Optimize VAO/VBO usage for minimal state changes.
[movit] / resample_effect.cpp
index f0c57c7..9c8caf3 100644 (file)
@@ -1,20 +1,38 @@
 // Three-lobed Lanczos, the most common choice.
+// Note that if you change this, the accuracy for LANCZOS_TABLE_SIZE
+// needs to be recomputed.
 #define LANCZOS_RADIUS 3.0
 
-#include <GL/glew.h>
+#include <epoxy/gl.h>
 #include <assert.h>
 #include <limits.h>
 #include <math.h>
 #include <stdio.h>
 #include <algorithm>
+#include <Eigen/Sparse>
+#include <Eigen/SparseQR>
+#include <Eigen/OrderingMethods>
 
 #include "effect_chain.h"
 #include "effect_util.h"
+#include "fp16.h"
+#include "init.h"
 #include "resample_effect.h"
 #include "util.h"
 
+using namespace Eigen;
+using namespace std;
+
+namespace movit {
+
 namespace {
 
+template<class T>
+struct Tap {
+       T weight;
+       T pos;
+};
+
 float sinc(float x)
 {
        if (fabs(x) < 1e-6) {
@@ -24,13 +42,65 @@ float sinc(float x)
        }
 }
 
-float lanczos_weight(float x, float a)
+float lanczos_weight(float x)
 {
-       if (fabs(x) > a) {
+       if (fabs(x) > LANCZOS_RADIUS) {
                return 0.0f;
        } else {
-               return sinc(M_PI * x) * sinc(M_PI * x / a);
+               return sinc(M_PI * x) * sinc((M_PI / LANCZOS_RADIUS) * x);
+       }
+}
+
+// The weight function can be expensive to compute over and over again
+// (which will happen during e.g. a zoom), but it is also easy to interpolate
+// linearly. We compute the right half of the function (in the range of
+// 0..LANCZOS_RADIUS), with two guard elements for easier interpolation, and
+// linearly interpolate to get our function.
+//
+// We want to scale the table so that the maximum error is always smaller
+// than 1e-6. As per http://www-solar.mcs.st-andrews.ac.uk/~clare/Lectures/num-analysis/Numan_chap3.pdf,
+// the error for interpolating a function linearly between points [a,b] is
+//
+//   e = 1/2 (x-a)(x-b) f''(u_x)
+//
+// for some point u_x in [a,b] (where f(x) is our Lanczos function; we're
+// assuming LANCZOS_RADIUS=3 from here on). Obviously this is bounded by
+// f''(x) over the entire range. Numeric optimization shows the maximum of
+// |f''(x)| to be in x=1.09369819474562880, with the value 2.40067758733152381.
+// So if the steps between consecutive values are called d, we get
+//
+//   |e| <= 1/2 (d/2)^2 2.4007
+//   |e| <= 0.1367 d^2
+//
+// Solve for e = 1e-6 yields a step size of 0.0027, which to cover the range
+// 0..3 needs 1109 steps. We round up to the next power of two, just to be sure.
+//
+// You need to call lanczos_table_init_done before the first call to
+// lanczos_weight_cached.
+#define LANCZOS_TABLE_SIZE 2048
+bool lanczos_table_init_done = false;
+float lanczos_table[LANCZOS_TABLE_SIZE + 2];
+
+void init_lanczos_table()
+{
+       for (unsigned i = 0; i < LANCZOS_TABLE_SIZE + 2; ++i) {
+               lanczos_table[i] = lanczos_weight(float(i) * (LANCZOS_RADIUS / LANCZOS_TABLE_SIZE));
        }
+       lanczos_table_init_done = true;
+}
+
+float lanczos_weight_cached(float x)
+{
+       x = fabs(x);
+       if (x > LANCZOS_RADIUS) {
+               return 0.0f;
+       }
+       float table_pos = x * (LANCZOS_TABLE_SIZE / LANCZOS_RADIUS);
+       int table_pos_int = int(table_pos);  // Truncate towards zero.
+       float table_pos_frac = table_pos - table_pos_int;
+       assert(table_pos < LANCZOS_TABLE_SIZE + 2);
+       return lanczos_table[table_pos_int] +
+               table_pos_frac * (lanczos_table[table_pos_int + 1] - lanczos_table[table_pos_int]);
 }
 
