]> git.sesse.net Git - movit/blobdiff - white_balance_effect.cpp
Convert a loop to range-based for.
[movit] / white_balance_effect.cpp
index d022984b71676a2abb5d38a2c1a1014a6860216f..07c95cac4ca473b52dda9f9d80ddbf9fda918a52 100644 (file)
@@ -1,13 +1,19 @@
-#include <math.h>
-#include <assert.h>
-
+#include <Eigen/Core>
 #include <Eigen/LU>
+#include <epoxy/gl.h>
+#include <assert.h>
 
-#include "white_balance_effect.h"
+#include "colorspace_conversion_effect.h"
+#include "d65.h"
+#include "effect_util.h"
+#include "image_format.h"
 #include "util.h"
-#include "opengl.h"
+#include "white_balance_effect.h"
 
 using namespace Eigen;
+using namespace std;
+
+namespace movit {
 
 namespace {
 
@@ -21,7 +27,7 @@ Vector3d convert_color_temperature_to_xyz(float T)
        assert(T <= 15000.0f);
 
        if (T <= 4000.0f) {
-               x = ((-0.2661239e9 * invT - 0.2343580e6) * invT + 0.8776956e3) * invT + 0.179910;
+               x = ((-0.2661239e9 * invT - 0.2343589e6) * invT + 0.8776956e3) * invT + 0.179910;
        } else {
                x = ((-3.0258469e9 * invT + 2.1070379e6) * invT + 0.2226347e3) * invT + 0.240390;
        }
@@ -37,51 +43,56 @@ Vector3d convert_color_temperature_to_xyz(float T)
        return Vector3d(x, y, 1.0 - x - y);
 }
 
-// Assuming sRGB primaries, from Wikipedia.
-double rgb_to_xyz_matrix[9] = {
-       0.4124, 0.2126, 0.0193, 
-       0.3576, 0.7152, 0.1192,
-       0.1805, 0.0722, 0.9505,
-};
-
 /*
- * There are several different LMS spaces, at least according to Wikipedia.
- * Through practical testing, I've found most of them (like the CIECAM02 model)
- * to yield a result that is too reddish in practice, possibly because they
- * are intended for different illuminants than what sRGB assumes. 
+ * There are several different perceptual color spaces with different intended
+ * uses; for instance, CIECAM02 uses one space (CAT02) for purposes of computing
+ * chromatic adaptation (the effect that the human eye perceives an object as
+ * the same color even under differing illuminants), but a different space
+ * (Hunt-Pointer-Estevez, or HPE) for the actual perception post-adaptation. 
+ *
+ * CIECAM02 chromatic adaptation, while related to the transformation we want,
+ * is a more complex phenomenon that depends on factors like the viewing conditions
+ * (e.g. amount of surrounding light), and can no longer be implemented by just scaling
+ * each component in LMS space. The simpler way out is to use the HPE matrix,
+ * which is intended to be close to the actual cone response; this results in
+ * the “von Kries transformation” when we couple it with normalization in LMS space.
  *
- * This is the RLAB space, normalized to D65, which means that the standard
- * D65 illuminant (x=0.31271, y=0.32902, z=1-y-x) gives L=M=S under this transformation.
- * This makes sense because sRGB (which is used to derive those XYZ values
- * in the first place) assumes the D65 illuminant, and so the D65 illuminant
- * also gives R=G=B in sRGB.
+ * http://www.brucelindbloom.com/index.html?Eqn_ChromAdapt.html compares
+ * von Kries transformation with using another matrix, the Bradford matrix,
+ * and generally finds that the Bradford method gives a better result,
+ * as in giving better matches with the true result (as calculated using
+ * spectral matching) when converting between various CIE illuminants.
+ * The actual perceptual differences were found to be minor, though.
+ * We use the Bradford tranformation matrix from that page, and compute the
+ * inverse ourselves. (The Bradford matrix is also used in CMCCAT97.) 
  */
 const double xyz_to_lms_matrix[9] = {
-        0.4002, -0.2263,    0.0,
-        0.7076,  1.1653,    0.0,
-       -0.0808,  0.0457, 0.9182,
+        0.7328, -0.7036,  0.0030,
+        0.4296,  1.6975,  0.0136,
+       -0.1624,  0.0061,  0.9834,
 };
 
