_INVALID;
+                       } else if (!any_premultiplied &&
+                                  alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) {
+                               // Blank input alpha, and the effect preserves blank alpha.
+                               node->output_alpha_type = ALPHA_BLANK;
+                       } else {
+                               node->output_alpha_type = ALPHA_PREMULTIPLIED;
+                       }
+               } else {
+                       // OK, all inputs are the same, and this effect is not going
+                       // to change it.
+                       assert(alpha_handling == Effect::DONT_CARE_ALPHA_TYPE);
+                       if (any_premultiplied) {
+                               node->output_alpha_type = ALPHA_PREMULTIPLIED;
+                       } else if (any_postmultiplied) {
+                               node->output_alpha_type = ALPHA_POSTMULTIPLIED;
+                       } else {
+                               node->output_alpha_type = ALPHA_BLANK;
+                       }
+               }
+       }
+}
+
 bool EffectChain::node_needs_colorspace_fix(Node *node)
 {
        if (node->disabled) {
@@ -721,7 +1443,7 @@ void EffectChain::fix_internal_color_spaces()
                        }
 
                        // Go through each input that is not sRGB, and insert
-                       // a colorspace conversion before it.
+                       // a colorspace conversion after it.
                        for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
                                Node *input = node->incoming_links[j];
                                assert(input->output_color_space != COLORSPACE_INVALID);
@@ -732,7 +1454,8 @@ void EffectChain::fix_internal_color_spaces()
                                CHECK(conversion->effect->set_int("source_space", input->output_color_space));
                                CHECK(conversion->effect->set_int("destination_space", COLORSPACE_sRGB));
                                conversion->output_color_space = COLORSPACE_sRGB;
-                               insert_node_between(input, conversion, node);
+                               replace_sender(input, conversion);
+                               connect_nodes(input, conversion);
                        }
 
                        // Re-sort topologically, and propagate the new information.
@@ -743,7 +1466,7 @@ void EffectChain::fix_internal_color_spaces()
                }
        
                char filename[256];
-               sprintf(filename, "step3-colorspacefix-iter%u.dot", ++colorspace_propagation_pass);
+               sprintf(filename, "step5-colorspacefix-iter%u.dot", ++colorspace_propagation_pass);
                output_dot(filename);
                assert(colorspace_propagation_pass < 100);
        } while (found_any);
@@ -757,6 +1480,88 @@ void EffectChain::fix_internal_color_spaces()
        }
 }
 
+bool EffectChain::node_needs_alpha_fix(Node *node)
+{
+       if (node->disabled) {
+               return false;
+       }
+
+       // propagate_alpha() has already set our output to ALPHA_INVALID if the
+       // inputs differ or we are otherwise in mismatch, so we can rely on that.
+       return (node->output_alpha_type == ALPHA_INVALID);
+}
+
+// Fix up alpha so that there are no ALPHA_INVALID nodes left in
+// the graph. Similar to fix_internal_color_spaces().
+void EffectChain::fix_internal_alpha(unsigned step)
+{
+       unsigned alpha_propagation_pass = 0;
+       bool found_any;
+       do {
+               found_any = false;
+               for (unsigned i = 0; i < nodes.size(); ++i) {
+                       Node *node = nodes[i];
+                       if (!node_needs_alpha_fix(node)) {
+                               continue;
+                       }
+
+                       // If we need to fix up GammaExpansionEffect, then clearly something
+                       // is wrong, since the combination of premultiplied alpha and nonlinear inputs
+                       // is meaningless.
+                       assert(node->effect->effect_type_id() != "GammaExpansionEffect");
+
+                       AlphaType desired_type = ALPHA_PREMULTIPLIED;
+
+                       // GammaCompressionEffect is special; it needs postmultiplied alpha.
+                       if (node->effect->effect_type_id() == "GammaCompressionEffect") {
+                               assert(node->incoming_links.size() == 1);
+                               assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED);
+                               desired_type = ALPHA_POSTMULTIPLIED;
+                       }
+
+                       // Go through each input that is not premultiplied alpha, and insert
+                       // a conversion before it.
+                       for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
+                               Node *input = node->incoming_links[j];
+                               assert(input->output_alpha_type != ALPHA_INVALID);
+                               if (input->output_alpha_type == desired_type ||
+                                   input->output_alpha_type == ALPHA_BLANK) {
+                                       continue;
+                               }
+                               Node *conversion;
+                               if (desired_type == ALPHA_PREMULTIPLIED) {
+                                       conversion = add_node(new AlphaMultiplicationEffect());
+                               } else {
+                                       conversion = add_node(new AlphaDivisionEffect());
+                               }
+                               conversion->output_alpha_type = desired_type;
+                               replace_sender(input, conversion);
+                               connect_nodes(input, conversion);
+                       }
+
+                       // Re-sort topologically, and propagate the new information.
+                       propagate_gamma_and_color_space();
+                       propagate_alpha();
+                       
+                       found_any = true;
+                       break;
+               }
+       
+               char filename[256];
+               sprintf(filename, "step%u-alphafix-iter%u.dot", step, ++alpha_propagation_pass);
+               output_dot(filename);
+               assert(alpha_propagation_pass < 100);
+       } while (found_any);
+
+       for (unsigned i = 0; i < nodes.size(); ++i) {
+               Node *node = nodes[i];
+               if (node->disabled) {
+                       continue;
+               }
+               assert(node->output_alpha_type != ALPHA_INVALID);
+       }
+}
+
 // Make so that the output is in the desired color space.
 void EffectChain::fix_output_color_space()
 {
@@ -767,6 +1572,32 @@ void EffectChain::fix_output_color_space()
                CHECK(conversion->effect->set_int("destination_space", output_format.color_space));
                conversion->output_color_space = output_format.color_space;
                connect_nodes(output, conversion);
+               propagate_alpha();
+               propagate_gamma_and_color_space();
+       }
+}
+
+// Make so that the output is in the desired pre-/postmultiplication alpha state.
+void EffectChain::fix_output_alpha()
+{
+       Node *output = find_output_node();
+       assert(output->output_alpha_type != ALPHA_INVALID);
+       if (output->output_alpha_type == ALPHA_BLANK) {
+               // No alpha output, so we don't care.
+               return;
+       }
+       if (output->output_alpha_type == ALPHA_PREMULTIPLIED &&
+           output_alpha_format == OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED) {
+               Node *conversion = add_node(new AlphaDivisionEffect());
+               connect_nodes(output, conversion);
+               propagate_alpha();
+               propagate_gamma_and_color_space();
+       }
+       if (output->output_alpha_type == ALPHA_POSTMULTIPLIED &&
+           output_alpha_format == OUTPUT_ALPHA_FORMAT_PREMULTIPLIED) {
+               Node *conversion = add_node(new AlphaMultiplicationEffect());
+               connect_nodes(output, conversion);
+               propagate_alpha();
                propagate_gamma_and_color_space();
        }
 }
@@ -829,7 +1660,7 @@ void EffectChain::fix_internal_gamma_by_asking_inputs(unsigned step)
                        }
 
