X-Git-Url: https://git.sesse.net/?p=movit;a=blobdiff_plain;f=effect_chain.cpp;h=13f46344af85a07fb79376afa01a3d45e305b88d;hp=32ee2cee4bf51e9656df649577673789cff6ac84;hb=9dcbd93164611ea111cc29519c18193d4f571ac1;hpb=a592c55caca0fb654bad4ec43b84c46abcee21c2 diff --git a/effect_chain.cpp b/effect_chain.cpp index 32ee2ce..13f4634 100644 --- a/effect_chain.cpp +++ b/effect_chain.cpp @@ -1,99 +1,596 @@ #define GL_GLEXT_PROTOTYPES 1 #include +#include #include #include #include +#include +#include +#include +#include + #include "util.h" #include "effect_chain.h" #include "gamma_expansion_effect.h" -#include "lift_gamma_gain_effect.h" +#include "gamma_compression_effect.h" #include "colorspace_conversion_effect.h" +#include "input.h" EffectChain::EffectChain(unsigned width, unsigned height) - : width(width), height(height), finalized(false) {} + : width(width), + height(height), + finalized(false) {} -void EffectChain::add_input(const ImageFormat &format) +Input *EffectChain::add_input(Input *input) { - input_format = format; - current_color_space = format.color_space; - current_gamma_curve = format.gamma_curve; + char eff_id[256]; + sprintf(eff_id, "src_image%u", (unsigned)inputs.size()); + + effects.push_back(input); + inputs.push_back(input); + output_color_space.insert(std::make_pair(input, input->get_color_space())); + output_gamma_curve.insert(std::make_pair(input, input->get_gamma_curve())); + effect_ids.insert(std::make_pair(input, eff_id)); + incoming_links.insert(std::make_pair(input, std::vector())); + return input; } void EffectChain::add_output(const ImageFormat &format) { output_format = format; } - -Effect *instantiate_effect(EffectId effect) + +void EffectChain::add_effect_raw(Effect *effect, const std::vector &inputs) { - switch (effect) { - case GAMMA_CONVERSION: - return new GammaExpansionEffect(); - case RGB_PRIMARIES_CONVERSION: - return new GammaExpansionEffect(); - case LIFT_GAMMA_GAIN: - return new LiftGammaGainEffect(); - } - assert(false); + char effect_id[256]; + sprintf(effect_id, "eff%u", (unsigned)effects.size()); + + effects.push_back(effect); + effect_ids.insert(std::make_pair(effect, effect_id)); + assert(inputs.size() == effect->num_inputs()); + for (unsigned i = 0; i < inputs.size(); ++i) { + assert(std::find(effects.begin(), effects.end(), inputs[i]) != effects.end()); + outgoing_links[inputs[i]].push_back(effect); + } + incoming_links.insert(std::make_pair(effect, inputs)); + output_gamma_curve[effect] = output_gamma_curve[last_added_effect()]; + output_color_space[effect] = output_color_space[last_added_effect()]; } -Effect *EffectChain::add_effect(EffectId effect_id) +void EffectChain::find_all_nonlinear_inputs(Effect *effect, + std::vector *nonlinear_inputs, + std::vector *intermediates) { - Effect *effect = instantiate_effect(effect_id); + assert(output_gamma_curve.count(effect) != 0); + if (output_gamma_curve[effect] == GAMMA_LINEAR) { + return; + } + if (effect->num_inputs() == 0) { + nonlinear_inputs->push_back(static_cast(effect)); + } else { + intermediates->push_back(effect); - if (effect->needs_linear_light() && current_gamma_curve != GAMMA_LINEAR) { - GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect(); - gamma_conversion->set_int("source_curve", current_gamma_curve); - effects.push_back(gamma_conversion); - current_gamma_curve = GAMMA_LINEAR; + assert(incoming_links.count(effect) == 1); + std::vector deps = incoming_links[effect]; + assert(effect->num_inputs() == deps.size()); + for (unsigned i = 0; i < deps.size(); ++i) { + find_all_nonlinear_inputs(deps[i], nonlinear_inputs, intermediates); + } } +} - if (effect->needs_srgb_primaries() && current_color_space != COLORSPACE_sRGB) { - assert(current_gamma_curve == GAMMA_LINEAR); - ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect(); - colorspace_conversion->set_int("source_space", current_color_space); - colorspace_conversion->set_int("destination_space", COLORSPACE_sRGB); - effects.push_back(colorspace_conversion); - current_color_space = COLORSPACE_sRGB; +Effect *EffectChain::normalize_to_linear_gamma(Effect *input) +{ + // Find out if all the inputs can be set to deliver sRGB inputs. + // If so, we can just ask them to do that instead of inserting a + // (possibly expensive) conversion operation. + // + // NOTE: We assume that effects generally don't mess with the gamma + // curve (except