]> git.sesse.net Git - movit/blobdiff - resample_effect.cpp
Remove some unneeded conversions from ResampleEffect. Speeds up texture generation...
[movit] / resample_effect.cpp
index 7e44e9ba89424477a33370020039d32f0c37d723..ba8a71c0241443c0730a5ce99d68a2fa7c014ad3 100644 (file)
@@ -1,5 +1,7 @@
 // Three-lobed Lanczos, the most common choice.
-#define LANCZOS_RADIUS 3.0
+// Note that if you change this, the accuracy for LANCZOS_TABLE_SIZE
+// needs to be recomputed.
+#define LANCZOS_RADIUS 3.0f
 
 #include <epoxy/gl.h>
 #include <assert.h>
@@ -25,12 +27,6 @@ namespace movit {
 
 namespace {
 
-template<class T>
-struct Tap {
-       T weight;
-       T pos;
-};
-
 float sinc(float x)
 {
        if (fabs(x) < 1e-6) {
@@ -40,15 +36,67 @@ float sinc(float x)
        }
 }
 
-float lanczos_weight(float x, float a)
+float lanczos_weight(float x)
 {
-       if (fabs(x) > a) {
+       if (fabs(x) > LANCZOS_RADIUS) {
                return 0.0f;
        } else {
-               return sinc(M_PI * x) * sinc(M_PI * x / a);
+               return sinc(M_PI * x) * sinc((M_PI / LANCZOS_RADIUS) * x);
        }
 }
 
+// The weight function can be expensive to compute over and over again
+// (which will happen during e.g. a zoom), but it is also easy to interpolate
+// linearly. We compute the right half of the function (in the range of
+// 0..LANCZOS_RADIUS), with two guard elements for easier interpolation, and
+// linearly interpolate to get our function.
+//
+// We want to scale the table so that the maximum error is always smaller
+// than 1e-6. As per http://www-solar.mcs.st-andrews.ac.uk/~clare/Lectures/num-analysis/Numan_chap3.pdf,
+// the error for interpolating a function linearly between points [a,b] is
+//
+//   e = 1/2 (x-a)(x-b) f''(u_x)
+//
+// for some point u_x in [a,b] (where f(x) is our Lanczos function; we're
+// assuming LANCZOS_RADIUS=3 from here on). Obviously this is bounded by
+// f''(x) over the entire range. Numeric optimization shows the maximum of
+// |f''(x)| to be in x=1.09369819474562880, with the value 2.40067758733152381.
+// So if the steps between consecutive values are called d, we get
+//
+//   |e| <= 1/2 (d/2)^2 2.4007
+//   |e| <= 0.1367 d^2
+//
+// Solve for e = 1e-6 yields a step size of 0.0027, which to cover the range
+// 0..3 needs 1109 steps. We round up to the next power of two, just to be sure.
+//
+// You need to call lanczos_table_init_done before the first call to
+// lanczos_weight_cached.
+#define LANCZOS_TABLE_SIZE 2048
+bool lanczos_table_init_done = false;
+float lanczos_table[LANCZOS_TABLE_SIZE + 2];
+
+void init_lanczos_table()
+{
+       for (unsigned i = 0; i < LANCZOS_TABLE_SIZE + 2; ++i) {
+               lanczos_table[i] = lanczos_weight(float(i) * (LANCZOS_RADIUS / LANCZOS_TABLE_SIZE));
+       }
+       lanczos_table_init_done = true;
+}
+
+float lanczos_weight_cached(float x)
+{
+       x = fabs(x);
+       if (x > LANCZOS_RADIUS) {
+               return 0.0f;
+       }
+       float table_pos = x * (LANCZOS_TABLE_SIZE / LANCZOS_RADIUS);
+       unsigned table_pos_int = int(table_pos);  // Truncate towards zero.
+       float table_pos_frac = table_pos - table_pos_int;
+       assert(table_pos < LANCZOS_TABLE_SIZE + 2);
+       return lanczos_table[table_pos_int] +
+               table_pos_frac * (lanczos_table[table_pos_int + 1] - lanczos_table[table_pos_int]);
+}
+
 // Euclid's algorithm, from Wikipedia.
 unsigned gcd(unsigned a, unsigned b)
 {
@@ -61,9 +109,24 @@ unsigned gcd(unsigned a, unsigned b)
 }
 