 // Euclid's algorithm, from Wikipedia.
@@ -44,14 +114,30 @@ unsigned gcd(unsigned a, unsigned b)
        return a;
 }
 
-unsigned combine_samples(float *src, float *dst, unsigned num_src_samples, unsigned max_samples_saved)
+template<class DestFloat>
+unsigned combine_samples(const Tap<float> *src, Tap<DestFloat> *dst, float num_subtexels, float inv_num_subtexels, unsigned num_src_samples, unsigned max_samples_saved)
 {
+       // Cut off near-zero values at both sides.
        unsigned num_samples_saved = 0;
+       while (num_samples_saved < max_samples_saved &&
+              num_src_samples > 0 &&
+              fabs(src[0].weight) < 1e-6) {
+               ++src;
+               --num_src_samples;
+               ++num_samples_saved;
+       }
+       while (num_samples_saved < max_samples_saved &&
+              num_src_samples > 0 &&
+              fabs(src[num_src_samples - 1].weight) < 1e-6) {
+               --num_src_samples;
+               ++num_samples_saved;
+       }
+
        for (unsigned i = 0, j = 0; i < num_src_samples; ++i, ++j) {
                // Copy the sample directly; it will be overwritten later if we can combine.
                if (dst != NULL) {
-                       dst[j * 2 + 0] = src[i * 2 + 0];
-                       dst[j * 2 + 1] = src[i * 2 + 1];
+                       dst[j].weight = convert_float<float, DestFloat>(src[i].weight);
+                       dst[j].pos = convert_float<float, DestFloat>(src[i].pos);
                }
 
                if (i == num_src_samples - 1) {
@@ -64,33 +150,34 @@ unsigned combine_samples(float *src, float *dst, unsigned num_src_samples, unsig
                        continue;
                }
 
-               float w1 = src[i * 2 + 0];
-               float w2 = src[(i + 1) * 2 + 0];
+               float w1 = src[i].weight;
+               float w2 = src[i + 1].weight;
                if (w1 * w2 < 0.0f) {
                        // Differing signs; cannot combine.
                        continue;
                }
 
-               float pos1 = src[i * 2 + 1];
-               float pos2 = src[(i + 1) * 2 + 1];
+               float pos1 = src[i].pos;
+               float pos2 = src[i + 1].pos;
                assert(pos2 > pos1);
 
-               float offset, total_weight, sum_sq_error;
-               combine_two_samples(w1, w2, &offset, &total_weight, &sum_sq_error);
+               DestFloat pos, total_weight;
+               float sum_sq_error;
+               combine_two_samples(w1, w2, pos1, pos2, num_subtexels, inv_num_subtexels, &pos, &total_weight, &sum_sq_error);
 
                // If the interpolation error is larger than that of about sqrt(2) of
                // a level at 8-bit precision, don't combine. (You'd think 1.0 was enough,
                // but since the artifacts are not really random, they can get quite
                // visible. On the other hand, going to 0.25f, I can see no change at
                // all with 8-bit output, so it would not seem to be worth it.)
-               if (sum_sq_error > 0.5f / (256.0f * 256.0f)) {
+               if (sum_sq_error > 0.5f / (255.0f * 255.0f)) {
                        continue;
                }
 
                // OK, we can combine this and the next sample.
                if (dst != NULL) {
-                       dst[j * 2 + 0] = total_weight;
-                       dst[j * 2 + 1] = pos1 + offset * (pos2 - pos1);
+                       dst[j].weight = total_weight;
+                       dst[j].pos = pos;
                }
 
                ++i;  // Skip the next sample.
@@ -99,11 +186,127 @@ unsigned combine_samples(float *src, float *dst, unsigned num_src_samples, unsig
        return num_samples_saved;
 }
 
