]> git.sesse.net Git - movit/blobdiff - resample_effect.cpp
Fix some small whitespace errors in SingleResamplePassEffect.
[movit] / resample_effect.cpp
index 20c2f9b24c60f6bcf086f3665a771fac4012c8c2..690f15a90e6622ed9a1c53194251491622eed855 100644 (file)
@@ -1,5 +1,7 @@
 // Three-lobed Lanczos, the most common choice.
-#define LANCZOS_RADIUS 3.0
+// Note that if you change this, the accuracy for LANCZOS_TABLE_SIZE
+// needs to be recomputed.
+#define LANCZOS_RADIUS 3.0f
 
 #include <epoxy/gl.h>
 #include <assert.h>
@@ -7,25 +9,25 @@
 #include <math.h>
 #include <stdio.h>
 #include <algorithm>
+#include <mutex>
+#include <Eigen/Sparse>
+#include <Eigen/SparseQR>
+#include <Eigen/OrderingMethods>
 
 #include "effect_chain.h"
 #include "effect_util.h"
 #include "fp16.h"
+#include "init.h"
 #include "resample_effect.h"
 #include "util.h"
 
+using namespace Eigen;
 using namespace std;
 
 namespace movit {
 
 namespace {
 
-template<class T>
-struct Tap {
-       T weight;
-       T pos;
-};
-
 float sinc(float x)
 {
        if (fabs(x) < 1e-6) {
@@ -35,13 +37,64 @@ float sinc(float x)
        }
 }
 
-float lanczos_weight(float x, float a)
+float lanczos_weight(float x)
 {
-       if (fabs(x) > a) {
+       if (fabs(x) > LANCZOS_RADIUS) {
                return 0.0f;
        } else {
-               return sinc(M_PI * x) * sinc(M_PI * x / a);
+               return sinc(M_PI * x) * sinc((M_PI / LANCZOS_RADIUS) * x);
+       }
+}
+
+// The weight function can be expensive to compute over and over again
+// (which will happen during e.g. a zoom), but it is also easy to interpolate
+// linearly. We compute the right half of the function (in the range of
+// 0..LANCZOS_RADIUS), with two guard elements for easier interpolation, and
+// linearly interpolate to get our function.
+//
+// We want to scale the table so that the maximum error is always smaller
+// than 1e-6. As per http://www-solar.mcs.st-andrews.ac.uk/~clare/Lectures/num-analysis/Numan_chap3.pdf,
+// the error for interpolating a function linearly between points [a,b] is
+//
+//   e = 1/2 (x-a)(x-b) f''(u_x)
+//
+// for some point u_x in [a,b] (where f(x) is our Lanczos function; we're
+// assuming LANCZOS_RADIUS=3 from here on). Obviously this is bounded by
+// f''(x) over the entire range. Numeric optimization shows the maximum of
+// |f''(x)| to be in x=1.09369819474562880, with the value 2.40067758733152381.
+// So if the steps between consecutive values are called d, we get
+//
+//   |e| <= 1/2 (d/2)^2 2.4007
+//   |e| <= 0.1367 d^2
+//
+// Solve for e = 1e-6 yields a step size of 0.0027, which to cover the range
+// 0..3 needs 1109 steps. We round up to the next power of two, just to be sure.
+//
+// You need to call lanczos_table_init_done before the first call to
+// lanczos_weight_cached.
+#define LANCZOS_TABLE_SIZE 2048
+static once_flag lanczos_table_init_done;
+float lanczos_table[LANCZOS_TABLE_SIZE + 2];
+
+void init_lanczos_table()
+{
+       for (unsigned i = 0; i < LANCZOS_TABLE_SIZE + 2; ++i) {
+               lanczos_table[i] = lanczos_weight(float(i) * (LANCZOS_RADIUS / LANCZOS_TABLE_SIZE));
+       }
+}
+
+float lanczos_weight_cached(float x)
+{
+       x = fabs(x);
+       if (x > LANCZOS_RADIUS) {
+               return 0.0f;
        }
+       float table_pos = x * (LANCZOS_TABLE_SIZE / LANCZOS_RADIUS);
+       unsigned table_pos_int = int(table_pos);  // Truncate towards zero.
+       float table_pos_frac = table_pos - table_pos_int;
+       assert(table_pos < LANCZOS_TABLE_SIZE + 2);
+       return lanczos_table[table_pos_int] +
+               table_pos_frac * (lanczos_table[table_pos_int + 1] - lanczos_table[table_pos_int]);
 }
 