 template<class DestFloat>
-unsigned combine_samples(const Tap<float> *src, Tap<DestFloat> *dst, unsigned src_size, unsigned num_src_samples, unsigned max_samples_saved)
+unsigned combine_samples(const Tap<float> *src, Tap<DestFloat> *dst, float num_subtexels, float inv_num_subtexels, unsigned num_src_samples, unsigned max_samples_saved)
 {
+       // Cut off near-zero values at both sides.
        unsigned num_samples_saved = 0;
+       while (num_samples_saved < max_samples_saved &&
+              num_src_samples > 0 &&
+              fabs(src[0].weight) < 1e-6) {
+               ++src;
+               --num_src_samples;
+               ++num_samples_saved;
+       }
+       while (num_samples_saved < max_samples_saved &&
+              num_src_samples > 0 &&
+              fabs(src[num_src_samples - 1].weight) < 1e-6) {
+               --num_src_samples;
+               ++num_samples_saved;
+       }
+
        for (unsigned i = 0, j = 0; i < num_src_samples; ++i, ++j) {
                // Copy the sample directly; it will be overwritten later if we can combine.
                if (dst != NULL) {
@@ -92,9 +155,9 @@ unsigned combine_samples(const Tap<float> *src, Tap<DestFloat> *dst, unsigned sr
                float pos2 = src[i + 1].pos;
                assert(pos2 > pos1);
 
-               fp16_int_t pos, total_weight;
+               DestFloat pos, total_weight;
                float sum_sq_error;
-               combine_two_samples(w1, w2, pos1, pos2, src_size, &pos, &total_weight, &sum_sq_error);
+               combine_two_samples(w1, w2, pos1, pos2, num_subtexels, inv_num_subtexels, &pos, &total_weight, &sum_sq_error);
 
                // If the interpolation error is larger than that of about sqrt(2) of
                // a level at 8-bit precision, don't combine. (You'd think 1.0 was enough,
@@ -123,12 +186,13 @@ template<class T>
 void normalize_sum(Tap<T>* vals, unsigned num)
 {
        for (int normalize_pass = 0; normalize_pass < 2; ++normalize_pass) {
-               double sum = 0.0;
+               float sum = 0.0;
                for (unsigned i = 0; i < num; ++i) {
-                       sum += to_fp64(vals[i].weight);
+                       sum += to_fp32(vals[i].weight);
                }
+               float inv_sum = 1.0 / sum;
                for (unsigned i = 0; i < num; ++i) {
-                       vals[i].weight = from_fp64<T>(to_fp64(vals[i].weight) / sum);
+                       vals[i].weight = from_fp32<T>(to_fp32(vals[i].weight) * inv_sum);
                }
        }
 }
@@ -142,25 +206,30 @@ void normalize_sum(Tap<T>* vals, unsigned num)
 //
 // The greedy strategy for combining samples is optimal.
 template<class DestFloat>
-unsigned combine_many_samples(const Tap<float> *weights, unsigned src_size, unsigned src_samples, unsigned dst_samples, Tap<DestFloat> **bilinear_weights)
+unsigned combine_many_samples(const Tap<float> *weights, unsigned src_size, unsigned src_samples, unsigned dst_samples, unique_ptr<Tap<DestFloat>[]> *bilinear_weights)
 {
-       int src_bilinear_samples = 0;
-       for (unsigned y = 0; y < dst_samples; ++y) {
-               unsigned num_samples_saved = combine_samples<DestFloat>(weights + y * src_samples, NULL, src_size, src_samples, UINT_MAX);
-               src_bilinear_samples = max<int>(src_bilinear_samples, src_samples - num_samples_saved);
+       float num_subtexels = src_size / movit_texel_subpixel_precision;
+       float inv_num_subtexels = movit_texel_subpixel_precision / src_size;
+
+       unsigned max_samples_saved = UINT_MAX;
+       for (unsigned y = 0; y < dst_samples && max_samples_saved > 0; ++y) {
+               unsigned num_samples_saved = combine_samples<DestFloat>(weights + y * src_samples, NULL, num_subtexels, inv_num_subtexels, src_samples, max_samples_saved);
+               max_samples_saved = min(max_samples_saved, num_samples_saved);
        }
 