+// Normalize so that the sum becomes one. Note that we do it twice;
+// this sometimes helps a tiny little bit when we have many samples.
+template<class T>
+void normalize_sum(Tap<T>* vals, unsigned num)
+{
+       for (int normalize_pass = 0; normalize_pass < 2; ++normalize_pass) {
+               float sum = 0.0;
+               for (unsigned i = 0; i < num; ++i) {
+                       sum += to_fp32(vals[i].weight);
+               }
+               float inv_sum = 1.0 / sum;
+               for (unsigned i = 0; i < num; ++i) {
+                       vals[i].weight = from_fp32<T>(to_fp32(vals[i].weight) * inv_sum);
+               }
+       }
+}
+
+// Make use of the bilinear filtering in the GPU to reduce the number of samples
+// we need to make. This is a bit more complex than BlurEffect since we cannot combine
+// two neighboring samples if their weights have differing signs, so we first need to
+// figure out the maximum number of samples. Then, we downconvert all the weights to
+// that number -- we could have gone for a variable-length system, but this is simpler,
+// and the gains would probably be offset by the extra cost of checking when to stop.
+//
+// The greedy strategy for combining samples is optimal.
+template<class DestFloat>
+unsigned combine_many_samples(const Tap<float> *weights, unsigned src_size, unsigned src_samples, unsigned dst_samples, Tap<DestFloat> **bilinear_weights)
+{
+       float num_subtexels = src_size / movit_texel_subpixel_precision;
+       float inv_num_subtexels = movit_texel_subpixel_precision / src_size;
+
+       unsigned max_samples_saved = UINT_MAX;
+       for (unsigned y = 0; y < dst_samples && max_samples_saved > 0; ++y) {
+               unsigned num_samples_saved = combine_samples<DestFloat>(weights + y * src_samples, NULL, num_subtexels, inv_num_subtexels, src_samples, max_samples_saved);
+               max_samples_saved = min(max_samples_saved, num_samples_saved);
+       }
+
+       // Now that we know the right width, actually combine the samples.
+       unsigned src_bilinear_samples = src_samples - max_samples_saved;
+       *bilinear_weights = new Tap<DestFloat>[dst_samples * src_bilinear_samples];
+       for (unsigned y = 0; y < dst_samples; ++y) {
+               Tap<DestFloat> *bilinear_weights_ptr = *bilinear_weights + y * src_bilinear_samples;
+               unsigned num_samples_saved = combine_samples(
+                       weights + y * src_samples,
+                       bilinear_weights_ptr,
+                       num_subtexels,
+                       inv_num_subtexels,
+                       src_samples,
+                       max_samples_saved);
+               assert(num_samples_saved == max_samples_saved);
+               normalize_sum(bilinear_weights_ptr, src_bilinear_samples);
+       }
+       return src_bilinear_samples;
+}
+
+// Compute the sum of squared errors between the ideal weights (which are
+// assumed to fall exactly on pixel centers) and the weights that result
+// from sampling at <bilinear_weights>. The primary reason for the difference
+// is inaccuracy in the sampling positions, both due to limited precision
+// in storing them (already inherent in sending them in as fp16_int_t)
+// and in subtexel sampling precision (which we calculate in this function).
+template<class T>
+double compute_sum_sq_error(const Tap<float>* weights, unsigned num_weights,
+                            const Tap<T>* bilinear_weights, unsigned num_bilinear_weights,
+                            unsigned size)
+{
+       // Find the effective range of the bilinear-optimized kernel.
+       // Due to rounding of the positions, this is not necessarily the same
+       // as the intended range (ie., the range of the original weights).
+       int lower_pos = int(floor(to_fp32(bilinear_weights[0].pos) * size - 0.5));
+       int upper_pos = int(ceil(to_fp32(bilinear_weights[num_bilinear_weights - 1].pos) * size - 0.5)) + 2;
+       lower_pos = min<int>(lower_pos, lrintf(weights[0].pos * size - 0.5));
+       upper_pos = max<int>(upper_pos, lrintf(weights[num_weights - 1].pos * size - 0.5) + 1);
+
+       float* effective_weights = new float[upper_pos - lower_pos];
+       for (int i = 0; i < upper_pos - lower_pos; ++i) {
+               effective_weights[i] = 0.0f;
+       }
+
+       // Now find the effective weights that result from this sampling.
+       for (unsigned i = 0; i < num_bilinear_weights; ++i) {
+               const float pixel_pos = to_fp32(bilinear_weights[i].pos) * size - 0.5f;
+               const int x0 = int(floor(pixel_pos)) - lower_pos;
+               const int x1 = x0 + 1;
+               const float f = lrintf((pixel_pos - (x0 + lower_pos)) / movit_texel_subpixel_precision) * movit_texel_subpixel_precision;
+
+               assert(x0 >= 0);
+               assert(x1 >= 0);
+               assert(x0 < upper_pos - lower_pos);
+               assert(x1 < upper_pos - lower_pos);
+
+               effective_weights[x0] += to_fp32(bilinear_weights[i].weight) * (1.0 - f);
+               effective_weights[x1] += to_fp32(bilinear_weights[i].weight) * f;
+       }
+
+       // Subtract the desired weights to get the error.
+       for (unsigned i = 0; i < num_weights; ++i) {
+               const int x = lrintf(weights[i].pos * size - 0.5f) - lower_pos;
+               assert(x >= 0);
+               assert(x < upper_pos - lower_pos);
+
+               effective_weights[x] -= weights[i].weight;
+       }
+
+       double sum_sq_error = 0.0;
+       for (unsigned i = 0; i < num_weights; ++i) {
+               sum_sq_error += effective_weights[i] * effective_weights[i];
+       }
+
+       delete[] effective_weights;
+       return sum_sq_error;
+}
+
 }  // namespace
 