                        // See if all inputs can give us linear gamma. If not, leave it.
-                       std::vector<Node *> nonlinear_inputs;
+                       vector<Node *> nonlinear_inputs;
                        find_all_nonlinear_inputs(node, &nonlinear_inputs);
                        assert(!nonlinear_inputs.empty());
 
@@ -888,7 +1719,7 @@ void EffectChain::fix_internal_gamma_by_inserting_nodes(unsigned step)
                        }
 
                        // If not, go through each input that is not linear gamma,
-                       // and insert a gamma conversion before it.
+                       // and insert a gamma conversion after it.
                        for (unsigned j = 0; j < node->incoming_links.size(); ++j) {
                                Node *input = node->incoming_links[j];
                                assert(input->output_gamma_curve != GAMMA_INVALID);
@@ -898,10 +1729,12 @@ void EffectChain::fix_internal_gamma_by_inserting_nodes(unsigned step)
                                Node *conversion = add_node(new GammaExpansionEffect());
                                CHECK(conversion->effect->set_int("source_curve", input->output_gamma_curve));
                                conversion->output_gamma_curve = GAMMA_LINEAR;
-                               insert_node_between(input, conversion, node);
+                               replace_sender(input, conversion);
+                               connect_nodes(input, conversion);
                        }
 
                        // Re-sort topologically, and propagate the new information.
+                       propagate_alpha();
                        propagate_gamma_and_color_space();
                        
                        found_any = true;
@@ -936,6 +1769,22 @@ void EffectChain::fix_output_gamma()
                connect_nodes(output, conversion);
        }
 }
+
+// If the user has requested Y'CbCr output, we need to do this conversion
+// _after_ GammaCompressionEffect etc., but before dither (see below).
+// This is because Y'CbCr, with the exception of a special optional mode
+// in Rec. 2020 (which we currently don't support), is defined to work on
+// gamma-encoded data.
+void EffectChain::add_ycbcr_conversion_if_needed()
+{
+       assert(output_color_rgba || num_output_color_ycbcr > 0);
+       if (num_output_color_ycbcr == 0) {
+               return;
+       }
+       Node *output = find_output_node();
+       ycbcr_conversion_effect_node = add_node(new YCbCrConversionEffect(output_ycbcr_format, output_ycbcr_type));
+       connect_nodes(output, ycbcr_conversion_effect_node);
+}
        
 // If the user has requested dither, add a DitherEffect right at the end
 // (after GammaCompressionEffect etc.). This needs to be done after everything else,
@@ -953,12 +1802,50 @@ void EffectChain::add_dither_if_needed()
        dither_effect = dither->effect;
 }
 