 // Euclid's algorithm, from Wikipedia.
@@ -55,13 +108,30 @@ unsigned gcd(unsigned a, unsigned b)
        return a;
 }
 
-unsigned combine_samples(Tap<float> *src, Tap<float> *dst, unsigned num_src_samples, unsigned max_samples_saved)
+template<class DestFloat>
+unsigned combine_samples(const Tap<float> *src, Tap<DestFloat> *dst, float num_subtexels, float inv_num_subtexels, unsigned num_src_samples, unsigned max_samples_saved, float pos1_pos2_diff, float inv_pos1_pos2_diff)
 {
+       // Cut off near-zero values at both sides.
        unsigned num_samples_saved = 0;
+       while (num_samples_saved < max_samples_saved &&
+              num_src_samples > 0 &&
+              fabs(src[0].weight) < 1e-6) {
+               ++src;
+               --num_src_samples;
+               ++num_samples_saved;
+       }
+       while (num_samples_saved < max_samples_saved &&
+              num_src_samples > 0 &&
+              fabs(src[num_src_samples - 1].weight) < 1e-6) {
+               --num_src_samples;
+               ++num_samples_saved;
+       }
+
        for (unsigned i = 0, j = 0; i < num_src_samples; ++i, ++j) {
                // Copy the sample directly; it will be overwritten later if we can combine.
-               if (dst != NULL) {
-                       dst[j] = src[i];
+               if (dst != nullptr) {
+                       dst[j].weight = convert_float<float, DestFloat>(src[i].weight);
+                       dst[j].pos = convert_float<float, DestFloat>(src[i].pos);
                }
 
                if (i == num_src_samples - 1) {
@@ -85,22 +155,23 @@ unsigned combine_samples(Tap<float> *src, Tap<float> *dst, unsigned num_src_samp
                float pos2 = src[i + 1].pos;
                assert(pos2 > pos1);
 
-               float offset, total_weight, sum_sq_error;
-               combine_two_samples(w1, w2, &offset, &total_weight, &sum_sq_error);
+               DestFloat pos, total_weight;
+               float sum_sq_error;
+               combine_two_samples(w1, w2, pos1, pos1_pos2_diff, inv_pos1_pos2_diff, num_subtexels, inv_num_subtexels, &pos, &total_weight, &sum_sq_error);
 
                // If the interpolation error is larger than that of about sqrt(2) of
                // a level at 8-bit precision, don't combine. (You'd think 1.0 was enough,
                // but since the artifacts are not really random, they can get quite
                // visible. On the other hand, going to 0.25f, I can see no change at
                // all with 8-bit output, so it would not seem to be worth it.)
-               if (sum_sq_error > 0.5f / (256.0f * 256.0f)) {
+               if (sum_sq_error > 0.5f / (255.0f * 255.0f)) {
                        continue;
                }
 
                // OK, we can combine this and the next sample.
-               if (dst != NULL) {
+               if (dst != nullptr) {
                        dst[j].weight = total_weight;
-                       dst[j].pos = pos1 + offset * (pos2 - pos1);
+                       dst[j].pos = pos;
                }
 
                ++i;  // Skip the next sample.
@@ -109,6 +180,123 @@ unsigned combine_samples(Tap<float> *src, Tap<float> *dst, unsigned num_src_samp
        return num_samples_saved;
 }
 