 ResampleEffect::ResampleEffect()
        : input_width(1280),
-         input_height(720)
+         input_height(720),
+         offset_x(0.0f), offset_y(0.0f),
+         zoom_x(1.0f), zoom_y(1.0f),
+         zoom_center_x(0.5f), zoom_center_y(0.5f)
 {
        register_int("width", &output_width);
        register_int("height", &output_height);
@@ -138,7 +341,7 @@ void ResampleEffect::inform_input_size(unsigned input_num, unsigned width, unsig
        input_height = height;
        update_size();
 }
-               
+
 void ResampleEffect::update_size()
 {
        bool ok = true;
@@ -153,9 +356,29 @@ void ResampleEffect::update_size()
        ok |= vpass->set_int("output_height", output_height);
 
        assert(ok);
+
+       // The offset added due to zoom may have changed with the size.
+       update_offset_and_zoom();
+}
+
+void ResampleEffect::update_offset_and_zoom()
+{
+       bool ok = true;
+
+       // Zoom from the right origin. (zoom_center is given in normalized coordinates,
+       // i.e. 0..1.)
+       float extra_offset_x = zoom_center_x * (1.0f - 1.0f / zoom_x) * input_width;
+       float extra_offset_y = (1.0f - zoom_center_y) * (1.0f - 1.0f / zoom_y) * input_height;
+
+       ok |= hpass->set_float("offset", extra_offset_x + offset_x);
+       ok |= vpass->set_float("offset", extra_offset_y - offset_y);  // Compensate for the bottom-left origin.
+       ok |= hpass->set_float("zoom", zoom_x);
+       ok |= vpass->set_float("zoom", zoom_y);
+
+       assert(ok);
 }
 
-bool ResampleEffect::set_float(const std::string &key, float value) {
+bool ResampleEffect::set_float(const string &key, float value) {
        if (key == "width") {
                output_width = value;
                update_size();
@@ -166,6 +389,42 @@ bool ResampleEffect::set_float(const std::string &key, float value) {
                update_size();
                return true;
        }
+       if (key == "top") {
+               offset_y = value;
+               update_offset_and_zoom();
+               return true;
+       }
+       if (key == "left") {
+               offset_x = value;
+               update_offset_and_zoom();
+               return true;
+       }
+       if (key == "zoom_x") {
+               if (value <= 0.0f) {
+                       return false;
+               }
+               zoom_x = value;
+               update_offset_and_zoom();
+               return true;
+       }
+       if (key == "zoom_y") {
+               if (value <= 0.0f) {
+                       return false;
+               }
+               zoom_y = value;
+               update_offset_and_zoom();
+               return true;
+       }
+       if (key == "zoom_center_x") {
+               zoom_center_x = value;
+               update_offset_and_zoom();
+               return true;
+       }
+       if (key == "zoom_center_y") {
+               zoom_center_y = value;
+               update_offset_and_zoom();
+               return true;
+       }
        return false;
 }
 