        // Now that we know the right width, actually combine the samples.
-       *bilinear_weights = new Tap<DestFloat>[dst_samples * src_bilinear_samples];
+       unsigned src_bilinear_samples = src_samples - max_samples_saved;
+       bilinear_weights->reset(new Tap<DestFloat>[dst_samples * src_bilinear_samples]);
        for (unsigned y = 0; y < dst_samples; ++y) {
-               Tap<DestFloat> *bilinear_weights_ptr = *bilinear_weights + y * src_bilinear_samples;
+               Tap<DestFloat> *bilinear_weights_ptr = bilinear_weights->get() + y * src_bilinear_samples;
                unsigned num_samples_saved = combine_samples(
                        weights + y * src_samples,
                        bilinear_weights_ptr,
-                       src_size,
+                       num_subtexels,
+                       inv_num_subtexels,
                        src_samples,
-                       src_samples - src_bilinear_samples);
-               assert(int(src_samples) - int(num_samples_saved) == src_bilinear_samples);
+                       max_samples_saved);
+               assert(num_samples_saved == max_samples_saved);
                normalize_sum(bilinear_weights_ptr, src_bilinear_samples);
        }
        return src_bilinear_samples;
@@ -180,10 +249,10 @@ double compute_sum_sq_error(const Tap<float>* weights, unsigned num_weights,
        // Find the effective range of the bilinear-optimized kernel.
        // Due to rounding of the positions, this is not necessarily the same
        // as the intended range (ie., the range of the original weights).
-       int lower_pos = int(floor(to_fp64(bilinear_weights[0].pos) * size - 0.5));
-       int upper_pos = int(ceil(to_fp64(bilinear_weights[num_bilinear_weights - 1].pos) * size - 0.5)) + 2;
-       lower_pos = min<int>(lower_pos, lrintf(weights[0].pos * size - 0.5));
-       upper_pos = max<int>(upper_pos, lrintf(weights[num_weights - 1].pos * size - 0.5));
+       int lower_pos = int(floor(to_fp32(bilinear_weights[0].pos) * size - 0.5f));
+       int upper_pos = int(ceil(to_fp32(bilinear_weights[num_bilinear_weights - 1].pos) * size - 0.5f)) + 2;
+       lower_pos = min<int>(lower_pos, lrintf(weights[0].pos * size - 0.5f));
+       upper_pos = max<int>(upper_pos, lrintf(weights[num_weights - 1].pos * size - 0.5f) + 1);
 
        float* effective_weights = new float[upper_pos - lower_pos];
        for (int i = 0; i < upper_pos - lower_pos; ++i) {
@@ -192,7 +261,7 @@ double compute_sum_sq_error(const Tap<float>* weights, unsigned num_weights,
 
        // Now find the effective weights that result from this sampling.
        for (unsigned i = 0; i < num_bilinear_weights; ++i) {
-               const float pixel_pos = to_fp64(bilinear_weights[i].pos) * size - 0.5f;
+               const float pixel_pos = to_fp32(bilinear_weights[i].pos) * size - 0.5f;
                const int x0 = int(floor(pixel_pos)) - lower_pos;
                const int x1 = x0 + 1;
                const float f = lrintf((pixel_pos - (x0 + lower_pos)) / movit_texel_subpixel_precision) * movit_texel_subpixel_precision;
@@ -202,8 +271,8 @@ double compute_sum_sq_error(const Tap<float>* weights, unsigned num_weights,
                assert(x0 < upper_pos - lower_pos);
                assert(x1 < upper_pos - lower_pos);
 
-               effective_weights[x0] += to_fp64(bilinear_weights[i].weight) * (1.0 - f);
-               effective_weights[x1] += to_fp64(bilinear_weights[i].weight) * f;
+               effective_weights[x0] += to_fp32(bilinear_weights[i].weight) * (1.0f - f);
+               effective_weights[x1] += to_fp32(bilinear_weights[i].weight) * f;
        }
 
        // Subtract the desired weights to get the error.
@@ -224,112 +293,6 @@ double compute_sum_sq_error(const Tap<float>* weights, unsigned num_weights,
        return sum_sq_error;
 }
 