+// Normalize so that the sum becomes one. Note that we do it twice;
+// this sometimes helps a tiny little bit when we have many samples.
+template<class T>
+void normalize_sum(Tap<T>* vals, unsigned num)
+{
+       for (int normalize_pass = 0; normalize_pass < 2; ++normalize_pass) {
+               float sum = 0.0;
+               for (unsigned i = 0; i < num; ++i) {
+                       sum += to_fp32(vals[i].weight);
+               }
+               float inv_sum = 1.0 / sum;
+               for (unsigned i = 0; i < num; ++i) {
+                       vals[i].weight = from_fp32<T>(to_fp32(vals[i].weight) * inv_sum);
+               }
+       }
+}
+
+// Make use of the bilinear filtering in the GPU to reduce the number of samples
+// we need to make. This is a bit more complex than BlurEffect since we cannot combine
+// two neighboring samples if their weights have differing signs, so we first need to
+// figure out the maximum number of samples. Then, we downconvert all the weights to
+// that number -- we could have gone for a variable-length system, but this is simpler,
+// and the gains would probably be offset by the extra cost of checking when to stop.
+//
+// The greedy strategy for combining samples is optimal.
+template<class DestFloat>
+unsigned combine_many_samples(const Tap<float> *weights, unsigned src_size, unsigned src_samples, unsigned dst_samples, unique_ptr<Tap<DestFloat>[]> *bilinear_weights)
+{
+       float num_subtexels = src_size / movit_texel_subpixel_precision;
+       float inv_num_subtexels = movit_texel_subpixel_precision / src_size;
+       float pos1_pos2_diff = 1.0f / src_size;
+       float inv_pos1_pos2_diff = src_size;
+
+       unsigned max_samples_saved = UINT_MAX;
+       for (unsigned y = 0; y < dst_samples && max_samples_saved > 0; ++y) {
+               unsigned num_samples_saved = combine_samples<DestFloat>(weights + y * src_samples, nullptr, num_subtexels, inv_num_subtexels, src_samples, max_samples_saved, pos1_pos2_diff, inv_pos1_pos2_diff);
+               max_samples_saved = min(max_samples_saved, num_samples_saved);
+       }
+
+       // Now that we know the right width, actually combine the samples.
+       unsigned src_bilinear_samples = src_samples - max_samples_saved;
+       bilinear_weights->reset(new Tap<DestFloat>[dst_samples * src_bilinear_samples]);
+       for (unsigned y = 0; y < dst_samples; ++y) {
+               Tap<DestFloat> *bilinear_weights_ptr = bilinear_weights->get() + y * src_bilinear_samples;
+               unsigned num_samples_saved = combine_samples(
+                       weights + y * src_samples,
+                       bilinear_weights_ptr,
+                       num_subtexels,
+                       inv_num_subtexels,
+                       src_samples,
+                       max_samples_saved,
+                       pos1_pos2_diff,
+                       inv_pos1_pos2_diff);
+               assert(num_samples_saved == max_samples_saved);
+               normalize_sum(bilinear_weights_ptr, src_bilinear_samples);
+       }
+       return src_bilinear_samples;
+}
+
+// Compute the sum of squared errors between the ideal weights (which are
+// assumed to fall exactly on pixel centers) and the weights that result
+// from sampling at <bilinear_weights>. The primary reason for the difference
+// is inaccuracy in the sampling positions, both due to limited precision
+// in storing them (already inherent in sending them in as fp16_int_t)
+// and in subtexel sampling precision (which we calculate in this function).
+template<class T>
+double compute_sum_sq_error(const Tap<float>* weights, unsigned num_weights,
+                            const Tap<T>* bilinear_weights, unsigned num_bilinear_weights,
+                            unsigned size)
+{
+       // Find the effective range of the bilinear-optimized kernel.
+       // Due to rounding of the positions, this is not necessarily the same
+       // as the intended range (ie., the range of the original weights).
+       int lower_pos = int(floor(to_fp32(bilinear_weights[0].pos) * size - 0.5f));
+       int upper_pos = int(ceil(to_fp32(bilinear_weights[num_bilinear_weights - 1].pos) * size - 0.5f)) + 2;
+       lower_pos = min<int>(lower_pos, lrintf(weights[0].pos * size - 0.5f));
+       upper_pos = max<int>(upper_pos, lrintf(weights[num_weights - 1].pos * size - 0.5f) + 1);
+
+       float* effective_weights = new float[upper_pos - lower_pos];
+       for (int i = 0; i < upper_pos - lower_pos; ++i) {
+               effective_weights[i] = 0.0f;
+       }
+
+       // Now find the effective weights that result from this sampling.
+       for (unsigned i = 0; i < num_bilinear_weights; ++i) {
+               const float pixel_pos = to_fp32(bilinear_weights[i].pos) * size - 0.5f;
+               const int x0 = int(floor(pixel_pos)) - lower_pos;
+               const int x1 = x0 + 1;
+               const float f = lrintf((pixel_pos - (x0 + lower_pos)) / movit_texel_subpixel_precision) * movit_texel_subpixel_precision;
+
+               assert(x0 >= 0);
+               assert(x1 >= 0);
+               assert(x0 < upper_pos - lower_pos);
+               assert(x1 < upper_pos - lower_pos);
+
+               effective_weights[x0] += to_fp32(bilinear_weights[i].weight) * (1.0f - f);
+               effective_weights[x1] += to_fp32(bilinear_weights[i].weight) * f;
+       }
+
+       // Subtract the desired weights to get the error.
+       for (unsigned i = 0; i < num_weights; ++i) {
+               const int x = lrintf(weights[i].pos * size - 0.5f) - lower_pos;
+               assert(x >= 0);
+               assert(x < upper_pos - lower_pos);
+
+               effective_weights[x] -= weights[i].weight;
+       }
+
+       double sum_sq_error = 0.0;
+       for (unsigned i = 0; i < num_weights; ++i) {
+               sum_sq_error += effective_weights[i] * effective_weights[i];
+       }
+
+       delete[] effective_weights;
+       return sum_sq_error;
+}
+
 }  // namespace
 