@@ -174,18 +433,38 @@ SingleResamplePassEffect::SingleResamplePassEffect(ResampleEffect *parent)
          direction(HORIZONTAL),
          input_width(1280),
          input_height(720),
+         offset(0.0),
+         zoom(1.0),
          last_input_width(-1),
          last_input_height(-1),
          last_output_width(-1),
-         last_output_height(-1)
+         last_output_height(-1),
+         last_offset(0.0 / 0.0),  // NaN.
+         last_zoom(0.0 / 0.0),  // NaN.
+         last_texture_width(-1), last_texture_height(-1)
 {
        register_int("direction", (int *)&direction);
        register_int("input_width", &input_width);
        register_int("input_height", &input_height);
        register_int("output_width", &output_width);
        register_int("output_height", &output_height);
+       register_float("offset", &offset);
+       register_float("zoom", &zoom);
+       register_uniform_sampler2d("sample_tex", &uniform_sample_tex);
+       register_uniform_int("num_samples", &uniform_num_samples);
+       register_uniform_float("num_loops", &uniform_num_loops);
+       register_uniform_float("slice_height", &uniform_slice_height);
+       register_uniform_float("sample_x_scale", &uniform_sample_x_scale);
+       register_uniform_float("sample_x_offset", &uniform_sample_x_offset);
+       register_uniform_float("whole_pixel_offset", &uniform_whole_pixel_offset);
 
        glGenTextures(1, &texnum);
+
+       if (!lanczos_table_init_done) {
+               // Could in theory race between two threads if we are unlucky,
+               // but that is harmless, since they'll write the same data.
+               init_lanczos_table();
+       }
 }
 
 SingleResamplePassEffect::~SingleResamplePassEffect()
@@ -193,7 +472,7 @@ SingleResamplePassEffect::~SingleResamplePassEffect()
        glDeleteTextures(1, &texnum);
 }
 
-std::string SingleResamplePassEffect::output_fragment_shader()
+string SingleResamplePassEffect::output_fragment_shader()
 {
        char buf[256];
        sprintf(buf, "#define DIRECTION_VERTICAL %d\n", (direction == VERTICAL));
@@ -211,8 +490,8 @@ std::string SingleResamplePassEffect::output_fragment_shader()
 // so out[0] will read from parameters <x,y> = <0,0>, <1,0>, <2,0> and so on.
 //
 // For horizontal scaling, we fill in the exact same texture;
-// the shader just interprets is differently.
-void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const std::string &prefix, unsigned *sampler_num)
+// the shader just interprets it differently.
+void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
 {
        unsigned src_size, dst_size;
        if (direction == SingleResamplePassEffect::HORIZONTAL) {
@@ -227,13 +506,24 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const std
                assert(false);
        }
 
-
        // For many resamplings (e.g. 640 -> 1280), we will end up with the same
        // set of samples over and over again in a loop. Thus, we can compute only
        // the first such loop, and then ask the card to repeat the texture for us.
        // This is both easier on the texture cache and lowers our CPU cost for
        // generating the kernel somewhat.
-       num_loops = gcd(src_size, dst_size);
+       float scaling_factor;
+       if (fabs(zoom - 1.0f) < 1e-6) {
+               num_loops = gcd(src_size, dst_size);
+               scaling_factor = float(dst_size) / float(src_size);
+       } else {
+               // If zooming is enabled (ie., zoom != 1), we turn off the looping.
+               // We _could_ perhaps do it for rational zoom levels (especially
+               // things like 2:1), but it doesn't seem to be worth it, given that
+               // the most common use case would seem to be varying the zoom
+               // from frame to frame.
+               num_loops = 1;
+               scaling_factor = zoom * float(dst_size) / float(src_size);
+       }
        slice_height = 1.0f / num_loops;
        unsigned dst_samples = dst_size / num_loops;
 
@@ -286,69 +576,100 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const std
        // Anyhow, in this case we clearly need to look at more source pixels
        // to compute the destination pixel, and how many depend on the scaling factor.
        // Thus, the kernel width will vary with how much we scale.
-       float radius_scaling_factor = std::min(float(dst_size) / float(src_size), 1.0f);
+       float radius_scaling_factor = min(scaling_factor, 1.0f);
        int int_radius = lrintf(LANCZOS_RADIUS / radius_scaling_factor);
        int src_samples = int_radius * 2 + 1;
-       float *weights = new float[dst_samples * src_samples * 2];
+       Tap<float> *weights = new Tap<float>[dst_samples * src_samples];
+       float subpixel_offset = offset - lrintf(offset);  // The part not covered by whole_pixel_offset.
+       assert(subpixel_offset >= -0.5f && subpixel_offset <= 0.5f);
        for (unsigned y = 0; y < dst_samples; ++y) {
                // Find the point around which we want to sample the source image,
                // compensating for differing pixel centers as the scale changes.
-               float center_src_y = (y + 0.5f) * float(src_size) / float(dst_size) - 0.5f;
+               float center_src_y = (y + 0.5f) / scaling_factor - 0.5f;
                int base_src_y = lrintf(center_src_y);
 