-// Given a predefined, fixed set of bilinear weight positions, try to optimize
-// their weights through some linear algebra. This can do a better job than
-// the weight calculation in combine_samples() because it can look at the entire
-// picture (an effective weight can sometimes be affected by multiple samples).
-// It will also optimize weights for non-combined samples, which is useful when
-// a sample happens in-between texels for numerical reasons.
-//
-// The math goes as follows: The desired result is a weighted sum, where the
-// weights are the coefficients in <weights>:
-//
-//   y = sum(c_j x_j, j)
-//
-// We try to approximate this by a different set of coefficients, which have
-// weights d_i and are placed at some fraction to the right of a source texel x_j.
-// This means it will influence two texels (x_j and x_{j+1}); generalizing this,
-// let us define that w_ij means the amount texel <j> influences bilinear weight
-// <i> (keeping in mind that w_ij = 0 for all but at most two different j).
-// This means the actually computed result is:
-//
-//   y' = sum(d_i w_ij x_j, j)
-//
-// We assume w_ij fixed and wish to find {d_i} so that y' gets as close to y
-// as possible. Specifically, let us consider the sum of squred errors of the
-// coefficients:
-//
-//   ε² = sum((sum( d_i w_ij, i ) - c_j)², j)
-//
-// The standard trick, which also applies just fine here, is to differentiate
-// the error with respect to each variable we wish to optimize, and set each
-// such expression to zero. Solving this equation set (which we can do efficiently
-// by letting Eigen invert a sparse matrix for us) yields the minimum possible
-// error. To see the form each such equation takes, pick any value k and
-// differentiate the expression by d_k:
-//
-//   ∂(ε²)/∂(d_k) = sum(2(sum( d_i w_ij, i ) - c_j) w_kj, j)
-//
-// Setting this expression equal to zero, dropping the irrelevant factor 2 and
-// rearranging yields:
-//
-//   sum(w_kj sum( d_i w_ij, i ), j) = sum(w_kj c_j, j)
-//
-// where again, we remember where the sums over j are over at most two elements,
-// since w_ij is nonzero for at most two values of j.
-template<class T>
-void optimize_sum_sq_error(const Tap<float>* weights, unsigned num_weights,
-                           Tap<T>* bilinear_weights, unsigned num_bilinear_weights,
-                           unsigned size)
-{
-       // Find the range of the desired weights.
-       int c_lower_pos = lrintf(weights[0].pos * size - 0.5);
-       int c_upper_pos = lrintf(weights[num_weights - 1].pos * size - 0.5) + 1;
-
-       SparseMatrix<float> A(num_bilinear_weights, num_bilinear_weights);
-       SparseVector<float> b(num_bilinear_weights);
-
-       // Convert each bilinear weight to the (x, frac) form for less junk in the code below.
-       int* pos = new int[num_bilinear_weights];
-       float* fracs = new float[num_bilinear_weights];
-       for (unsigned i = 0; i < num_bilinear_weights; ++i) {
-               const float pixel_pos = to_fp64(bilinear_weights[i].pos) * size - 0.5f;
-               const float f = pixel_pos - floor(pixel_pos);
-               pos[i] = int(floor(pixel_pos));
-               fracs[i] = lrintf(f / movit_texel_subpixel_precision) * movit_texel_subpixel_precision;
-       }
-
-       // The index ordering is a bit unusual to fit better with the
-       // notation in the derivation above.
-       for (unsigned k = 0; k < num_bilinear_weights; ++k) {
-               for (int j = pos[k]; j <= pos[k] + 1; ++j) {
-                       const float w_kj = (j == pos[k]) ? (1.0f - fracs[k]) : fracs[k];
-                       for (unsigned i = 0; i < num_bilinear_weights; ++i) {
-                               float w_ij;
-                               if (j == pos[i]) {
-                                       w_ij = 1.0f - fracs[i];
-                               } else if (j == pos[i] + 1) {
-                                       w_ij = fracs[i];
-                               } else {
-                                       // w_ij = 0
-                                       continue;
-                               }
-                               A.coeffRef(i, k) += w_kj * w_ij;
-                       }
-                       float c_j;
-                       if (j >= c_lower_pos && j < c_upper_pos) {
-                               c_j = weights[j - c_lower_pos].weight;
-                       } else {
-                               c_j = 0.0f;
-                       }
-                       b.coeffRef(k) += w_kj * c_j;
-               }
-       }
-       delete[] pos;
-       delete[] fracs;
-
-       A.makeCompressed();
-       SparseQR<SparseMatrix<float>, COLAMDOrdering<int> > qr(A);
-       assert(qr.info() == Success);
-       SparseMatrix<float> new_weights = qr.solve(b);
-       assert(qr.info() == Success);
-
-       for (unsigned i = 0; i < num_bilinear_weights; ++i) {
-               bilinear_weights[i].weight = from_fp64<T>(new_weights.coeff(i, 0));
-       }
-       normalize_sum(bilinear_weights, num_bilinear_weights);
-}
-
 }  // namespace
 
