X-Git-Url: https://git.sesse.net/?p=movit;a=blobdiff_plain;f=colorspace_conversion_effect.cpp;h=89123d313e861802faaeb19e04f8e900f73fdfbe;hp=fe8119ae76ce3a8741d106bbfc41ba9f33807d3f;hb=4625d0a9601e33201f257c68392c4b1830388a79;hpb=a88f299483ffe5068cd2828513078b9103325da8 diff --git a/colorspace_conversion_effect.cpp b/colorspace_conversion_effect.cpp index fe8119a..89123d3 100644 --- a/colorspace_conversion_effect.cpp +++ b/colorspace_conversion_effect.cpp @@ -1,4 +1,19 @@ +#include + #include "colorspace_conversion_effect.h" +#include "util.h" + +// Color coordinates from Rec. 709; sRGB uses the same primaries. +double rec709_x_R = 0.640, rec709_x_G = 0.300, rec709_x_B = 0.150; +double rec709_y_R = 0.330, rec709_y_G = 0.600, rec709_y_B = 0.060; + +// Color coordinates from Rec. 601. (Separate for 525- and 625-line systems.) +double rec601_525_x_R = 0.630, rec601_525_x_G = 0.310, rec601_525_x_B = 0.155; +double rec601_525_y_R = 0.340, rec601_525_y_G = 0.595, rec601_525_y_B = 0.070; +double rec601_625_x_R = 0.640, rec601_625_x_G = 0.290, rec601_625_x_B = 0.150; +double rec601_625_y_R = 0.330, rec601_625_y_G = 0.600, rec601_625_y_B = 0.060; + +double d65_x = 0.3127, d65_y = 0.3290; ColorSpaceConversionEffect::ColorSpaceConversionEffect() : source_space(COLORSPACE_sRGB), @@ -7,3 +22,132 @@ ColorSpaceConversionEffect::ColorSpaceConversionEffect() register_int("source_space", (int *)&source_space); register_int("destination_space", (int *)&destination_space); } + +void get_xyz_matrix(ColorSpace space, Matrix3x3 m) +{ + if (space == COLORSPACE_XYZ) { + m[0] = 1.0f; m[3] = 0.0f; m[6] = 0.0f; + m[1] = 0.0f; m[4] = 1.0f; m[7] = 0.0f; + m[2] = 0.0f; m[5] = 0.0f; m[8] = 1.0f; + return; + } + + double x_R, x_G, x_B; + double y_R, y_G, y_B; + + switch (space) { + case COLORSPACE_REC_709: // And sRGB. + x_R = rec709_x_R; x_G = rec709_x_G; x_B = rec709_x_B; + y_R = rec709_y_R; y_G = rec709_y_G; y_B = rec709_y_B; + break; + case COLORSPACE_REC_601_525: + x_R = rec601_525_x_R; x_G = rec601_525_x_G; x_B = rec601_525_x_B; + y_R = rec601_525_y_R; y_G = rec601_525_y_G; y_B = rec601_525_y_B; + break; + case COLORSPACE_REC_601_625: + x_R = rec601_625_x_R; x_G = rec601_625_x_G; x_B = rec601_625_x_B; + y_R = rec601_625_y_R; y_G = rec601_625_y_G; y_B = rec601_625_y_B; + break; + default: + assert(false); + } + + // Recover z = 1 - x - y. + double z_R = 1.0 - x_R - y_R; + double z_G = 1.0 - x_G - y_G; + double z_B = 1.0 - x_B - y_B; + + // Find the XYZ coordinates of D65 (white point for both Rec. 601 and 709), + // normalized so that Y=1. + double d65_X = d65_x / d65_y; + double d65_Y = 1.0; + double d65_Z = (1.0 - d65_x - d65_y) / d65_y; + + // We have, for each primary (example is with red): + // + // X_R / (X_R + Y_R + Z_R) = x_R + // Y_R / (X_R + Y_R + Z_R) = y_R + // Z_R / (X_R + Y_R + Z_R) = z_R + // + // Some algebraic fiddling yields (unsurprisingly): + // + // X_R = (x_R / y_R) Y_R + // Z_R = (z_R / y_R) Z_R + // + // We also know that since RGB=(1,1,1) should give us the + // D65 illuminant, we must have + // + // X_R + X_G + X_B = D65_X + // Y_R + Y_G + Y_B = D65_Y + // Z_R + Z_G + Z_B = D65_Z + // + // But since we already know how to express Y and Z by + // some constant multiple of X, this reduces to + // + // k1 Y_R + k2 Y_G + k3 Y_B = D65_X + // Y_R + Y_G + Y_B = D65_Y + // k4 Y_R + k5 Y_G + k6 Y_B = D65_Z + // + // Which we can solve for (Y_R, Y_G, Y_B) by inverting a 3x3 matrix. + + Matrix3x3 temp, inverted; + temp[0] = x_R / y_R; + temp[3] = x_G / y_G; + temp[6] = x_B / y_B; + + temp[1] = 1.0; + temp[4] = 1.0; + temp[7] = 1.0; + + temp[2] = z_R / y_R; + temp[5] = z_G / y_G; + temp[8] = z_B / y_B; + + invert_3x3_matrix(temp, inverted); + float Y_R, Y_G, Y_B; + multiply_3x3_matrix_float3(inverted, d65_X, d65_Y, d65_Z, &Y_R, &Y_G, &Y_B); + + // Now convert xyY -> XYZ. + double X_R = temp[0] * Y_R; + double Z_R = temp[2] * Y_R; + double X_G = temp[3] * Y_G; + double Z_G = temp[5] * Y_G; + double X_B = temp[6] * Y_B; + double Z_B = temp[8] * Y_B; + + m[0] = X_R; m[3] = X_G; m[6] = X_B; + m[1] = Y_R; m[4] = Y_G; m[7] = Y_B; + m[2] = Z_R; m[5] = Z_G; m[8] = Z_B; +} + +std::string ColorSpaceConversionEffect::output_fragment_shader() +{ + // Create a matrix to convert from source space -> XYZ, + // another matrix to convert from XYZ -> destination space, + // and then concatenate the two. + // + // Since we right-multiply the RGB column vector, the matrix + // concatenation order needs to be the opposite of the operation order. + Matrix3x3 m; + + Matrix3x3 source_space_to_xyz; + Matrix3x3 destination_space_to_xyz; + Matrix3x3 xyz_to_destination_space; + + get_xyz_matrix(source_space, source_space_to_xyz); + get_xyz_matrix(destination_space, destination_space_to_xyz); + invert_3x3_matrix(destination_space_to_xyz, xyz_to_destination_space); + + multiply_3x3_matrices(xyz_to_destination_space, source_space_to_xyz, m); + + char buf[1024]; + sprintf(buf, + "const mat3 PREFIX(conversion_matrix) = mat3(\n" + " %.8f, %.8f, %.8f,\n" + " %.8f, %.8f, %.8f,\n" + " %.8f, %.8f, %.8f);\n\n", + m[0], m[1], m[2], + m[3], m[4], m[5], + m[6], m[7], m[8]); + return buf + read_file("colorspace_conversion_effect.frag"); +}