GammaCompressionEffect, which should never be + // inserted into a chain when this is called), so that we can just + // update the output gamma as we go. + // + // TODO: Setting this flag for one source might confuse a different + // part of the pipeline using the same source. + std::vector nonlinear_inputs; + std::vector intermediates; + find_all_nonlinear_inputs(input, &nonlinear_inputs, &intermediates); + + bool all_ok = true; + for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { + all_ok &= nonlinear_inputs[i]->can_output_linear_gamma(); } - // not handled yet - assert(!effect->needs_many_samples()); - assert(!effect->needs_mipmaps()); + if (all_ok) { + for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { + bool ok = nonlinear_inputs[i]->set_int("output_linear_gamma", 1); + assert(ok); + output_gamma_curve[nonlinear_inputs[i]] = GAMMA_LINEAR; + } + for (unsigned i = 0; i < intermediates.size(); ++i) { + output_gamma_curve[intermediates[i]] = GAMMA_LINEAR; + } + return input; + } - effects.push_back(effect); + // OK, that didn't work. Insert a conversion effect. + GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect(); + gamma_conversion->set_int("source_curve", output_gamma_curve[input]); + std::vector inputs; + inputs.push_back(input); + gamma_conversion->add_self_to_effect_chain(this, inputs); + output_gamma_curve[gamma_conversion] = GAMMA_LINEAR; + return gamma_conversion; +} + +Effect *EffectChain::normalize_to_srgb(Effect *input) +{ + assert(output_gamma_curve.count(input) != 0); + assert(output_color_space.count(input) != 0); + assert(output_gamma_curve[input] == GAMMA_LINEAR); + ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect(); + colorspace_conversion->set_int("source_space", output_color_space[input]); + colorspace_conversion->set_int("destination_space", COLORSPACE_sRGB); + std::vector inputs; + inputs.push_back(input); + colorspace_conversion->add_self_to_effect_chain(this, inputs); + output_color_space[colorspace_conversion] = COLORSPACE_sRGB; + return colorspace_conversion; +} + +Effect *EffectChain::add_effect(Effect *effect, const std::vector &inputs) +{ + assert(inputs.size() == effect->num_inputs()); + + std::vector normalized_inputs = inputs; + for (unsigned i = 0; i < normalized_inputs.size(); ++i) { + assert(output_gamma_curve.count(normalized_inputs[i]) != 0); + if (effect->needs_linear_light() && output_gamma_curve[normalized_inputs[i]] != GAMMA_LINEAR) { + normalized_inputs[i] = normalize_to_linear_gamma(normalized_inputs[i]); + } + assert(output_color_space.count(normalized_inputs[i]) != 0); + if (effect->needs_srgb_primaries() && output_color_space[normalized_inputs[i]] != COLORSPACE_sRGB) { + normalized_inputs[i] = normalize_to_srgb(normalized_inputs[i]); + } + } + + effect->add_self_to_effect_chain(this, normalized_inputs); return effect; } -void EffectChain::finalize() +// GLSL pre-1.30 doesn't support token pasting. Replace PREFIX(x) with _x. +std::string replace_prefix(const std::string &text, const std::string &prefix) +{ + std::string output; + size_t start = 0; + + while (start < text.size()) { + size_t pos = text.find("PREFIX(", start); + if (pos == std::string::npos) { + output.append(text.substr(start, std::string::npos)); + break; + } + + output.append(text.substr(start, pos - start)); + output.append(prefix); + output.append("_"); + + pos += strlen("PREFIX("); + + // Output stuff until we find the matching ), which we then eat. + int depth = 1; + size_t end_arg_pos = pos; + while (end_arg_pos < text.size()) { + if (text[end_arg_pos] == '(') { + ++depth; + } else if (text[end_arg_pos] == ')') { + --depth; + if (depth == 0) { + break; + } + } + ++end_arg_pos; + } + output.append(text.substr(pos, end_arg_pos - pos)); + ++end_arg_pos; + assert(depth == 0); + start = end_arg_pos; + } + return output; +} + +EffectChain::Phase EffectChain::compile_glsl_program(const std::vector &inputs, const std::vector &effects) { - std::string frag_shader = read_file("header.glsl"); + assert(!effects.empty()); + + // Deduplicate the inputs. + std::vector true_inputs = inputs; + std::sort(true_inputs.begin(), true_inputs.end()); + true_inputs.erase(std::unique(true_inputs.begin(), true_inputs.end()), true_inputs.end()); + bool input_needs_mipmaps = false; + std::string frag_shader = read_file("header.frag"); + + // Create functions for all the texture inputs that we