+namespace {
+
+// Whether this effect will cause the phase it is in to become a compute shader phase.
+bool induces_compute_shader(Node *node)
+{
+       if (node->effect->is_compute_shader()) {
+               return true;
+       }
+       if (!node->effect->strong_one_to_one_sampling()) {
+               // This effect can't be chained after a compute shader.
+               return false;
+       }
+       // If at least one of the effects we depend on is a compute shader,
+       // one of them will be put in the same phase as us (the other ones,
+       // if any, will be bounced).
+       for (Node *dep : node->incoming_links) {
+               if (induces_compute_shader(dep)) {
+                       return true;
+               }
+       }
+       return false;
+}
+
+}  // namespace
+
+// Compute shaders can't output to the framebuffer, so if the last
+// phase ends in a compute shader, add a dummy phase at the end that
+// only blits directly from the temporary texture.
+void EffectChain::add_dummy_effect_if_needed()
+{
+       Node *output = find_output_node();
+       if (induces_compute_shader(output)) {
+               Node *dummy = add_node(new ComputeShaderOutputDisplayEffect());
+               connect_nodes(output, dummy);
+               has_dummy_effect = true;
+       }
+}
+
 // Find the output node. This is, simply, one that has no outgoing links.
 // If there are multiple ones, the graph is malformed (we do not support
 // multiple outputs right now).
 Node *EffectChain::find_output_node()
 {
-       std::vector<Node *> output_nodes;
+       vector<Node *> output_nodes;
        for (unsigned i = 0; i < nodes.size(); ++i) {
                Node *node = nodes[i];
                if (node->disabled) {
@@ -985,69 +1872,75 @@ void EffectChain::finalize()
        }
        output_dot("step1-rewritten.dot");
 
+       find_color_spaces_for_inputs();
+       output_dot("step2-input-colorspace.dot");
+
+       propagate_alpha();
+       output_dot("step3-propagated-alpha.dot");
+
        propagate_gamma_and_color_space();
-       output_dot("step2-propagated.dot");
+       output_dot("step4-propagated-all.dot");
 
        fix_internal_color_spaces();
+       fix_internal_alpha(6);
        fix_output_color_space();
-       output_dot("step4-output-colorspacefix.dot");
+       output_dot("step7-output-colorspacefix.dot");
+       fix_output_alpha();
+       output_dot("step8-output-alphafix.dot");
 
        // Note that we need to fix gamma after colorspace conversion,
        // because colorspace conversions might create needs for gamma conversions.
        // Also, we need to run an extra pass of fix_internal_gamma() after 
-       // fixing the output gamma, as we only have conversions to/from linear.
-       fix_internal_gamma_by_asking_inputs(5);
-       fix_internal_gamma_by_inserting_nodes(6);
+       // fixing the output gamma, as we only have conversions to/from linear,
+       // and fix_internal_alpha() since GammaCompressionEffect needs
+       // postmultiplied input.
+       fix_internal_gamma_by_asking_inputs(9);
+       fix_internal_gamma_by_inserting_nodes(10);
        fix_output_gamma();
-       output_dot("step7-output-gammafix.dot");
-       fix_internal_gamma_by_asking_inputs(8);
-       fix_internal_gamma_by_inserting_nodes(9);
-
-       output_dot("step10-before-dither.dot");
-
+       output_dot("step11-output-gammafix.dot");
+       propagate_alpha();
+       output_dot("step12-output-alpha-propagated.dot");
+       fix_internal_alpha(13);
+       output_dot("step14-output-alpha-fixed.dot");
+       fix_internal_gamma_by_asking_inputs(15);
+       fix_internal_gamma_by_inserting_nodes(16);
+
+       output_dot("step17-before-ycbcr.dot");
+       add_ycbcr_conversion_if_needed();
+
+       output_dot("step18-before-dither.dot");
        add_dither_if_needed();
 
-       output_dot("step11-final.dot");
+       output_dot("step19-before-dummy-effect.dot");
+       add_dummy_effect_if_needed();
+
+       output_dot("step20-final.dot");
        
