X-Git-Url: https://git.sesse.net/?p=movit;a=blobdiff_plain;f=effect_chain.cpp;h=1832b9ee7ce6364980eef747ae2d19d6411083ae;hp=4f1900dadfa5e2847b7478ace9a0ba562e28c421;hb=07a8813b233fafdf5a3e6c495e4864d3cc971057;hpb=f99ad333a7acbb6c8c995dbb036484ae8940c490 diff --git a/effect_chain.cpp b/effect_chain.cpp index 4f1900d..1832b9e 100644 --- a/effect_chain.cpp +++ b/effect_chain.cpp @@ -1,8 +1,10 @@ #define GL_GLEXT_PROTOTYPES 1 #include +#include #include #include +#include #include #include @@ -14,30 +16,42 @@ #include "gamma_expansion_effect.h" #include "gamma_compression_effect.h" #include "colorspace_conversion_effect.h" +#include "dither_effect.h" #include "input.h" -#include "opengl.h" - -EffectChain::EffectChain(unsigned width, unsigned height) - : width(width), - height(height), +#include "init.h" + +EffectChain::EffectChain(float aspect_nom, float aspect_denom) + : aspect_nom(aspect_nom), + aspect_denom(aspect_denom), + dither_effect(NULL), + fbo(0), + num_dither_bits(0), finalized(false) {} -Input *EffectChain::add_input(Input *input) +EffectChain::~EffectChain() { - char eff_id[256]; - sprintf(eff_id, "src_image%u", (unsigned)inputs.size()); + for (unsigned i = 0; i < nodes.size(); ++i) { + if (nodes[i]->output_texture != 0) { + glDeleteTextures(1, &nodes[i]->output_texture); + } + delete nodes[i]->effect; + delete nodes[i]; + } + for (unsigned i = 0; i < phases.size(); ++i) { + glDeleteProgram(phases[i]->glsl_program_num); + glDeleteShader(phases[i]->vertex_shader); + glDeleteShader(phases[i]->fragment_shader); + delete phases[i]; + } + if (fbo != 0) { + glDeleteFramebuffers(1, &fbo); + } +} +Input *EffectChain::add_input(Input *input) +{ inputs.push_back(input); - - Node *node = new Node; - node->effect = input; - node->effect_id = eff_id; - node->output_color_space = input->get_color_space(); - node->output_gamma_curve = input->get_gamma_curve(); - - nodes.push_back(node); - node_map[input] = node; - + add_node(input); return input; } @@ -46,134 +60,102 @@ void EffectChain::add_output(const ImageFormat &format) output_format = format; } -void EffectChain::add_effect_raw(Effect *effect, const std::vector &inputs) +Node *EffectChain::add_node(Effect *effect) { char effect_id[256]; sprintf(effect_id, "eff%u", (unsigned)nodes.size()); Node *node = new Node; node->effect = effect; + node->disabled = false; node->effect_id = effect_id; - - assert(inputs.size() == effect->num_inputs()); - assert(inputs.size() >= 1); - for (unsigned i = 0; i < inputs.size(); ++i) { - assert(node_map.count(inputs[i]) != 0); - node_map[inputs[i]]->outgoing_links.push_back(node); - node->incoming_links.push_back(node_map[inputs[i]]); - if (i == 0) { - node->output_gamma_curve = node_map[inputs[i]]->output_gamma_curve; - node->output_color_space = node_map[inputs[i]]->output_color_space; - } else { - assert(node->output_gamma_curve == node_map[inputs[i]]->output_gamma_curve); - assert(node->output_color_space == node_map[inputs[i]]->output_color_space); - } - } + node->output_color_space = COLORSPACE_INVALID; + node->output_gamma_curve = GAMMA_INVALID; + node->output_texture = 0; nodes.push_back(node); node_map[effect] = node; + return node; } -void EffectChain::find_all_nonlinear_inputs(Node *node, - std::vector *nonlinear_inputs, - std::vector *intermediates) +void EffectChain::connect_nodes(Node *sender, Node *receiver) { - if (node->output_gamma_curve == GAMMA_LINEAR) { - return; - } - if (node->effect->num_inputs() == 0) { - nonlinear_inputs->push_back(node); - } else { - intermediates->push_back(node); - assert(node->effect->num_inputs() == node->incoming_links.size()); - for (unsigned i = 0; i < node->incoming_links.size(); ++i) { - find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs, intermediates); - } - } + sender->outgoing_links.push_back(receiver); + receiver->incoming_links.push_back(sender); } -Node *EffectChain::normalize_to_linear_gamma(Node *input) +void EffectChain::replace_receiver(Node *old_receiver, Node *new_receiver) { - // Find