 ResampleEffect::ResampleEffect()
@@ -122,18 +310,24 @@ ResampleEffect::ResampleEffect()
        register_int("height", &output_height);
 
        // The first blur pass will forward resolution information to us.
-       hpass = new SingleResamplePassEffect(this);
+       hpass_owner.reset(new SingleResamplePassEffect(this));
+       hpass = hpass_owner.get();
        CHECK(hpass->set_int("direction", SingleResamplePassEffect::HORIZONTAL));
-       vpass = new SingleResamplePassEffect(NULL);
+       vpass_owner.reset(new SingleResamplePassEffect(this));
+       vpass = vpass_owner.get();
        CHECK(vpass->set_int("direction", SingleResamplePassEffect::VERTICAL));
 
        update_size();
 }
 
+ResampleEffect::~ResampleEffect()
+{
+}
+
 void ResampleEffect::rewrite_graph(EffectChain *graph, Node *self)
 {
-       Node *hpass_node = graph->add_node(hpass);
-       Node *vpass_node = graph->add_node(vpass);
+       Node *hpass_node = graph->add_node(hpass_owner.release());
+       Node *vpass_node = graph->add_node(vpass_owner.release());
        graph->connect_nodes(hpass_node, vpass_node);
        graph->replace_receiver(self, hpass_node);
        graph->replace_sender(self, vpass_node);
@@ -241,8 +435,8 @@ bool ResampleEffect::set_float(const string &key, float value) {
 SingleResamplePassEffect::SingleResamplePassEffect(ResampleEffect *parent)
        : parent(parent),
          direction(HORIZONTAL),
-         input_width(1280),
-         input_height(720),
+         input_width(1280),
+         input_height(720),
          offset(0.0),
          zoom(1.0),
          last_input_width(-1),
@@ -259,13 +453,19 @@ SingleResamplePassEffect::SingleResamplePassEffect(ResampleEffect *parent)
        register_int("output_height", &output_height);
        register_float("offset", &offset);
        register_float("zoom", &zoom);
-
-       glGenTextures(1, &texnum);
+       register_uniform_sampler2d("sample_tex", &uniform_sample_tex);
+       register_uniform_int("num_samples", &uniform_num_samples);
+       register_uniform_float("num_loops", &uniform_num_loops);
+       register_uniform_float("slice_height", &uniform_slice_height);
+       register_uniform_float("sample_x_scale", &uniform_sample_x_scale);
+       register_uniform_float("sample_x_offset", &uniform_sample_x_offset);
+       register_uniform_float("whole_pixel_offset", &uniform_whole_pixel_offset);
+
+       call_once(lanczos_table_init_done, init_lanczos_table);
 }
 