 ResampleEffect::ResampleEffect()
@@ -471,7 +434,8 @@ SingleResamplePassEffect::SingleResamplePassEffect(ResampleEffect *parent)
          last_output_width(-1),
          last_output_height(-1),
          last_offset(0.0 / 0.0),  // NaN.
-         last_zoom(0.0 / 0.0)  // NaN.
+         last_zoom(0.0 / 0.0),  // NaN.
+         last_texture_width(-1), last_texture_height(-1)
 {
        register_int("direction", (int *)&direction);
        register_int("input_width", &input_width);
@@ -480,8 +444,21 @@ SingleResamplePassEffect::SingleResamplePassEffect(ResampleEffect *parent)
        register_int("output_height", &output_height);
        register_float("offset", &offset);
        register_float("zoom", &zoom);
+       register_uniform_sampler2d("sample_tex", &uniform_sample_tex);
+       register_uniform_int("num_samples", &uniform_num_samples);
+       register_uniform_float("num_loops", &uniform_num_loops);
+       register_uniform_float("slice_height", &uniform_slice_height);
+       register_uniform_float("sample_x_scale", &uniform_sample_x_scale);
+       register_uniform_float("sample_x_offset", &uniform_sample_x_offset);
+       register_uniform_float("whole_pixel_offset", &uniform_whole_pixel_offset);
 
        glGenTextures(1, &texnum);
+
+       if (!lanczos_table_init_done) {
+               // Could in theory race between two threads if we are unlucky,
+               // but that is harmless, since they'll write the same data.
+               init_lanczos_table();
+       }
 }
 
 SingleResamplePassEffect::~SingleResamplePassEffect()
@@ -523,12 +500,68 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str
                assert(false);
        }
 
+       ScalingWeights weights = calculate_scaling_weights(src_size, dst_size, zoom, offset);
+       src_bilinear_samples = weights.src_bilinear_samples;
+       num_loops = weights.num_loops;
+       slice_height = 1.0f / weights.num_loops;
+
+       // Encode as a two-component texture. Note the GL_REPEAT.
+       glActiveTexture(GL_TEXTURE0 + *sampler_num);
+       check_error();
+       glBindTexture(GL_TEXTURE_2D, texnum);
+       check_error();
+       if (last_texture_width == -1) {
+               // Need to set this state the first time.
+               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
+               check_error();
+               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
+               check_error();
+               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
+               check_error();
+       }
+
+       GLenum type, internal_format;
+       void *pixels;
+       assert((weights.bilinear_weights_fp16 == nullptr) != (weights.bilinear_weights_fp32 == nullptr));
+       if (weights.bilinear_weights_fp32 != nullptr) {
+               type = GL_FLOAT;
+               internal_format = GL_RG32F;
+               pixels = weights.bilinear_weights_fp32.get();
+       } else {
+               type = GL_HALF_FLOAT;
+               internal_format = GL_RG16F;
+               pixels = weights.bilinear_weights_fp16.get();
+       }
+
+       if (int(weights.src_bilinear_samples) == last_texture_width &&
+           int(weights.dst_samples) == last_texture_height &&
+           internal_format == last_texture_internal_format) {
+               // Texture dimensions and type are unchanged; it is more efficient
+               // to just update it rather than making an entirely new texture.
+               glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, weights.src_bilinear_samples, weights.dst_samples, GL_RG, type, pixels);
+       } else {
+               glTexImage2D(GL_TEXTURE_2D, 0, internal_format, weights.src_bilinear_samples, weights.dst_samples, 0, GL_RG, type, pixels);
+               last_texture_width = weights.src_bilinear_samples;
+               last_texture_height = weights.dst_samples;
+               last_texture_internal_format = internal_format;
+       }
+       check_error();
+}
+
+ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, float zoom, float offset)
+{
+       if (!lanczos_table_init_done) {
+               // Only needed if run from outside ResampleEffect.
+               init_lanczos_table();
+       }
+
        // For many resamplings (e.g. 640 -> 1280), we will end up with the same
        // set of samples over and over again in a loop. Thus, we can compute only
        // the first such loop, and then ask the card to repeat the texture for us.
        // This is both easier on the texture cache and lowers our CPU cost for
        // generating the kernel somewhat.
        float scaling_factor;
+       int num_loops;
        if (fabs(zoom - 1.0f) < 1e-6) {
                num_loops = gcd(src_size, dst_size);
                scaling_factor = float(dst_size) / float(src_size);
@@ -541,7 +574,6 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str
                num_loops = 1;
                scaling_factor = zoom * float(dst_size) / float(src_size);
        }
-       slice_height = 1.0f / num_loops;
        unsigned dst_samples = dst_size / num_loops;
 