out if all the inputs can be set to deliver sRGB inputs. - // If so, we can just ask them to do that instead of inserting a - // (possibly expensive) conversion operation. - // - // NOTE: We assume that effects generally don't mess with the gamma - // curve (except GammaCompressionEffect, which should never be - // inserted into a chain when this is called), so that we can just - // update the output gamma as we go. - // - // TODO: Setting this flag for one source might confuse a different - // part of the pipeline using the same source. - std::vector nonlinear_inputs; - std::vector intermediates; - find_all_nonlinear_inputs(input, &nonlinear_inputs, &intermediates); + new_receiver->incoming_links = old_receiver->incoming_links; + old_receiver->incoming_links.clear(); + + for (unsigned i = 0; i < new_receiver->incoming_links.size(); ++i) { + Node *sender = new_receiver->incoming_links[i]; + for (unsigned j = 0; j < sender->outgoing_links.size(); ++j) { + if (sender->outgoing_links[j] == old_receiver) { + sender->outgoing_links[j] = new_receiver; + } + } + } +} - bool all_ok = true; - for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { - Input *input = static_cast(nonlinear_inputs[i]->effect); - all_ok &= input->can_output_linear_gamma(); - } +void EffectChain::replace_sender(Node *old_sender, Node *new_sender) +{ + new_sender->outgoing_links = old_sender->outgoing_links; + old_sender->outgoing_links.clear(); + + for (unsigned i = 0; i < new_sender->outgoing_links.size(); ++i) { + Node *receiver = new_sender->outgoing_links[i]; + for (unsigned j = 0; j < receiver->incoming_links.size(); ++j) { + if (receiver->incoming_links[j] == old_sender) { + receiver->incoming_links[j] = new_sender; + } + } + } +} - if (all_ok) { - for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { - bool ok = nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1); - assert(ok); - nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR; +void EffectChain::insert_node_between(Node *sender, Node *middle, Node *receiver) +{ + for (unsigned i = 0; i < sender->outgoing_links.size(); ++i) { + if (sender->outgoing_links[i] == receiver) { + sender->outgoing_links[i] = middle; + middle->incoming_links.push_back(sender); } - for (unsigned i = 0; i < intermediates.size(); ++i) { - intermediates[i]->output_gamma_curve = GAMMA_LINEAR; + } + for (unsigned i = 0; i < receiver->incoming_links.size(); ++i) { + if (receiver->incoming_links[i] == sender) { + receiver->incoming_links[i] = middle; + middle->outgoing_links.push_back(receiver); } - return input; } - // OK, that didn't work. Insert a conversion effect. - GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect(); - gamma_conversion->set_int("source_curve", input->output_gamma_curve); - std::vector inputs; - inputs.push_back(input->effect); - gamma_conversion->add_self_to_effect_chain(this, inputs); - - assert(node_map.count(gamma_conversion) != 0); - Node *node = node_map[gamma_conversion]; - node->output_gamma_curve = GAMMA_LINEAR; - return node; + assert(middle->incoming_links.size() == middle->effect->num_inputs()); } -Node *EffectChain::normalize_to_srgb(Node *input) +void EffectChain::find_all_nonlinear_inputs(Node *node, std::vector *nonlinear_inputs) { - assert(input->output_gamma_curve == GAMMA_LINEAR); - ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect(); - colorspace_conversion->set_int("source_space", input->output_color_space); - colorspace_conversion->set_int("destination_space", COLORSPACE_sRGB); - std::vector inputs; - inputs.push_back(input->effect); - colorspace_conversion->add_self_to_effect_chain(this, inputs); - - assert(node_map.count(colorspace_conversion) != 0); - Node *node = node_map[colorspace_conversion]; - node->output_color_space = COLORSPACE_sRGB; - return node; + if (node->output_gamma_curve == GAMMA_LINEAR && + node->effect->effect_type_id() != "GammaCompressionEffect") { + return; + } + if (node->effect->num_inputs() == 0) { + nonlinear_inputs->push_back(node); + } else { + assert(node->effect->num_inputs() == node->incoming_links.size()); + for (unsigned i = 0; i < node->incoming_links.size(); ++i) { + find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs); + } + } } Effect *EffectChain::add_effect(Effect *effect, const std::vector &inputs) { assert(inputs.size() == effect->num_inputs()); - - std::vector normalized_inputs = inputs; - for (unsigned i = 0; i < normalized_inputs.size(); ++i) { - assert(node_map.count(normalized_inputs[i]) != 0); - Node *input = node_map[normalized_inputs[i]]; - if (effect->needs_linear_light() && input->output_gamma_curve != GAMMA_LINEAR) { - input = normalize_to_linear_gamma(input); - } - if (effect->needs_srgb_primaries() && input->output_color_space != COLORSPACE_sRGB) { - input = normalize_to_srgb(input); - } - normalized_inputs[i] = input->effect; + Node *node = add_node(effect); + for (unsigned i = 0; i < inputs.size(); ++i) { + assert(node_map.count(inputs[i]) != 0); + connect_nodes(node_map[inputs[i]], node); } - - effect->add_self_to_effect_chain(this, normalized_inputs); return effect; } @@ -278,12 +260,25 @@ Phase *EffectChain::compile_glsl_program( for (unsigned i = 0; i < effects.size(); ++i) { Node *node = effects[i]; if (node->effect->num_inputs() == 0) { - node->effect->set_int("needs_mipmaps", input_needs_mipmaps); + CHECK(node->effect->set_int("needs_mipmaps", input_needs_mipmaps)); } } frag_shader += std::string("#define INPUT ") + effects.back()->effect_id + "\n"; frag_shader.append(read_file("footer.frag")); - printf("%s\n", frag_shader.c_str()); + + if (movit_debug_level == MOVIT_DEBUG_ON) { + // Output shader to a temporary file, for easier debugging. + static int compiled_shader_num = 0; + char filename[256]; + sprintf(filename, "chain-%03d.frag", compiled_shader_num++); + FILE *fp = fopen(filename, "w"); + if (fp == NULL) { + perror(filename); + exit(1); + } + fprintf(fp, "%s\n", frag_shader.c_str()); + fclose(fp); + } GLuint glsl_program_num = glCreateProgram(); GLuint vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER); @@ -297,6 +292,8 @@ Phase *EffectChain::compile_glsl_program( Phase *phase = new Phase; phase->glsl_program_num = glsl_program_num; + phase->vertex_shader = vs_obj; + phase->fragment_shader = fs_obj; phase->input_needs_mipmaps = input_needs_mipmaps; phase->inputs = true_inputs; phase->effects = effects; @@ -360,13 +357,27 @@ void EffectChain::construct_glsl_programs(Node *output) start_new_phase = true; } - if (deps[i]->outgoing_links.size() > 1 && deps[i]->effect->num_inputs() > 0) { - // More than one effect uses this as the input, - // and it is not a texture itself. - // The easiest thing to do (and probably also the safest - // performance-wise in most cases) is to bounce it to a texture - // and then let the next passes read from that. - start_new_phase = true; + if (deps[i]->outgoing_links.size() > 1) { + if (deps[i]->effect->num_inputs() > 0) { + // More than one effect uses this as the input, + // and it is not a texture itself. + // The easiest thing to do (and probably also the safest + // performance-wise in most cases) is to bounce it to a texture + // and then let the next passes read from that. + start_new_phase = true; + } else { + // For textures, we try to be slightly more clever; + // if none of our outputs need a bounce, we don't bounce + // but instead simply use the effect many times. + // + // Strictly speaking, we could bounce it for some outputs + // and use it directly for others, but the processing becomes + // somewhat simpler if the effect is only used in one such way. + for (unsigned j = 0; j < deps[i]->outgoing_links.size(); ++j) { + Node *rdep = deps[i]->outgoing_links[j]; + start_new_phase |= rdep->effect->needs_texture_bounce(); + } + } } if (deps[i]->effect->changes_output_size()) { @@ -416,6 +427,10 @@ void EffectChain::construct_glsl_programs(Node *output) void EffectChain::output_dot(const char *filename) { + if (movit_debug_level != MOVIT_DEBUG_ON) { + return; + } + FILE *fp = fopen(filename, "w"); if (fp == NULL) { perror(filename); @@ -424,9 +439,70 @@ void EffectChain::output_dot(const char *filename) fprintf(fp, "digraph G {\n"); for (unsigned i = 0; i < nodes.size(); ++i) { - fprintf(fp, " n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str()); + // Find out which phase this event belongs to. + int in_phase = -1; + for (unsigned j = 0; j < phases.size(); ++j) { + const Phase* p = phases[j]; + if (std::find(p->effects.begin(), p->effects.end(), nodes[i]) != p->effects.end()) { + assert(in_phase == -1); + in_phase = j; + } + } + + if (in_phase == -1) { + fprintf(fp, " n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str()); + } else { + fprintf(fp, " n%ld [label=\"%s\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n", + (long)nodes[i], nodes[i]->effect->effect_type_id().c_str(), + (in_phase % 8) + 1); + } for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) { - fprintf(fp, " n%ld -> n%ld;\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j]); + std::vector labels; + + if (nodes[i]->outgoing_links[j]->effect->needs_texture_bounce()) { + labels.push_back("needs_bounce"); + } + if (nodes[i]->effect->changes_output_size()) { + labels.push_back("resize"); + } + + switch (nodes[i]->output_color_space) { + case COLORSPACE_INVALID: + labels.push_back("spc[invalid]"); + break; + case COLORSPACE_REC_601_525: + labels.push_back("spc[rec601-525]"); + break; + case COLORSPACE_REC_601_625: + labels.push_back("spc[rec601-625]"); + break; + default: + break; + } + + switch (nodes[i]->output_gamma_curve) { + case GAMMA_INVALID: + labels.push_back("gamma[invalid]"); + break; + case GAMMA_sRGB: + labels.push_back("gamma[sRGB]"); + break; + case GAMMA_REC_601: // and GAMMA_REC_709 + labels.push_back("gamma[rec601/709]"); + break; + default: + break; + } + + if (labels.empty()) { + fprintf(fp, " n%ld -> n%ld;\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j]); + } else { + std::string label = labels[0]; + for (unsigned k = 1; k < labels.size(); ++k) { + label += ", " + labels[k]; + } + fprintf(fp, " n%ld -> n%ld [label=\"%s\"];\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j], label.c_str()); + } } } fprintf(fp, "}\n"); @@ -434,90 +510,531 @@ void EffectChain::output_dot(const char *filename) fclose(fp); } +unsigned EffectChain::fit_rectangle_to_aspect(unsigned width, unsigned height) +{ + if (float(width) * aspect_denom >= float(height) * aspect_nom) { + // Same aspect, or W/H > aspect (image is wider than the frame). + // In either case, keep width. + return width; + } else { + // W/H < aspect (image is taller than the frame), so keep height, + // and adjust width correspondingly. + return lrintf(height * aspect_nom / aspect_denom); + } +} + +// Propagate input texture sizes throughout, and inform effects downstream. +// (Like a lot of other code, we depend on effects being in topological order.) +void EffectChain::inform_input_sizes(Phase *phase) +{ + // All effects that have a defined size (inputs and RTT inputs) + // get that. Reset all others. + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Node *node = phase->effects[i]; + if (node->effect->num_inputs() == 0) { + Input *input = static_cast(node->effect); + node->output_width = input->get_width(); + node->output_height = input->get_height(); + assert(node->output_width != 0); + assert(node->output_height != 0); + } else { + node->output_width = node->output_height = 0; + } + } + for (unsigned i = 0; i < phase->inputs.size(); ++i) { + Node *input = phase->inputs[i]; + input->output_width = input->phase->output_width; + input->output_height = input->phase->output_height; + assert(input->output_width != 0); + assert(input->output_height != 0); + } + + // Now propagate from the inputs towards the end, and inform as we go. + // The rules are simple: + // + // 1. Don't touch effects that already have given sizes (ie., inputs). + // 2. If all of your inputs have the same size, that will be your output size. + // 3. Otherwise, your