 SingleResamplePassEffect::~SingleResamplePassEffect()
 {
-       glDeleteTextures(1, &texnum);
 }
 
 string SingleResamplePassEffect::output_fragment_shader()
@@ -302,12 +502,45 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str
                assert(false);
        }
 
+       ScalingWeights weights = calculate_scaling_weights(src_size, dst_size, zoom, offset);
+       src_bilinear_samples = weights.src_bilinear_samples;
+       num_loops = weights.num_loops;
+       slice_height = 1.0f / weights.num_loops;
+
+       // Encode as a two-component texture. Note the GL_REPEAT.
+       glActiveTexture(GL_TEXTURE0 + *sampler_num);
+       check_error();
+       glBindTexture(GL_TEXTURE_2D, tex.get_texnum());
+       check_error();
+
+       GLenum type, internal_format;
+       void *pixels;
+       assert((weights.bilinear_weights_fp16 == nullptr) != (weights.bilinear_weights_fp32 == nullptr));
+       if (weights.bilinear_weights_fp32 != nullptr) {
+               type = GL_FLOAT;
+               internal_format = GL_RG32F;
+               pixels = weights.bilinear_weights_fp32.get();
+       } else {
+               type = GL_HALF_FLOAT;
+               internal_format = GL_RG16F;
+               pixels = weights.bilinear_weights_fp16.get();
+       }
+
+       tex.update(weights.src_bilinear_samples, weights.dst_samples, internal_format, GL_RG, type, pixels);
+}
+
+ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, float zoom, float offset)
+{
+       // Only needed if run from outside ResampleEffect.
+       call_once(lanczos_table_init_done, init_lanczos_table);
+
        // For many resamplings (e.g. 640 -> 1280), we will end up with the same
        // set of samples over and over again in a loop. Thus, we can compute only
        // the first such loop, and then ask the card to repeat the texture for us.
        // This is both easier on the texture cache and lowers our CPU cost for
        // generating the kernel somewhat.
        float scaling_factor;
+       int num_loops;
        if (fabs(zoom - 1.0f) < 1e-6) {
                num_loops = gcd(src_size, dst_size);
                scaling_factor = float(dst_size) / float(src_size);
@@ -320,7 +553,6 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str
                num_loops = 1;
                scaling_factor = zoom * float(dst_size) / float(src_size);
        }
-       slice_height = 1.0f / num_loops;
        unsigned dst_samples = dst_size / num_loops;
 
        // Sample the kernel in the right place. A diagram with a triangular kernel
@@ -375,7 +607,7 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str
        float radius_scaling_factor = min(scaling_factor, 1.0f);
        int int_radius = lrintf(LANCZOS_RADIUS / radius_scaling_factor);
        int src_samples = int_radius * 2 + 1;
-       Tap<float> *weights = new Tap<float>[dst_samples * src_samples];
+       unique_ptr<Tap<float>[]> weights(new Tap<float>[dst_samples * src_samples]);
        float subpixel_offset = offset - lrintf(offset);  // The part not covered by whole_pixel_offset.
        assert(subpixel_offset >= -0.5f && subpixel_offset <= 0.5f);
        for (unsigned y = 0; y < dst_samples; ++y) {
@@ -385,78 +617,47 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str
                int base_src_y = lrintf(center_src_y);
 
                // Now sample <int_radius> pixels on each side around that point.
+               float inv_src_size = 1.0 / float(src_size);
                for (int i = 0; i < src_samples; ++i) {
                        int src_y = base_src_y + i - int_radius;
-                       float weight = lanczos_weight(radius_scaling_factor * (src_y - center_src_y - subpixel_offset), LANCZOS_RADIUS);
+                       float weight = lanczos_weight_cached(radius_scaling_factor * (src_y - center_src_y - subpixel_offset));
                        weights[y * src_samples + i].weight = weight * radius_scaling_factor;
-                       weights[y * src_samples + i].pos = (src_y + 0.5) / float(src_size);
+                       weights[y * src_samples + i].pos = (src_y + 0.5f) * inv_src_size;
                }
        }
 