                // Now sample <int_radius> pixels on each side around that point.
                for (int i = 0; i < src_samples; ++i) {
                        int src_y = base_src_y + i - int_radius;
-                       float weight = lanczos_weight(radius_scaling_factor * (src_y - center_src_y), LANCZOS_RADIUS);
-                       weights[(y * src_samples + i) * 2 + 0] = weight * radius_scaling_factor;
-                       weights[(y * src_samples + i) * 2 + 1] = (src_y + 0.5) / float(src_size);
+                       float weight = lanczos_weight_cached(radius_scaling_factor * (src_y - center_src_y - subpixel_offset));
+                       weights[y * src_samples + i].weight = weight * radius_scaling_factor;
+                       weights[y * src_samples + i].pos = (src_y + 0.5) / float(src_size);
                }
        }
 
        // Now make use of the bilinear filtering in the GPU to reduce the number of samples
-       // we need to make. This is a bit more complex than BlurEffect since we cannot combine
-       // two neighboring samples if their weights have differing signs, so we first need to
-       // figure out the maximum number of samples. Then, we downconvert all the weights to
-       // that number -- we could have gone for a variable-length system, but this is simpler,
-       // and the gains would probably be offset by the extra cost of checking when to stop.
-       //
-       // The greedy strategy for combining samples is optimal.
-       src_bilinear_samples = 0;
+       // we need to make. Try fp16 first; if it's not accurate enough, we go to fp32.
+       // Our tolerance level for total error is a bit higher than the one for invididual
+       // samples, since one would assume overall errors in the shape don't matter as much.
+       const float max_error = 2.0f / (255.0f * 255.0f);
+       Tap<fp16_int_t> *bilinear_weights_fp16;
+       src_bilinear_samples = combine_many_samples(weights, src_size, src_samples, dst_samples, &bilinear_weights_fp16);
+       Tap<float> *bilinear_weights_fp32 = NULL;
+       bool fallback_to_fp32 = false;
+       double max_sum_sq_error_fp16 = 0.0;
        for (unsigned y = 0; y < dst_samples; ++y) {
-               unsigned num_samples_saved = combine_samples(weights + (y * src_samples) * 2, NULL, src_samples, UINT_MAX);
-               src_bilinear_samples = std::max<int>(src_bilinear_samples, src_samples - num_samples_saved);
+               double sum_sq_error_fp16 = compute_sum_sq_error(
+                       weights + y * src_samples, src_samples,
+                       bilinear_weights_fp16 + y * src_bilinear_samples, src_bilinear_samples,
+                       src_size);
+               max_sum_sq_error_fp16 = std::max(max_sum_sq_error_fp16, sum_sq_error_fp16);
+               if (max_sum_sq_error_fp16 > max_error) {
+                       break;
+               }
        }
 
-       // Now that we know the right width, actually combine the samples.
-       float *bilinear_weights = new float[dst_samples * src_bilinear_samples * 2];
-       for (unsigned y = 0; y < dst_samples; ++y) {
-               unsigned num_samples_saved = combine_samples(
-                       weights + (y * src_samples) * 2,
-                       bilinear_weights + (y * src_bilinear_samples) * 2,
-                       src_samples,
-                       src_samples - src_bilinear_samples);
-               assert(int(src_samples) - int(num_samples_saved) == src_bilinear_samples);
-       }       
+       if (max_sum_sq_error_fp16 > max_error) {
+               fallback_to_fp32 = true;
+               src_bilinear_samples = combine_many_samples(weights, src_size, src_samples, dst_samples, &bilinear_weights_fp32);
+       }
 