        // Construct all needed GLSL programs, starting at the output.
-       construct_glsl_programs(find_output_node());
-
-       output_dot("step12-split-to-phases.dot");
-
-       // If we have more than one phase, we need intermediate render-to-texture.
-       // Construct an FBO, and then as many textures as we need.
-       // We choose the simplest option of having one texture per output,
-       // since otherwise this turns into an (albeit simple)
-       // register allocation problem.
-       if (phases.size() > 1) {
-               glGenFramebuffers(1, &fbo);
-
-               for (unsigned i = 0; i < phases.size() - 1; ++i) {
-                       inform_input_sizes(phases[i]);
-                       find_output_size(phases[i]);
-
-                       Node *output_node = phases[i]->effects.back();
-                       glGenTextures(1, &output_node->output_texture);
-                       check_error();
-                       glBindTexture(GL_TEXTURE_2D, output_node->output_texture);
-                       check_error();
-                       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
-                       check_error();
-                       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
-                       check_error();
-                       glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, phases[i]->output_width, phases[i]->output_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
-                       check_error();
-
-                       output_node->output_texture_width = phases[i]->output_width;
-                       output_node->output_texture_height = phases[i]->output_height;
-               }
-               inform_input_sizes(phases.back());
-       }
-               
-       for (unsigned i = 0; i < inputs.size(); ++i) {
-               inputs[i]->finalize();
+       // We need to keep track of which effects have already been computed,
+       // as an effect with multiple users could otherwise be calculated
+       // multiple times.
+       map<Node *, Phase *> completed_effects;
+       construct_phase(find_output_node(), &completed_effects);
+
+       output_dot("step21-split-to-phases.dot");
+
+       // There are some corner cases where we thought we needed to add a dummy
+       // effect, but then it turned out later we didn't (e.g. induces_compute_shader()
+       // didn't see a mipmap conflict coming, which would cause the compute shader
+       // to be split off from the inal phase); if so, remove the extra phase
+       // at the end, since it will give us some trouble during execution.
+       //
+       // TODO: Remove induces_compute_shader() and replace it with precise tracking.
+       if (has_dummy_effect && !phases[phases.size() - 2]->is_compute_shader) {
+               resource_pool->release_glsl_program(phases.back()->glsl_program_num);
+               delete phases.back();
+               phases.pop_back();
+               has_dummy_effect = false;
        }
 
+       output_dot("step22-dummy-phase-removal.dot");
+
        assert(phases[0]->inputs.empty());
        
        finalized = true;
@@ -1055,8 +1948,6 @@ void EffectChain::finalize()
 
 void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height)
 {
-       assert(finalized);
-
        // Save original viewport.
        GLuint x = 0, y = 0;
 
@@ -1069,7 +1960,46 @@ void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height
                height = viewport[3];
        }
 
+       render(dest_fbo, {}, x, y, width, height);
+}
+
+void EffectChain::render_to_texture(const vector<DestinationTexture> &destinations, unsigned width, unsigned height)
+{
+       assert(finalized);
+       assert(!destinations.empty());
+
+       if (!has_dummy_effect) {
+               // We don't end in a compute shader, so there's nothing specific for us to do.
+               // Create an FBO for this set of textures, and just render to that.
+               GLuint texnums[4] = { 0, 0, 0, 0 };
+               for (unsigned i = 0; i < destinations.size() && i < 4; ++i) {
+                       texnums[i] = destinations[i].texnum;
+               }
+               GLuint dest_fbo = resource_pool->create_fbo(texnums[0], texnums[1], texnums[2], texnums[3]);
+               render(dest_fbo, {}, 0, 0, width, height);
+               resource_pool->release_fbo(dest_fbo);
+       } else {
+               render((GLuint)-1, destinations, 0, 0, width, height);
+       }
+}
+
+void EffectChain::render(GLuint dest_fbo, const vector<DestinationTexture> &destinations, unsigned x, unsigned y, unsigned width, unsigned height)
+{
+       assert(finalized);
+       assert(destinations.size() <= 1);
+
+       // This needs to be set anew, in case we are coming from a different context
+       // from when we initialized.
+       check_error();
+       glDisable(GL_DITHER);
+       check_error();
+
+       const bool final_srgb = glIsEnabled(GL_FRAMEBUFFER_SRGB);
+       check_error();
+       bool current_srgb = final_srgb;
+
        // Basic state.
+       check_error();
        glDisable(GL_BLEND);
        check_error();
        glDisable(GL_DEPTH_TEST);
@@ -1077,123 +2007,410 @@ void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height
        glDepthMask(GL_FALSE);
        check_error();
 
-       glMatrixMode(GL_PROJECTION);
-       glLoadIdentity();
-       glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
-
-       glMatrixMode(GL_MODELVIEW);
-       glLoadIdentity();
+       set<Phase *> generated_mipmaps;
+
+       // We keep one texture per output, but only for as long as we actually have any
+       // phases that need it as an input. (We don't make any effort to reorder phases
+       // to minimize the number of textures in play, as register allocation can be
+       // complicated and we rarely have much to gain, since our graphs are typically
+       // pretty linear.)
+       map<Phase *, GLuint> output_textures;
+       map<Phase *, int> ref_counts;
+       for (Phase *phase : phases) {
+               for (Phase *input : phase->inputs) {
+                       ++ref_counts[input];
+               }
+       }
 
-       if (phases.size() > 1) {
-               glBindFramebuffer(GL_FRAMEBUFFER, fbo);
-               check_error();
+       size_t num_phases = phases.size();
+       if (destinations.empty()) {
+               assert(dest_fbo != (GLuint)-1);
+       } else {
+               assert(has_dummy_effect);
+               assert(x == 0);
+               assert(y == 0);
+               assert(num_phases >= 2);
+               assert(!phases.back()->is_compute_shader);
+               assert(phases[phases.size() - 2]->is_compute_shader);
+               assert(phases.back()->effects.size() == 1);
+               assert(phases.back()->effects[0]->effect->effect_type_id() == "ComputeShaderOutputDisplayEffect");
+
+               // We are rendering to a set of textures, so we can run the compute shader
+               // directly and skip the dummy phase.
+               --num_phases;
        }
 