        // Now make use of the bilinear filtering in the GPU to reduce the number of samples
-       // we need to make. This is a bit more complex than BlurEffect since we cannot combine
-       // two neighboring samples if their weights have differing signs, so we first need to
-       // figure out the maximum number of samples. Then, we downconvert all the weights to
-       // that number -- we could have gone for a variable-length system, but this is simpler,
-       // and the gains would probably be offset by the extra cost of checking when to stop.
-       //
-       // The greedy strategy for combining samples is optimal.
-       src_bilinear_samples = 0;
-       for (unsigned y = 0; y < dst_samples; ++y) {
-               unsigned num_samples_saved = combine_samples(weights + y * src_samples, NULL, src_samples, UINT_MAX);
-               src_bilinear_samples = max<int>(src_bilinear_samples, src_samples - num_samples_saved);
-       }
-
-       // Now that we know the right width, actually combine the samples.
-       Tap<float> *bilinear_weights = new Tap<float>[dst_samples * src_bilinear_samples];
-       Tap<fp16_int_t> *bilinear_weights_fp16 = new Tap<fp16_int_t>[dst_samples * src_bilinear_samples];
+       // we need to make. Try fp16 first; if it's not accurate enough, we go to fp32.
+       // Our tolerance level for total error is a bit higher than the one for invididual
+       // samples, since one would assume overall errors in the shape don't matter as much.
+       const float max_error = 2.0f / (255.0f * 255.0f);
+       unique_ptr<Tap<fp16_int_t>[]> bilinear_weights_fp16;
+       int src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, dst_samples, &bilinear_weights_fp16);
+       unique_ptr<Tap<float>[]> bilinear_weights_fp32 = nullptr;
+       double max_sum_sq_error_fp16 = 0.0;
        for (unsigned y = 0; y < dst_samples; ++y) {
-               Tap<float> *bilinear_weights_ptr = bilinear_weights + y * src_bilinear_samples;
-               Tap<fp16_int_t> *bilinear_weights_fp16_ptr = bilinear_weights_fp16 + y * src_bilinear_samples;
-               unsigned num_samples_saved = combine_samples(
-                       weights + y * src_samples,
-                       bilinear_weights_ptr,
-                       src_samples,
-                       src_samples - src_bilinear_samples);
-               assert(int(src_samples) - int(num_samples_saved) == src_bilinear_samples);
-
-               // Convert to fp16.
-               for (int i = 0; i < src_bilinear_samples; ++i) {
-                       bilinear_weights_fp16_ptr[i].weight = fp64_to_fp16(bilinear_weights_ptr[i].weight);
-                       bilinear_weights_fp16_ptr[i].pos    = fp64_to_fp16(bilinear_weights_ptr[i].pos);
-               }
-
-               // Normalize so that the sum becomes one. Note that we do it twice;
-               // this sometimes helps a tiny little bit when we have many samples.
-               for (int normalize_pass = 0; normalize_pass < 2; ++normalize_pass) {
-                       double sum = 0.0;
-                       for (int i = 0; i < src_bilinear_samples; ++i) {
-                               sum += fp16_to_fp64(bilinear_weights_fp16_ptr[i].weight);
-                       }
-                       for (int i = 0; i < src_bilinear_samples; ++i) {
-                               bilinear_weights_fp16_ptr[i].weight = fp64_to_fp16(
-                                       fp16_to_fp64(bilinear_weights_fp16_ptr[i].weight) / sum);
-                       }
+               double sum_sq_error_fp16 = compute_sum_sq_error(
+                       weights.get() + y * src_samples, src_samples,
+                       bilinear_weights_fp16.get() + y * src_bilinear_samples, src_bilinear_samples,
+                       src_size);
+               max_sum_sq_error_fp16 = std::max(max_sum_sq_error_fp16, sum_sq_error_fp16);
+               if (max_sum_sq_error_fp16 > max_error) {
+                       break;
                }
        }
 
-       // Encode as a two-component texture. Note the GL_REPEAT.
-       glActiveTexture(GL_TEXTURE0 + *sampler_num);
-       check_error();
-       glBindTexture(GL_TEXTURE_2D, texnum);
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
-       check_error();
-       glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, src_bilinear_samples, dst_samples, 0, GL_RG, GL_HALF_FLOAT, bilinear_weights_fp16);
-       check_error();
+       if (max_sum_sq_error_fp16 > max_error) {
+               bilinear_weights_fp16.reset();
+               src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, dst_samples, &bilinear_weights_fp32);
+       }
 
