]> git.sesse.net Git - movit/blobdiff - resample_effect.cpp
Merge branch 'master' into epoxy
[movit] / resample_effect.cpp
index c2ef531d3dee6b9fa272bebfe2f97086ce23126a..50b7c6bc5c4730fc6bb25cd18c96a446c8f02986 100644 (file)
@@ -1,7 +1,7 @@
 // Three-lobed Lanczos, the most common choice.
 #define LANCZOS_RADIUS 3.0
 
-#include <GL/glew.h>
+#include <epoxy/gl.h>
 #include <assert.h>
 #include <limits.h>
 #include <math.h>
 
 #include "effect_chain.h"
 #include "effect_util.h"
+#include "fp16.h"
 #include "resample_effect.h"
 #include "util.h"
 
+using namespace std;
+
+namespace movit {
+
 namespace {
 
 float sinc(float x)
@@ -138,7 +143,7 @@ void ResampleEffect::inform_input_size(unsigned input_num, unsigned width, unsig
        input_height = height;
        update_size();
 }
-               
+
 void ResampleEffect::update_size()
 {
        bool ok = true;
@@ -155,7 +160,7 @@ void ResampleEffect::update_size()
        assert(ok);
 }
 
-bool ResampleEffect::set_float(const std::string &key, float value) {
+bool ResampleEffect::set_float(const string &key, float value) {
        if (key == "width") {
                output_width = value;
                update_size();
@@ -193,7 +198,7 @@ SingleResamplePassEffect::~SingleResamplePassEffect()
        glDeleteTextures(1, &texnum);
 }
 
-std::string SingleResamplePassEffect::output_fragment_shader()
+string SingleResamplePassEffect::output_fragment_shader()
 {
        char buf[256];
        sprintf(buf, "#define DIRECTION_VERTICAL %d\n", (direction == VERTICAL));
@@ -212,7 +217,7 @@ std::string SingleResamplePassEffect::output_fragment_shader()
 //
 // For horizontal scaling, we fill in the exact same texture;
 // the shader just interprets it differently.
-void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const std::string &prefix, unsigned *sampler_num)
+void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
 {
        unsigned src_size, dst_size;
        if (direction == SingleResamplePassEffect::HORIZONTAL) {
@@ -227,7 +232,6 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const std
                assert(false);
        }
 
-
        // For many resamplings (e.g. 640 -> 1280), we will end up with the same
        // set of samples over and over again in a loop. Thus, we can compute only
        // the first such loop, and then ask the card to repeat the texture for us.
@@ -286,7 +290,7 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const std
        // Anyhow, in this case we clearly need to look at more source pixels
        // to compute the destination pixel, and how many depend on the scaling factor.
        // Thus, the kernel width will vary with how much we scale.
-       float radius_scaling_factor = std::min(float(dst_size) / float(src_size), 1.0f);
+       float radius_scaling_factor = min(float(dst_size) / float(src_size), 1.0f);
        int int_radius = lrintf(LANCZOS_RADIUS / radius_scaling_factor);
        int src_samples = int_radius * 2 + 1;
        float *weights = new float[dst_samples * src_samples * 2];
@@ -303,6 +307,7 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const std
                        weights[(y * src_samples + i) * 2 + 0] = weight * radius_scaling_factor;
                        weights[(y * src_samples + i) * 2 + 1] = (src_y + 0.5) / float(src_size);
                }
+
        }
 
        // Now make use of the bilinear filtering in the GPU to reduce the number of samples
@@ -316,19 +321,41 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const std
        src_bilinear_samples = 0;
        for (unsigned y = 0; y < dst_samples; ++y) {
                unsigned num_samples_saved = combine_samples(weights + (y * src_samples) * 2, NULL, src_samples, UINT_MAX);
-               src_bilinear_samples = std::max<int>(src_bilinear_samples, src_samples - num_samples_saved);
+               src_bilinear_samples = max<int>(src_bilinear_samples, src_samples - num_samples_saved);
        }
 
        // Now that we know the right width, actually combine the samples.
        float *bilinear_weights = new float[dst_samples * src_bilinear_samples * 2];
+       fp16_int_t *bilinear_weights_fp16 = new fp16_int_t[dst_samples * src_bilinear_samples * 2];
        for (unsigned y = 0; y < dst_samples; ++y) {
+               float *bilinear_weights_ptr = bilinear_weights + (y * src_bilinear_samples) * 2;
+               fp16_int_t *bilinear_weights_fp16_ptr = bilinear_weights_fp16 + (y * src_bilinear_samples) * 2;
                unsigned num_samples_saved = combine_samples(
                        weights + (y * src_samples) * 2,
-                       bilinear_weights + (y * src_bilinear_samples) * 2,
+                       bilinear_weights_ptr,
                        src_samples,
                        src_samples - src_bilinear_samples);
                assert(int(src_samples) - int(num_samples_saved) == src_bilinear_samples);
-       }       
+
+               // Convert to fp16.
+               for (int i = 0; i < src_bilinear_samples; ++i) {
+                       bilinear_weights_fp16_ptr[i * 2 + 0] = fp64_to_fp16(bilinear_weights_ptr[i * 2 + 0]);
+                       bilinear_weights_fp16_ptr[i * 2 + 1] = fp64_to_fp16(bilinear_weights_ptr[i * 2 + 1]);
+               }
+
+               // Normalize so that the sum becomes one. Note that we do it twice;
+               // this sometimes helps a tiny little bit when we have many samples.
+               for (int normalize_pass = 0; normalize_pass < 2; ++normalize_pass) {
+                       double sum = 0.0;
+                       for (int i = 0; i < src_bilinear_samples; ++i) {
+                               sum += fp16_to_fp64(bilinear_weights_fp16_ptr[i * 2 + 0]);
+                       }
+                       for (int i = 0; i < src_bilinear_samples; ++i) {
+                               bilinear_weights_fp16_ptr[i * 2 + 0] = fp64_to_fp16(
+                                       fp16_to_fp64(bilinear_weights_fp16_ptr[i * 2 + 0]) / sum);
+                       }
+               }
+       }
 
        // Encode as a two-component texture. Note the GL_REPEAT.
        glActiveTexture(GL_TEXTURE0 + *sampler_num);
@@ -341,14 +368,15 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const std
        check_error();
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        check_error();
-       glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, src_bilinear_samples, dst_samples, 0, GL_RG, GL_FLOAT, bilinear_weights);
+       glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, src_bilinear_samples, dst_samples, 0, GL_RG, GL_HALF_FLOAT, bilinear_weights_fp16);
        check_error();
 
        delete[] weights;
        delete[] bilinear_weights;
+       delete[] bilinear_weights_fp16;
 }
 
-void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const std::string &prefix, unsigned *sampler_num)
+void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
 {
        Effect::set_gl_state(glsl_program_num, prefix, sampler_num);
 
@@ -385,8 +413,11 @@ void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const std::
 
        // We specifically do not want mipmaps on the input texture;
        // they break minification.
-       glActiveTexture(GL_TEXTURE0);
+       Node *self = chain->find_node_for_effect(this);
+       glActiveTexture(chain->get_input_sampler(self, 0));
        check_error();
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        check_error();
 }
+
+}  // namespace movit