-       std::set<Node *> generated_mipmaps;
+       for (unsigned phase_num = 0; phase_num < num_phases; ++phase_num) {
+               Phase *phase = phases[phase_num];
+
+               if (do_phase_timing) {
+                       GLuint timer_query_object;
+                       if (phase->timer_query_objects_free.empty()) {
+                               glGenQueries(1, &timer_query_object);
+                       } else {
+                               timer_query_object = phase->timer_query_objects_free.front();
+                               phase->timer_query_objects_free.pop_front();
+                       }
+                       glBeginQuery(GL_TIME_ELAPSED, timer_query_object);
+                       phase->timer_query_objects_running.push_back(timer_query_object);
+               }
+               bool last_phase = (phase_num == num_phases - 1);
+               if (last_phase) {
+                       // Last phase goes to the output the user specified.
+                       if (!phase->is_compute_shader) {
+                               assert(dest_fbo != (GLuint)-1);
+                               glBindFramebuffer(GL_FRAMEBUFFER, dest_fbo);
+                               check_error();
+                               GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
+                               assert(status == GL_FRAMEBUFFER_COMPLETE);
+                               glViewport(x, y, width, height);
+                       }
+                       if (dither_effect != nullptr) {
+                               CHECK(dither_effect->set_int("output_width", width));
+                               CHECK(dither_effect->set_int("output_height", height));
+                       }
+               }
 
-       for (unsigned phase = 0; phase < phases.size(); ++phase) {
-               // See if the requested output size has changed. If so, we need to recreate
-               // the texture (and before we start setting up inputs).
-               inform_input_sizes(phases[phase]);
-               if (phase != phases.size() - 1) {
-                       find_output_size(phases[phase]);
+               // Enable sRGB rendering for intermediates in case we are
+               // rendering to an sRGB format.
+               // TODO: Support this for compute shaders.
+               bool needs_srgb = last_phase ? final_srgb : true;
+               if (needs_srgb && !current_srgb) {
+                       glEnable(GL_FRAMEBUFFER_SRGB);
+                       check_error();
+                       current_srgb = true;
+               } else if (!needs_srgb && current_srgb) {
+                       glDisable(GL_FRAMEBUFFER_SRGB);
+                       check_error();
+                       current_srgb = true;
+               }
 
-                       Node *output_node = phases[phase]->effects.back();
+               // Find a texture for this phase.
+               inform_input_sizes(phase);
+               find_output_size(phase);
+               vector<DestinationTexture> phase_destinations;
+               if (!last_phase) {
+                       GLuint tex_num = resource_pool->create_2d_texture(intermediate_format, phase->output_width, phase->output_height);
+                       output_textures.insert(make_pair(phase, tex_num));
+                       phase_destinations.push_back(DestinationTexture{ tex_num, intermediate_format });
+
+                       // The output texture needs to have valid state to be written to by a compute shader.
+                       glActiveTexture(GL_TEXTURE0);
+                       check_error();
+                       glBindTexture(GL_TEXTURE_2D, tex_num);
+                       check_error();
+                       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
+                       check_error();
+               } else if (phase->is_compute_shader) {
+                       assert(!destinations.empty());
+                       phase_destinations = destinations;
+               }
 
-                       if (output_node->output_texture_width != phases[phase]->output_width ||
-                           output_node->output_texture_height != phases[phase]->output_height) {
-                               glActiveTexture(GL_TEXTURE0);
-                               check_error();
-                               glBindTexture(GL_TEXTURE_2D, output_node->output_texture);
-                               check_error();
-                               glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, phases[phase]->output_width, phases[phase]->output_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
-                               check_error();
-                               glBindTexture(GL_TEXTURE_2D, 0);
-                               check_error();
+               execute_phase(phase, output_textures, phase_destinations, &generated_mipmaps);
+               if (do_phase_timing) {
+                       glEndQuery(GL_TIME_ELAPSED);
+               }
 
-                               output_node->output_texture_width = phases[phase]->output_width;
-                               output_node->output_texture_height = phases[phase]->output_height;
+               // Drop any input textures we don't need anymore.
+               for (Phase *input : phase->inputs) {
+                       assert(ref_counts[input] > 0);
+                       if (--ref_counts[input] == 0) {
+                               resource_pool->release_2d_texture(output_textures[input]);
+                               output_textures.erase(input);
                        }
                }
+       }
 
-               glUseProgram(phases[phase]->glsl_program_num);
-               check_error();
+       for (const auto &phase_and_texnum : output_textures) {
+               resource_pool->release_2d_texture(phase_and_texnum.second);
+       }
 