-       delete[] weights;
-       delete[] bilinear_weights;
-       delete[] bilinear_weights_fp16;
+       ScalingWeights ret;
+       ret.src_bilinear_samples = src_bilinear_samples;
+       ret.dst_samples = dst_samples;
+       ret.num_loops = num_loops;
+       ret.bilinear_weights_fp16 = move(bilinear_weights_fp16);
+       ret.bilinear_weights_fp32 = move(bilinear_weights_fp32);
+       return ret;
 }
 
 void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
@@ -485,34 +686,74 @@ void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const strin
 
        glActiveTexture(GL_TEXTURE0 + *sampler_num);
        check_error();
-       glBindTexture(GL_TEXTURE_2D, texnum);
+       glBindTexture(GL_TEXTURE_2D, tex.get_texnum());
        check_error();
 
-       set_uniform_int(glsl_program_num, prefix, "sample_tex", *sampler_num);
+       uniform_sample_tex = *sampler_num;
        ++*sampler_num;
-       set_uniform_int(glsl_program_num, prefix, "num_samples", src_bilinear_samples);
-       set_uniform_float(glsl_program_num, prefix, "num_loops", num_loops);
-       set_uniform_float(glsl_program_num, prefix, "slice_height", slice_height);
+       uniform_num_samples = src_bilinear_samples;
+       uniform_num_loops = num_loops;
+       uniform_slice_height = slice_height;
 
        // Instructions for how to convert integer sample numbers to positions in the weight texture.
-       set_uniform_float(glsl_program_num, prefix, "sample_x_scale", 1.0f / src_bilinear_samples);
-       set_uniform_float(glsl_program_num, prefix, "sample_x_offset", 0.5f / src_bilinear_samples);
+       uniform_sample_x_scale = 1.0f / src_bilinear_samples;
+       uniform_sample_x_offset = 0.5f / src_bilinear_samples;
 
-       float whole_pixel_offset;
        if (direction == SingleResamplePassEffect::VERTICAL) {
-               whole_pixel_offset = lrintf(offset) / float(input_height);
+               uniform_whole_pixel_offset = lrintf(offset) / float(input_height);
        } else {
-               whole_pixel_offset = lrintf(offset) / float(input_width);
+               uniform_whole_pixel_offset = lrintf(offset) / float(input_width);
        }
-       set_uniform_float(glsl_program_num, prefix, "whole_pixel_offset", whole_pixel_offset);
 
        // We specifically do not want mipmaps on the input texture;
        // they break minification.
        Node *self = chain->find_node_for_effect(this);
-       glActiveTexture(chain->get_input_sampler(self, 0));
+       if (chain->has_input_sampler(self, 0)) {
+               glActiveTexture(chain->get_input_sampler(self, 0));
+               check_error();
+               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
+               check_error();
+       }
+}
+
+Support2DTexture::Support2DTexture()
+{
+       glGenTextures(1, &texnum);
+       check_error();
+       glBindTexture(GL_TEXTURE_2D, texnum);
+       check_error();
+       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
+       check_error();
+       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
+       check_error();
+       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
+       check_error();
+}
+
+Support2DTexture::~Support2DTexture()
+{
+       glDeleteTextures(1, &texnum);
        check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
+}
+
+void Support2DTexture::update(GLint width, GLint height, GLenum internal_format, GLenum format, GLenum type, const GLvoid * data)
+{
+       glBindTexture(GL_TEXTURE_2D, texnum);
        check_error();
+       if (width == last_texture_width &&
+           height == last_texture_height &&
+           internal_format == last_texture_internal_format) {
+               // Texture dimensions and type are unchanged; it is more efficient
+               // to just update it rather than making an entirely new texture.
+               glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, format, type, data);
+               check_error();
+       } else {
+               glTexImage2D(GL_TEXTURE_2D, 0, internal_format, width, height, 0, format, type, data);
+               check_error();
+               last_texture_width = width;
+               last_texture_height = height;
+               last_texture_internal_format = internal_format;
+       }
 }
 
 }  // namespace movit