        // Encode as a two-component texture. Note the GL_REPEAT.
        glActiveTexture(GL_TEXTURE0 + *sampler_num);
        check_error();
        glBindTexture(GL_TEXTURE_2D, texnum);
        check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
-       check_error();
-       glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, src_bilinear_samples, dst_samples, 0, GL_RG, GL_FLOAT, bilinear_weights);
+       if (last_texture_width == -1) {
+               // Need to set this state the first time.
+               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
+               check_error();
+               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
+               check_error();
+               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
+               check_error();
+       }
+
+       GLenum type, internal_format;
+       void *pixels;
+       if (fallback_to_fp32) {
+               type = GL_FLOAT;
+               internal_format = GL_RG32F;
+               pixels = bilinear_weights_fp32;
+       } else {
+               type = GL_HALF_FLOAT;
+               internal_format = GL_RG16F;
+               pixels = bilinear_weights_fp16;
+       }
+
+       if (int(src_bilinear_samples) == last_texture_width &&
+           int(dst_samples) == last_texture_height &&
+           internal_format == last_texture_internal_format) {
+               // Texture dimensions and type are unchanged; it is more efficient
+               // to just update it rather than making an entirely new texture.
+               glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, src_bilinear_samples, dst_samples, GL_RG, type, pixels);
+       } else {
+               glTexImage2D(GL_TEXTURE_2D, 0, internal_format, src_bilinear_samples, dst_samples, 0, GL_RG, type, pixels);
+               last_texture_width = src_bilinear_samples;
+               last_texture_height = dst_samples;
+               last_texture_internal_format = internal_format;
+       }
        check_error();
 
        delete[] weights;
-       delete[] bilinear_weights;
+       delete[] bilinear_weights_fp16;
+       delete[] bilinear_weights_fp32;
 }
 
-void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const std::string &prefix, unsigned *sampler_num)
+void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
 {
        Effect::set_gl_state(glsl_program_num, prefix, sampler_num);
 
@@ -360,12 +681,16 @@ void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const std::
        if (input_width != last_input_width ||
            input_height != last_input_height ||
            output_width != last_output_width ||
-           output_height != last_output_height) {
+           output_height != last_output_height ||
+           offset != last_offset ||
+           zoom != last_zoom) {
                update_texture(glsl_program_num, prefix, sampler_num);
                last_input_width = input_width;
                last_input_height = input_height;
                last_output_width = output_width;
                last_output_height = output_height;
+               last_offset = offset;
+               last_zoom = zoom;
        }
 
        glActiveTexture(GL_TEXTURE0 + *sampler_num);
@@ -373,20 +698,31 @@ void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const std::
        glBindTexture(GL_TEXTURE_2D, texnum);
        check_error();
 
-       set_uniform_int(glsl_program_num, prefix, "sample_tex", *sampler_num);
-       ++sampler_num;
-       set_uniform_int(glsl_program_num, prefix, "num_samples", src_bilinear_samples);
-       set_uniform_float(glsl_program_num, prefix, "num_loops", num_loops);
-       set_uniform_float(glsl_program_num, prefix, "slice_height", slice_height);
+       uniform_sample_tex = *sampler_num;
+       ++*sampler_num;
+       uniform_num_samples = src_bilinear_samples;
+       uniform_num_loops = num_loops;
+       uniform_slice_height = slice_height;
 
        // Instructions for how to convert integer sample numbers to positions in the weight texture.
-       set_uniform_float(glsl_program_num, prefix, "sample_x_scale", 1.0f / src_bilinear_samples);
-       set_uniform_float(glsl_program_num, prefix, "sample_x_offset", 0.5f / src_bilinear_samples);
+       uniform_sample_x_scale = 1.0f / src_bilinear_samples;
+       uniform_sample_x_offset = 0.5f / src_bilinear_samples;
+
+       if (direction == SingleResamplePassEffect::VERTICAL) {
+               uniform_whole_pixel_offset = lrintf(offset) / float(input_height);
+       } else {
+               uniform_whole_pixel_offset = lrintf(offset) / float(input_width);
+       }
 
        // We specifically do not want mipmaps on the input texture;
        // they break minification.
-       glActiveTexture(GL_TEXTURE0);
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
-       check_error();
+       Node *self = chain->find_node_for_effect(this);
+       if (chain->has_input_sampler(self, 0)) {
+               glActiveTexture(chain->get_input_sampler(self, 0));
+               check_error();
+               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
+               check_error();
+       }
 }
+
+}  // namespace movit