        // Sample the kernel in the right place. A diagram with a triangular kernel
@@ -596,7 +628,7 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str
        float radius_scaling_factor = min(scaling_factor, 1.0f);
        int int_radius = lrintf(LANCZOS_RADIUS / radius_scaling_factor);
        int src_samples = int_radius * 2 + 1;
-       Tap<float> *weights = new Tap<float>[dst_samples * src_samples];
+       unique_ptr<Tap<float>[]> weights(new Tap<float>[dst_samples * src_samples]);
        float subpixel_offset = offset - lrintf(offset);  // The part not covered by whole_pixel_offset.
        assert(subpixel_offset >= -0.5f && subpixel_offset <= 0.5f);
        for (unsigned y = 0; y < dst_samples; ++y) {
@@ -606,67 +638,47 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str
                int base_src_y = lrintf(center_src_y);
 
                // Now sample <int_radius> pixels on each side around that point.
+               float inv_src_size = 1.0 / float(src_size);
                for (int i = 0; i < src_samples; ++i) {
                        int src_y = base_src_y + i - int_radius;
-                       float weight = lanczos_weight(radius_scaling_factor * (src_y - center_src_y - subpixel_offset), LANCZOS_RADIUS);
+                       float weight = lanczos_weight_cached(radius_scaling_factor * (src_y - center_src_y - subpixel_offset));
                        weights[y * src_samples + i].weight = weight * radius_scaling_factor;
-                       weights[y * src_samples + i].pos = (src_y + 0.5) / float(src_size);
+                       weights[y * src_samples + i].pos = (src_y + 0.5f) * inv_src_size;
                }
        }
 
        // Now make use of the bilinear filtering in the GPU to reduce the number of samples
        // we need to make. Try fp16 first; if it's not accurate enough, we go to fp32.
-       Tap<fp16_int_t> *bilinear_weights_fp16;
-       src_bilinear_samples = combine_many_samples(weights, src_size, src_samples, dst_samples, &bilinear_weights_fp16);
-       Tap<float> *bilinear_weights_fp32 = NULL;
-       bool fallback_to_fp32 = false;
+       // Our tolerance level for total error is a bit higher than the one for invididual
+       // samples, since one would assume overall errors in the shape don't matter as much.
+       const float max_error = 2.0f / (255.0f * 255.0f);
+       unique_ptr<Tap<fp16_int_t>[]> bilinear_weights_fp16;
+       int src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, dst_samples, &bilinear_weights_fp16);
+       unique_ptr<Tap<float>[]> bilinear_weights_fp32 = NULL;
        double max_sum_sq_error_fp16 = 0.0;
        for (unsigned y = 0; y < dst_samples; ++y) {
-               optimize_sum_sq_error(
-                       weights + y * src_samples, src_samples,
-                       bilinear_weights_fp16 + y * src_bilinear_samples, src_bilinear_samples,
-                       src_size);
                double sum_sq_error_fp16 = compute_sum_sq_error(
-                       weights + y * src_samples, src_samples,
-                       bilinear_weights_fp16 + y * src_bilinear_samples, src_bilinear_samples,
+                       weights.get() + y * src_samples, src_samples,
+                       bilinear_weights_fp16.get() + y * src_bilinear_samples, src_bilinear_samples,
                        src_size);
                max_sum_sq_error_fp16 = std::max(max_sum_sq_error_fp16, sum_sq_error_fp16);
-       }
-
-       // Our tolerance level for total error is a bit higher than the one for invididual
-       // samples, since one would assume overall errors in the shape don't matter as much.
-       if (max_sum_sq_error_fp16 > 2.0f / (255.0f * 255.0f)) {
-               fallback_to_fp32 = true;
-               src_bilinear_samples = combine_many_samples(weights, src_size, src_samples, dst_samples, &bilinear_weights_fp32);
-               for (unsigned y = 0; y < dst_samples; ++y) {
-                       optimize_sum_sq_error(
-                               weights + y * src_samples, src_samples,
-                               bilinear_weights_fp32 + y * src_bilinear_samples, src_bilinear_samples,
-                               src_size);
+               if (max_sum_sq_error_fp16 > max_error) {
+                       break;
                }
        }
 