-               // Set up RTT inputs for this phase.
-               for (unsigned sampler = 0; sampler < phases[phase]->inputs.size(); ++sampler) {
-                       glActiveTexture(GL_TEXTURE0 + sampler);
-                       Node *input = phases[phase]->inputs[sampler];
-                       glBindTexture(GL_TEXTURE_2D, input->output_texture);
-                       check_error();
-                       if (phases[phase]->input_needs_mipmaps) {
-                               if (generated_mipmaps.count(input) == 0) {
-                                       glGenerateMipmap(GL_TEXTURE_2D);
-                                       check_error();
-                                       generated_mipmaps.insert(input);
+       glBindFramebuffer(GL_FRAMEBUFFER, 0);
+       check_error();
+       glUseProgram(0);
+       check_error();
+
+       glBindBuffer(GL_ARRAY_BUFFER, 0);
+       check_error();
+       glBindVertexArray(0);
+       check_error();
+
+       if (do_phase_timing) {
+               // Get back the timer queries.
+               for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
+                       Phase *phase = phases[phase_num];
+                       for (auto timer_it = phase->timer_query_objects_running.cbegin();
+                            timer_it != phase->timer_query_objects_running.cend(); ) {
+                               GLint timer_query_object = *timer_it;
+                               GLint available;
+                               glGetQueryObjectiv(timer_query_object, GL_QUERY_RESULT_AVAILABLE, &available);
+                               if (available) {
+                                       GLuint64 time_elapsed;
+                                       glGetQueryObjectui64v(timer_query_object, GL_QUERY_RESULT, &time_elapsed);
+                                       phase->time_elapsed_ns += time_elapsed;
+                                       ++phase->num_measured_iterations;
+                                       phase->timer_query_objects_free.push_back(timer_query_object);
+                                       phase->timer_query_objects_running.erase(timer_it++);
+                               } else {
+                                       ++timer_it;
                                }
-                               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
-                               check_error();
-                       } else {
-                               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
-                               check_error();
                        }
+               }
+       }
+}
 
-                       std::string texture_name = std::string("tex_") + input->effect_id;
-                       glUniform1i(glGetUniformLocation(phases[phase]->glsl_program_num, texture_name.c_str()), sampler);
-                       check_error();
+void EffectChain::enable_phase_timing(bool enable)
+{
+       if (enable) {
+               assert(movit_timer_queries_supported);
+       }
+       this->do_phase_timing = enable;
+}
+
+void EffectChain::reset_phase_timing()
+{
+       for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
+               Phase *phase = phases[phase_num];
+               phase->time_elapsed_ns = 0;
+               phase->num_measured_iterations = 0;
+       }
+}
+
+void EffectChain::print_phase_timing()
+{
+       double total_time_ms = 0.0;
+       for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) {
+               Phase *phase = phases[phase_num];
+               double avg_time_ms = phase->time_elapsed_ns * 1e-6 / phase->num_measured_iterations;
+               printf("Phase %d: %5.1f ms  [", phase_num, avg_time_ms);
+               for (unsigned effect_num = 0; effect_num < phase->effects.size(); ++effect_num) {
+                       if (effect_num != 0) {
+                               printf(", ");
+                       }
+                       printf("%s", phase->effects[effect_num]->effect->effect_type_id().c_str());
                }
+               printf("]\n");
+               total_time_ms += avg_time_ms;
+       }
+       printf("Total:   %5.1f ms\n", total_time_ms);
+}
 
-               // And now the output.
-               if (phase == phases.size() - 1) {
-                       // Last phase goes to the output the user specified.
-                       glBindFramebuffer(GL_FRAMEBUFFER, dest_fbo);
-                       check_error();
-                       glViewport(x, y, width, height);
-                       if (dither_effect != NULL) {
-                               CHECK(dither_effect->set_int("output_width", width));
-                               CHECK(dither_effect->set_int("output_height", height));
+void EffectChain::execute_phase(Phase *phase,
+                                const map<Phase *, GLuint> &output_textures,
+                                const vector<DestinationTexture> &destinations,
+                                set<Phase *> *generated_mipmaps)
+{
+       // Set up RTT inputs for this phase.
+       for (unsigned sampler = 0; sampler < phase->inputs.size(); ++sampler) {
+               glActiveTexture(GL_TEXTURE0 + sampler);
+               Phase *input = phase->inputs[sampler];
+               input->output_node->bound_sampler_num = sampler;
+               const auto it = output_textures.find(input);
+               assert(it != output_textures.end());
+               glBindTexture(GL_TEXTURE_2D, it->second);
+               check_error();
+
+               // See if anything using this RTT input (in this phase) needs mipmaps.
+               // TODO: It could be that we get conflicting logic here, if we have
+               // multiple effects with incompatible mipmaps using the same
+               // RTT input. However, that is obscure enough that we can deal
+               // with it at some future point (preferably when we have
+               // universal support for separate sampler objects!). For now,
+               // an assert is good enough. See also the TODO at bound_sampler_num.
+               bool any_needs_mipmaps = false, any_refuses_mipmaps = false;
+               for (Node *node : phase->effects) {
+                       assert(node->incoming_links.size() == node->incoming_link_type.size());
+                       for (size_t i = 0; i < node->incoming_links.size(); ++i) {
+                               if (node->incoming_links[i] == input->output_node &&
+                                   node->incoming_link_type[i] == IN_ANOTHER_PHASE) {
+                                       if (node->needs_mipmaps == Effect::NEEDS_MIPMAPS) {
+                                               any_needs_mipmaps = true;
+                                       } else if (node->needs_mipmaps == Effect::CANNOT_ACCEPT_MIPMAPS) {
+                                               any_refuses_mipmaps = true;
+                                       }
+                               }
                        }
-               } else {
-                       Node *output_node = phases[phase]->effects.back();
-                       glFramebufferTexture2D(
-                               GL_FRAMEBUFFER,
-                               GL_COLOR_ATTACHMENT0,
-                               GL_TEXTURE_2D,
-                               output_node->output_texture,
-                               0);
-                       check_error();
-                       glViewport(0, 0, phases[phase]->output_width, phases[phase]->output_height);
                }
+               assert(!(any_needs_mipmaps && any_refuses_mipmaps));
 