 /*
- * For a given reference color (given in XYZ space),
- * compute scaling factors for L, M and S. What we want at the output is equal L, M and S
- * for the reference color (making it a neutral illuminant), or sL ref_L = sM ref_M = sS ref_S.
- * This removes two degrees of freedom for our system, and we only need to find fL.
+ * For a given reference color (given in XYZ space), compute scaling factors
+ * for L, M and S. What we want at the output is turning the reference color
+ * into a scaled version of the D65 illuminant (giving it R=G=B in sRGB), or
+ * 
+ *   (sL ref_L, sM ref_M, sS ref_S) = (s d65_L, s d65_M, s d65_S)
  *
+ * This removes two degrees of freedom from our system, and we only need to find s.
  * A reasonable last constraint would be to preserve Y, approximately the brightness,
- * for the reference color. Since L'=M'=S' and the Y row of the LMS-to-XYZ matrix
- * sums to unity, we know that Y'=L', and it's easy to find the fL that sets Y'=Y.
+ * for the reference color. Thus, we choose our D65 illuminant's Y such that it is
+ * equal to the reference color's Y, and the rest is easy.
  */
-Vector3d compute_lms_scaling_factors(const Vector3d &xyz)
+Vector3d compute_lms_scaling_factors(const Vector3d &ref_xyz)
 {
-       Vector3d lms = Map<const Matrix3d>(xyz_to_lms_matrix) * xyz;
-       double l = lms[0];
-       double m = lms[1];
-       double s = lms[2];
+       Vector3d ref_lms = Map<const Matrix3d>(xyz_to_lms_matrix) * ref_xyz;
+       Vector3d d65_lms = Map<const Matrix3d>(xyz_to_lms_matrix) *
+               (ref_xyz[1] * Vector3d(d65_X, d65_Y, d65_Z));  // d65_Y = 1.0.
 
-       double scale_l = xyz[1] / l;
-       double scale_m = scale_l * (l / m);
-       double scale_s = scale_l * (l / s);
+       double scale_l = d65_lms[0] / ref_lms[0];
+       double scale_m = d65_lms[1] / ref_lms[1];
+       double scale_s = d65_lms[2] / ref_lms[2];
 
        return Vector3d(scale_l, scale_m, scale_s);
 }
@@ -94,17 +105,19 @@ WhiteBalanceEffect::WhiteBalanceEffect()
 {
        register_vec3("neutral_color", (float *)&neutral_color);
        register_float("output_color_temperature", &output_color_temperature);
+       register_uniform_mat3("correction_matrix", &uniform_correction_matrix);
 }
 
-std::string WhiteBalanceEffect::output_fragment_shader()
+string WhiteBalanceEffect::output_fragment_shader()
 {
        return read_file("white_balance_effect.frag");
 }
 
-void WhiteBalanceEffect::set_gl_state(GLuint glsl_program_num, const std::string &prefix, unsigned *sampler_num)
+void WhiteBalanceEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
 {
+       Matrix3d rgb_to_xyz_matrix = ColorspaceConversionEffect::get_xyz_matrix(COLORSPACE_sRGB);
        Vector3d rgb(neutral_color.r, neutral_color.g, neutral_color.b);
-       Vector3d xyz = Map<const Matrix3d>(rgb_to_xyz_matrix) * rgb;
+       Vector3d xyz = rgb_to_xyz_matrix * rgb;
        Vector3d lms_scale = compute_lms_scaling_factors(xyz);
 
        /*
@@ -124,17 +137,18 @@ void WhiteBalanceEffect::set_gl_state(GLuint glsl_program_num, const std::string
        lms_scale[0] *= lms_scale_ref[0] / lms_scale_white[0];
        lms_scale[1] *= lms_scale_ref[1] / lms_scale_white[1];
        lms_scale[2] *= lms_scale_ref[2] / lms_scale_white[2];
-       
+
        /*
         * Concatenate all the different linear operations into a single 3x3 matrix.
         * Note that since we postmultiply our vectors, the order of the matrices
         * has to be the opposite of the execution order.
         */
-       Matrix3d corr_matrix =
-               Map<const Matrix3d>(rgb_to_xyz_matrix).inverse() *
+       uniform_correction_matrix =
+               rgb_to_xyz_matrix.inverse() *
                Map<const Matrix3d>(xyz_to_lms_matrix).inverse() *
                lms_scale.asDiagonal() *
                Map<const Matrix3d>(xyz_to_lms_matrix) *
-               Map<const Matrix3d>(rgb_to_xyz_matrix);
-       set_uniform_mat3(glsl_program_num, prefix, "correction_matrix", corr_matrix);
+               rgb_to_xyz_matrix;
 }
+
+}  // namespace movit