need. + for (unsigned i = 0; i < true_inputs.size(); ++i) { + Effect *effect = true_inputs[i]; + assert(effect_ids.count(effect) != 0); + std::string effect_id = effect_ids[effect]; + + frag_shader += std::string("uniform sampler2D tex_") + effect_id + ";\n"; + frag_shader += std::string("vec4 ") + effect_id + "(vec2 tc) {\n"; + if (effect->num_inputs() == 0) { + // OpenGL's origin is bottom-left, but most graphics software assumes + // a top-left origin. Thus, for inputs that come from the user, + // we flip the y coordinate. However, for FBOs, the origin + // is all correct, so don't do anything. + frag_shader += "\ttc.y = 1.0f - tc.y;\n"; + } + frag_shader += "\treturn texture2D(tex_" + effect_id + ", tc);\n"; + frag_shader += "}\n"; + frag_shader += "\n"; + } + + std::string last_effect_id; for (unsigned i = 0; i < effects.size(); ++i) { - char effect_id[256]; - sprintf(effect_id, "eff%d", i); + Effect *effect = effects[i]; + assert(effect != NULL); + assert(effect_ids.count(effect) != 0); + std::string effect_id = effect_ids[effect]; + last_effect_id = effect_id; + + if (incoming_links[effect].size() == 1) { + frag_shader += std::string("#define INPUT ") + effect_ids[incoming_links[effect][0]] + "\n"; + } else { + for (unsigned j = 0; j < incoming_links[effect].size(); ++j) { + char buf[256]; + sprintf(buf, "#define INPUT%d %s\n", j + 1, effect_ids[incoming_links[effect][j]].c_str()); + frag_shader += buf; + } + } frag_shader += "\n"; - frag_shader += std::string("#define PREFIX(x) ") + effect_id + "_ ## x\n"; frag_shader += std::string("#define FUNCNAME ") + effect_id + "\n"; - frag_shader += effects[i]->output_glsl(); + frag_shader += replace_prefix(effect->output_convenience_uniforms(), effect_id); + frag_shader += replace_prefix(effect->output_fragment_shader(), effect_id); frag_shader += "#undef PREFIX\n"; frag_shader += "#undef FUNCNAME\n"; - frag_shader += std::string("#define LAST_INPUT ") + effect_id + "\n"; + if (incoming_links[effect].size() == 1) { + frag_shader += "#undef INPUT\n"; + } else { + for (unsigned j = 0; j < incoming_links[effect].size(); ++j) { + char buf[256]; + sprintf(buf, "#undef INPUT%d\n", j + 1); + frag_shader += buf; + } + } frag_shader += "\n"; + + input_needs_mipmaps |= effect->needs_mipmaps(); } + for (unsigned i = 0; i < effects.size(); ++i) { + Effect *effect = effects[i]; + if (effect->num_inputs() == 0) { + effect->set_int("needs_mipmaps", input_needs_mipmaps); + } + } + assert(!last_effect_id.empty()); + frag_shader += std::string("#define INPUT ") + last_effect_id + "\n"; + frag_shader.append(read_file("footer.frag")); printf("%s\n", frag_shader.c_str()); - glsl_program_num = glCreateProgram(); - GLhandleARB vs_obj = compile_shader(read_file("vs.glsl"), GL_VERTEX_SHADER); - GLhandleARB fs_obj = compile_shader(frag_shader, GL_FRAGMENT_SHADER); - glAttachObjectARB(glsl_program_num, vs_obj); + GLuint glsl_program_num = glCreateProgram(); + GLuint vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER); + GLuint fs_obj = compile_shader(frag_shader, GL_FRAGMENT_SHADER); + glAttachShader(glsl_program_num, vs_obj); check_error(); - glAttachObjectARB(glsl_program_num, fs_obj); + glAttachShader(glsl_program_num, fs_obj); check_error(); glLinkProgram(glsl_program_num); check_error(); + + Phase phase; + phase.glsl_program_num = glsl_program_num; + phase.input_needs_mipmaps = input_needs_mipmaps; + phase.inputs = true_inputs; + phase.effects = effects; + + return phase; +} + +// Construct GLSL programs, starting at the given effect and following +// the chain from there. We end a program every time we come to an effect +// marked as "needs texture bounce", one that is used by multiple other +// effects, and of course at the end. +// +// We follow a quite simple depth-first search from the output, although +// without any explicit recursion. +void EffectChain::construct_glsl_programs(Effect *output) +{ + // Which effects have already been completed in this phase? + // We need to keep track of it, as an effect with multiple outputs + // could otherwise be calculate multiple times. + std::set completed_effects; + + // Effects in the current phase, as well as inputs (outputs from other phases + // that we depend on). Note that since we start iterating from the end, + // the effect list will be in the reverse order. + std::vector this_phase_inputs; + std::vector