-               // Give the required parameters to all the effects.
-               unsigned sampler_num = phases[phase]->inputs.size();
-               for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) {
-                       Node *node = phases[phase]->effects[i];
-                       node->effect->set_gl_state(phases[phase]->glsl_program_num, node->effect_id, &sampler_num);
+               if (any_needs_mipmaps && generated_mipmaps->count(input) == 0) {
+                       glGenerateMipmap(GL_TEXTURE_2D);
                        check_error();
+                       generated_mipmaps->insert(input);
                }
+               setup_rtt_sampler(sampler, any_needs_mipmaps);
+               phase->input_samplers[sampler] = sampler;  // Bind the sampler to the right uniform.
+       }
+
+       GLuint instance_program_num = resource_pool->use_glsl_program(phase->glsl_program_num);
+       check_error();
+
+       // And now the output.
+       GLuint fbo = 0;
+       if (phase->is_compute_shader) {
+               assert(!destinations.empty());
 
-               // Now draw!
-               glBegin(GL_QUADS);
+               // This is currently the only place where we use image units,
+               // so we can always start at 0. TODO: Support multiple destinations.
+               phase->outbuf_image_unit = 0;
+               glBindImageTexture(phase->outbuf_image_unit, destinations[0].texnum, 0, GL_FALSE, 0, GL_WRITE_ONLY, destinations[0].format);
+               check_error();
+               phase->uniform_output_size[0] = phase->output_width;
+               phase->uniform_output_size[1] = phase->output_height;
+               phase->inv_output_size.x = 1.0f / phase->output_width;
+               phase->inv_output_size.y = 1.0f / phase->output_height;
+               phase->output_texcoord_adjust.x = 0.5f / phase->output_width;
+               phase->output_texcoord_adjust.y = 0.5f / phase->output_height;
+       } else if (!destinations.empty()) {
+               assert(destinations.size() == 1);
+               fbo = resource_pool->create_fbo(destinations[0].texnum);
+               glBindFramebuffer(GL_FRAMEBUFFER, fbo);
+               glViewport(0, 0, phase->output_width, phase->output_height);
+       }
+
+       // Give the required parameters to all the effects.
+       unsigned sampler_num = phase->inputs.size();
+       for (unsigned i = 0; i < phase->effects.size(); ++i) {
+               Node *node = phase->effects[i];
+               unsigned old_sampler_num = sampler_num;
+               node->effect->set_gl_state(instance_program_num, phase->effect_ids[make_pair(node, IN_SAME_PHASE)], &sampler_num);
+               check_error();
 
-               glTexCoord2f(0.0f, 0.0f);
-               glVertex2f(0.0f, 0.0f);
+               if (node->effect->is_single_texture()) {
+                       assert(sampler_num - old_sampler_num == 1);
+                       node->bound_sampler_num = old_sampler_num;
+               } else {
+                       node->bound_sampler_num = -1;
+               }
+       }
 
-               glTexCoord2f(1.0f, 0.0f);
-               glVertex2f(1.0f, 0.0f);
+       if (phase->is_compute_shader) {
+               unsigned x, y, z;
+               phase->compute_shader_node->effect->get_compute_dimensions(phase->output_width, phase->output_height, &x, &y, &z);
 
-               glTexCoord2f(1.0f, 1.0f);
-               glVertex2f(1.0f, 1.0f);
+               // Uniforms need to come after set_gl_state() _and_ get_compute_dimensions(),
+               // since they can be updated from there.
+               setup_uniforms(phase);
+               glDispatchCompute(x, y, z);
+               check_error();
+               glMemoryBarrier(GL_TEXTURE_FETCH_BARRIER_BIT | GL_TEXTURE_UPDATE_BARRIER_BIT);
+               check_error();
+       } else {
+               // Uniforms need to come after set_gl_state(), since they can be updated
+               // from there.
+               setup_uniforms(phase);
 