-       // Encode as a two-component texture. Note the GL_REPEAT.
-       glActiveTexture(GL_TEXTURE0 + *sampler_num);
-       check_error();
-       glBindTexture(GL_TEXTURE_2D, texnum);
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
-       check_error();
-       if (fallback_to_fp32) {
-               glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, src_bilinear_samples, dst_samples, 0, GL_RG, GL_FLOAT, bilinear_weights_fp32);
-       } else {
-               glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, src_bilinear_samples, dst_samples, 0, GL_RG, GL_HALF_FLOAT, bilinear_weights_fp16);
+       if (max_sum_sq_error_fp16 > max_error) {
+               bilinear_weights_fp16.reset();
+               src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, dst_samples, &bilinear_weights_fp32);
        }
-       check_error();
 
-       delete[] weights;
-       delete[] bilinear_weights_fp16;
-       delete[] bilinear_weights_fp32;
+       ScalingWeights ret;
+       ret.src_bilinear_samples = src_bilinear_samples;
+       ret.dst_samples = dst_samples;
+       ret.num_loops = num_loops;
+       ret.bilinear_weights_fp16 = move(bilinear_weights_fp16);
+       ret.bilinear_weights_fp32 = move(bilinear_weights_fp32);
+       return ret;
 }
 
 void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
@@ -698,31 +710,31 @@ void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const strin
        glBindTexture(GL_TEXTURE_2D, texnum);
        check_error();
 
-       set_uniform_int(glsl_program_num, prefix, "sample_tex", *sampler_num);
+       uniform_sample_tex = *sampler_num;
        ++*sampler_num;
-       set_uniform_int(glsl_program_num, prefix, "num_samples", src_bilinear_samples);
-       set_uniform_float(glsl_program_num, prefix, "num_loops", num_loops);
-       set_uniform_float(glsl_program_num, prefix, "slice_height", slice_height);
+       uniform_num_samples = src_bilinear_samples;
+       uniform_num_loops = num_loops;
+       uniform_slice_height = slice_height;
 
        // Instructions for how to convert integer sample numbers to positions in the weight texture.
-       set_uniform_float(glsl_program_num, prefix, "sample_x_scale", 1.0f / src_bilinear_samples);
-       set_uniform_float(glsl_program_num, prefix, "sample_x_offset", 0.5f / src_bilinear_samples);
+       uniform_sample_x_scale = 1.0f / src_bilinear_samples;
+       uniform_sample_x_offset = 0.5f / src_bilinear_samples;
 
-       float whole_pixel_offset;
        if (direction == SingleResamplePassEffect::VERTICAL) {
-               whole_pixel_offset = lrintf(offset) / float(input_height);
+               uniform_whole_pixel_offset = lrintf(offset) / float(input_height);
        } else {
-               whole_pixel_offset = lrintf(offset) / float(input_width);
+               uniform_whole_pixel_offset = lrintf(offset) / float(input_width);
        }
-       set_uniform_float(glsl_program_num, prefix, "whole_pixel_offset", whole_pixel_offset);
 
        // We specifically do not want mipmaps on the input texture;
        // they break minification.
        Node *self = chain->find_node_for_effect(this);
-       glActiveTexture(chain->get_input_sampler(self, 0));
-       check_error();
-       glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
-       check_error();
+       if (chain->has_input_sampler(self, 0)) {
+               glActiveTexture(chain->get_input_sampler(self, 0));
+               check_error();
+               glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
+               check_error();
+       }
 }
 
 }  // namespace movit