this_phase_effects; + + // Effects that we have yet to calculate, but that we know should + // be in the current phase. + std::stack effects_todo_this_phase; + + // Effects that we have yet to calculate, but that come from other phases. + // We delay these until we have this phase done in its entirety, + // at which point we pick any of them and start a new phase from that. + std::stack effects_todo_other_phases; + + effects_todo_this_phase.push(output); + + for ( ;; ) { // Termination condition within loop. + if (!effects_todo_this_phase.empty()) { + // OK, we have more to do this phase. + Effect *effect = effects_todo_this_phase.top(); + effects_todo_this_phase.pop(); + + // This should currently only happen for effects that are phase outputs, + // and we throw those out separately below. + assert(completed_effects.count(effect) == 0); + + this_phase_effects.push_back(effect); + completed_effects.insert(effect); + + // Find all the dependencies of this effect, and add them to the stack. + assert(incoming_links.count(effect) == 1); + std::vector deps = incoming_links[effect]; + assert(effect->num_inputs() == deps.size()); + for (unsigned i = 0; i < deps.size(); ++i) { + bool start_new_phase = false; + + if (effect->needs_texture_bounce()) { + start_new_phase = true; + } + + assert(outgoing_links.count(deps[i]) == 1); + if (outgoing_links[deps[i]].size() > 1 && deps[i]->num_inputs() > 0) { + // More than one effect uses this as the input, + // and it is not a texture itself. + // The easiest thing to do (and probably also the safest + // performance-wise in most cases) is to bounce it to a texture + // and then let the next passes read from that. + start_new_phase = true; + } + + if (start_new_phase) { + effects_todo_other_phases.push(deps[i]); + this_phase_inputs.push_back(deps[i]); + } else { + effects_todo_this_phase.push(deps[i]); + } + } + continue; + } + + // No more effects to do this phase. Take all the ones we have, + // and create a GLSL program for it. + if (!this_phase_effects.empty()) { + reverse(this_phase_effects.begin(), this_phase_effects.end()); + phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects)); + this_phase_inputs.clear(); + this_phase_effects.clear(); + } + assert(this_phase_inputs.empty()); + assert(this_phase_effects.empty()); + + // If we have no effects left, exit. + if (effects_todo_other_phases.empty()) { + break; + } + + Effect *effect = effects_todo_other_phases.top(); + effects_todo_other_phases.pop(); + + if (completed_effects.count(effect) == 0) { + // Start a new phase, calculating from this effect. + effects_todo_this_phase.push(effect); + } + } + + // Finally, since the phases are found from the output but must be executed + // from the input(s), reverse them, too. + std::reverse(phases.begin(), phases.end()); +} + +void EffectChain::finalize() +{ + // Find the output effect. This is, simply, one that has no outgoing links. + // If there are multiple ones, the graph is malformed (we do not support + // multiple outputs right now). + std::vector output_effects; + for (unsigned i = 0; i < effects.size(); ++i) { + Effect *effect = effects[i]; + if (outgoing_links.count(effect) == 0 || outgoing_links[effect].size() == 0) { + output_effects.push_back(effect); + } + } + assert(output_effects.size() == 1); + Effect *output_effect = output_effects[0]; + + // Add normalizers to get the output format right. + assert(output_gamma_curve.count(output_effect) != 0); + assert(output_color_space.count(output_effect) != 0); + ColorSpace current_color_space = output_color_space[output_effect]; + if (current_color_space != output_format.color_space) { + ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect(); + colorspace_conversion->set_int("source_space", current_color_space); + colorspace_conversion->set_int("destination_space", output_format.color_space); + std::vector inputs; + inputs.push_back(output_effect); + colorspace_conversion->add_self_to_effect_chain(this, inputs); + output_color_space[colorspace_conversion] = output_format.color_space; + output_effect = colorspace_conversion; + } + GammaCurve current_gamma_curve = output_gamma_curve[output_effect]; + if (current_gamma_curve != output_format.gamma_curve) { + if (current_gamma_curve != GAMMA_LINEAR) { + output_effect = normalize_to_linear_gamma(output_effect); + current_gamma_curve = GAMMA_LINEAR; + } + GammaCompressionEffect *gamma_conversion = new GammaCompressionEffect(); + gamma_conversion->set_int("destination_curve", output_format.gamma_curve); + std::vector inputs; + inputs.push_back(output_effect); + gamma_conversion->add_self_to_effect_chain(this, inputs); + output_gamma_curve[gamma_conversion] = output_format.gamma_curve; + output_effect = gamma_conversion; + } + + // Construct all needed GLSL programs, starting at the output. + construct_glsl_programs(output_effect); + + // If we have more than one phase, we need intermediate render-to-texture. + // Construct an FBO, and then as many textures as we need. + // We choose the simplest option of having one texture per output, + // since otherwise this turns into an (albeit simple) + // register allocation problem. + if (phases.size() > 1) { + glGenFramebuffers(1, &fbo); + + for (unsigned i = 0; i < phases.size() - 1; ++i) { + Effect *output_effect = phases[i].effects.back(); + GLuint temp_texture; + glGenTextures(1, &temp_texture); + check_error(); + glBindTexture(GL_TEXTURE_2D, temp_texture); + check_error(); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); + check_error(); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); + check_error(); + glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); + check_error(); + effect_output_textures.insert(std::make_pair(output_effect, temp_texture)); + } + } + + for (unsigned i = 0; i < inputs.size(); ++i) { + inputs[i]->finalize(); + } + + finalized = true; +} + +void EffectChain::render_to_screen() +{ + assert(finalized); + + // Basic state. + glDisable(GL_BLEND); + check_error(); + glDisable(GL_DEPTH_TEST); + check_error(); + glDepthMask(GL_FALSE); + check_error(); + + glMatrixMode(GL_PROJECTION); + glLoadIdentity(); + glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0); + + glMatrixMode(GL_MODELVIEW); + glLoadIdentity(); + + if (phases.size() > 1) { + glBindFramebuffer(GL_FRAMEBUFFER, fbo); + check_error(); + } + + std::set generated_mipmaps; + for (unsigned i = 0; i < inputs.size(); ++i) { + // Inputs generate their own mipmaps if they need to + // (see input.cpp). + generated_mipmaps.insert(inputs[i]); + } + + for (unsigned phase = 0; phase < phases.size(); ++phase) { + glUseProgram(phases[phase].glsl_program_num); + check_error(); + + // Set up RTT inputs for this phase. + for (unsigned sampler = 0; sampler < phases[phase].inputs.size(); ++sampler) { + glActiveTexture(GL_TEXTURE0 + sampler); + Effect *input = phases[phase].inputs[sampler]; + assert(effect_output_textures.count(input) != 0); + glBindTexture(GL_TEXTURE_2D, effect_output_textures[input]); + check_error(); + if (phases[phase].input_needs_mipmaps) { + if (generated_mipmaps.count(input) == 0) { + glGenerateMipmap(GL_TEXTURE_2D); + check_error(); + generated_mipmaps.insert(input); + } + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); + check_error(); + } else { + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); + check_error(); + } + + assert(effect_ids.count(input)); + std::string texture_name = std::string("tex_") + effect_ids[input]; + glUniform1i(glGetUniformLocation(phases[phase].glsl_program_num, texture_name.c_str()), sampler); + check_error(); + } + + // And now the output. + if (phase == phases.size() - 1) { + // Last phase goes directly to the screen. + glBindFramebuffer(GL_FRAMEBUFFER, 0); + check_error(); + } else { + Effect *last_effect = phases[phase].effects.back(); + assert(effect_output_textures.count(last_effect) != 0); + glFramebufferTexture2D( + GL_FRAMEBUFFER, + GL_COLOR_ATTACHMENT0, + GL_TEXTURE_2D, + effect_output_textures[last_effect], + 0); + check_error(); + } + + // Give the required parameters to all the effects. + unsigned sampler_num = phases[phase].inputs.size(); + for (unsigned i = 0; i < phases[phase].effects.size(); ++i) { + Effect *effect = phases[phase].effects[i]; + effect->set_gl_state(phases[phase].glsl_program_num, effect_ids[effect], &sampler_num); + } + + // Now draw! + glBegin(GL_QUADS); + + glTexCoord2f(0.0f, 0.0f); + glVertex2f(0.0f, 0.0f); + + glTexCoord2f(1.0f, 0.0f); + glVertex2f(1.0f, 0.0f); + + glTexCoord2f(1.0f, 1.0f); + glVertex2f(1.0f, 1.0f); + + glTexCoord2f(0.0f, 1.0f); + glVertex2f(0.0f, 1.0f); + + glEnd(); + check_error(); + + for (unsigned i = 0; i < phases[phase].effects.size(); ++i) { + Effect *effect = phases[phase].effects[i]; + effect->clear_gl_state(); + } + } }