-               glTexCoord2f(0.0f, 1.0f);
-               glVertex2f(0.0f, 1.0f);
+               // Bind the vertex data.
+               GLuint vao = resource_pool->create_vec2_vao(phase->attribute_indexes, vbo);
+               glBindVertexArray(vao);
 
-               glEnd();
+               glDrawArrays(GL_TRIANGLES, 0, 3);
                check_error();
 
-               for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) {
-                       Node *node = phases[phase]->effects[i];
-                       node->effect->clear_gl_state();
+               resource_pool->release_vec2_vao(vao);
+       }
+       
+       for (unsigned i = 0; i < phase->effects.size(); ++i) {
+               Node *node = phase->effects[i];
+               node->effect->clear_gl_state();
+       }
+
+       resource_pool->unuse_glsl_program(instance_program_num);
+
+       if (fbo != 0) {
+               resource_pool->release_fbo(fbo);
+       }
+}
+
+void EffectChain::setup_uniforms(Phase *phase)
+{
+       // TODO: Use UBO blocks.
+       for (size_t i = 0; i < phase->uniforms_image2d.size(); ++i) {
+               const Uniform<int> &uniform = phase->uniforms_image2d[i];
+               if (uniform.location != -1) {
+                       glUniform1iv(uniform.location, uniform.num_values, uniform.value);
+               }
+       }
+       for (size_t i = 0; i < phase->uniforms_sampler2d.size(); ++i) {
+               const Uniform<int> &uniform = phase->uniforms_sampler2d[i];
+               if (uniform.location != -1) {
+                       glUniform1iv(uniform.location, uniform.num_values, uniform.value);
+               }
+       }
+       for (size_t i = 0; i < phase->uniforms_bool.size(); ++i) {
+               const Uniform<bool> &uniform = phase->uniforms_bool[i];
+               assert(uniform.num_values == 1);
+               if (uniform.location != -1) {
+                       glUniform1i(uniform.location, *uniform.value);
+               }
+       }
+       for (size_t i = 0; i < phase->uniforms_int.size(); ++i) {
+               const Uniform<int> &uniform = phase->uniforms_int[i];
+               if (uniform.location != -1) {
+                       glUniform1iv(uniform.location, uniform.num_values, uniform.value);
+               }
+       }
+       for (size_t i = 0; i < phase->uniforms_ivec2.size(); ++i) {
+               const Uniform<int> &uniform = phase->uniforms_ivec2[i];
+               if (uniform.location != -1) {
+                       glUniform2iv(uniform.location, uniform.num_values, uniform.value);
+               }
+       }
+       for (size_t i = 0; i < phase->uniforms_float.size(); ++i) {
+               const Uniform<float> &uniform = phase->uniforms_float[i];
+               if (uniform.location != -1) {
+                       glUniform1fv(uniform.location, uniform.num_values, uniform.value);
+               }
+       }
+       for (size_t i = 0; i < phase->uniforms_vec2.size(); ++i) {
+               const Uniform<float> &uniform = phase->uniforms_vec2[i];
+               if (uniform.location != -1) {
+                       glUniform2fv(uniform.location, uniform.num_values, uniform.value);
+               }
+       }
+       for (size_t i = 0; i < phase->uniforms_vec3.size(); ++i) {
+               const Uniform<float> &uniform = phase->uniforms_vec3[i];
+               if (uniform.location != -1) {
+                       glUniform3fv(uniform.location, uniform.num_values, uniform.value);
+               }
+       }
+       for (size_t i = 0; i < phase->uniforms_vec4.size(); ++i) {
+               const Uniform<float> &uniform = phase->uniforms_vec4[i];
+               if (uniform.location != -1) {
+                       glUniform4fv(uniform.location, uniform.num_values, uniform.value);
+               }
+       }
+       for (size_t i = 0; i < phase->uniforms_mat3.size(); ++i) {
+               const Uniform<Matrix3d> &uniform = phase->uniforms_mat3[i];
+               assert(uniform.num_values == 1);
+               if (uniform.location != -1) {
+                       // Convert to float (GLSL has no double matrices).
+                       float matrixf[9];
+                       for (unsigned y = 0; y < 3; ++y) {
+                               for (unsigned x = 0; x < 3; ++x) {
+                                       matrixf[y + x * 3] = (*uniform.value)(y, x);
+                               }
+                       }
+                       glUniformMatrix3fv(uniform.location, 1, GL_FALSE, matrixf);
                }
        }
 }
+
+void EffectChain::setup_rtt_sampler(int sampler_num, bool use_mipmaps)
+{
+       glActiveTexture(GL_TEXTURE0 + sampler_num);
+       check_error();
+       if (use_mipmaps) {
+               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
+               check_error();
+       } else {
+               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
+               check_error();
+       }
+       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
+       check_error();
+       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
+       check_error();
+}
+
+}  // namespace movit