output size is 0x0. + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Node *node = phase->effects[i]; + if (node->effect->num_inputs() == 0) { + continue; + } + unsigned this_output_width = 0; + unsigned this_output_height = 0; + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + Node *input = node->incoming_links[j]; + node->effect->inform_input_size(j, input->output_width, input->output_height); + if (j == 0) { + this_output_width = input->output_width; + this_output_height = input->output_height; + } else if (input->output_width != this_output_width || input->output_height != this_output_height) { + // Inputs disagree. + this_output_width = 0; + this_output_height = 0; + } + } + node->output_width = this_output_width; + node->output_height = this_output_height; + } +} + +// Note: You should call inform_input_sizes() before this, as the last effect's +// desired output size might change based on the inputs. void EffectChain::find_output_size(Phase *phase) { Node *output_node = phase->effects.back(); - // If the last effect explicitly sets an output size, - // use that. + // If the last effect explicitly sets an output size, use that. if (output_node->effect->changes_output_size()) { output_node->effect->get_output_size(&phase->output_width, &phase->output_height); return; } - // If not, look at the input phases, if any. We select the largest one - // (really assuming they all have the same aspect currently), by pixel count. - if (!phase->inputs.empty()) { - unsigned best_width = 0, best_height = 0; - for (unsigned i = 0; i < phase->inputs.size(); ++i) { - Node *input = phase->inputs[i]; - assert(input->phase->output_width != 0); - assert(input->phase->output_height != 0); - if (input->phase->output_width * input->phase->output_height > best_width * best_height) { - best_width = input->phase->output_width; - best_height = input->phase->output_height; - } + // If not, look at the input phases and textures. + // We select the largest one (by fit into the current aspect). + unsigned best_width = 0; + for (unsigned i = 0; i < phase->inputs.size(); ++i) { + Node *input = phase->inputs[i]; + assert(input->phase->output_width != 0); + assert(input->phase->output_height != 0); + unsigned width = fit_rectangle_to_aspect(input->phase->output_width, input->phase->output_height); + if (width > best_width) { + best_width = width; + } + } + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Effect *effect = phase->effects[i]->effect; + if (effect->num_inputs() != 0) { + continue; } - assert(best_width != 0); - assert(best_height != 0); - phase->output_width = best_width; - phase->output_height = best_height; + + Input *input = static_cast(effect); + unsigned width = fit_rectangle_to_aspect(input->get_width(), input->get_height()); + if (width > best_width) { + best_width = width; + } + } + assert(best_width != 0); + phase->output_width = best_width; + phase->output_height = best_width * aspect_denom / aspect_nom; +} + +void EffectChain::sort_nodes_topologically() +{ + std::set visited_nodes; + std::vector sorted_list; + for (unsigned i = 0; i < nodes.size(); ++i) { + if (nodes[i]->incoming_links.size() == 0) { + topological_sort_visit_node(nodes[i], &visited_nodes, &sorted_list); + } + } + reverse(sorted_list.begin(), sorted_list.end()); + nodes = sorted_list; +} + +void EffectChain::topological_sort_visit_node(Node *node, std::set *visited_nodes, std::vector *sorted_list) +{ + if (visited_nodes->count(node) != 0) { return; } + visited_nodes->insert(node); + for (unsigned i = 0; i < node->outgoing_links.size(); ++i) { + topological_sort_visit_node(node->outgoing_links[i], visited_nodes, sorted_list); + } + sorted_list->push_back(node); +} + +void EffectChain::find_color_spaces_for_inputs() +{ + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + if (node->incoming_links.size() == 0) { + Input *input = static_cast(node->effect); + node->output_color_space = input->get_color_space(); + node->output_gamma_curve = input->get_gamma_curve(); + } + } +} + +// Propagate gamma and color space information as far as we can in the graph. +// The rules are simple: Anything where all the inputs agree, get that as +// output as well. Anything else keeps having *_INVALID. +void EffectChain::propagate_gamma_and_color_space() +{ + // We depend on going through the nodes in order. + sort_nodes_topologically(); - // OK, no inputs. Just use the global width/height. - // TODO: We probably want to use the texture's size eventually. - phase->output_width = width; - phase->output_height = height; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->incoming_links.size() == node->effect->num_inputs()); + if (node->incoming_links.size() == 0) { + assert(node->output_color_space != COLORSPACE_INVALID); + assert(node->output_gamma_curve != GAMMA_INVALID); + continue; + } + + Colorspace color_space = node->incoming_links[0]->output_color_space; + GammaCurve gamma_curve = node->incoming_links[0]->output_gamma_curve; + for (unsigned j = 1; j < node->incoming_links.size(); ++j) { + if (node->incoming_links[j]->output_color_space != color_space) { + color_space = COLORSPACE_INVALID; + } + if (node->incoming_links[j]->output_gamma_curve != gamma_curve) { + gamma_curve = GAMMA_INVALID; + } + } + + // The conversion effects already have their outputs set correctly, + // so leave them alone. + if (node->effect->effect_type_id() != "ColorspaceConversionEffect") { + node->output_color_space = color_space; + } + if (node->effect->effect_type_id() != "GammaCompressionEffect" && + node->effect->effect_type_id() != "GammaExpansionEffect") { + node->output_gamma_curve = gamma_curve; + } + } } -void EffectChain::finalize() +bool EffectChain::node_needs_colorspace_fix(Node *node) +{ + if (node->disabled) { + return false; + } + if (node->effect->num_inputs() == 0) { + return false; + } + + // propagate_gamma_and_color_space() has already set our output + // to COLORSPACE_INVALID if the inputs differ, so we can rely on that. + if (node->output_color_space == COLORSPACE_INVALID) { + return true; + } + return (node->effect->needs_srgb_primaries() && node->output_color_space != COLORSPACE_sRGB); +} + +// Fix up color spaces so that there are no COLORSPACE_INVALID nodes left in +// the graph. Our strategy is not always optimal, but quite simple: +// Find an effect that's as early as possible where the inputs are of +// unacceptable colorspaces (that is, either different, or, if the effect only +// wants sRGB, not sRGB.) Add appropriate conversions on all its inputs, +// propagate the information anew, and repeat until there are no more such +// effects. +void EffectChain::fix_internal_color_spaces() { - output_dot("final.dot"); + unsigned colorspace_propagation_pass = 0; + bool found_any; + do { + found_any = false; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (!node_needs_colorspace_fix(node)) { + continue; + } - // Find the output effect. This is, simply, one that has no outgoing links. - // If there are multiple ones, the graph is malformed (we do not support - // multiple outputs right now). + // Go through each input that is not sRGB, and insert + // a colorspace conversion before it. + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + Node *input = node->incoming_links[j]; + assert(input->output_color_space != COLORSPACE_INVALID); + if (input->output_color_space == COLORSPACE_sRGB) { + continue; + } + Node *conversion = add_node(new ColorspaceConversionEffect()); + CHECK(conversion->effect->set_int("source_space", input->output_color_space)); + CHECK(conversion->effect->set_int("destination_space", COLORSPACE_sRGB)); + conversion->output_color_space = COLORSPACE_sRGB; + insert_node_between(input, conversion, node); + } + + // Re-sort topologically, and propagate the new information. + propagate_gamma_and_color_space(); + + found_any = true; + break; + } + + char filename[256]; + sprintf(filename, "step3-colorspacefix-iter%u.dot", ++colorspace_propagation_pass); + output_dot(filename); + assert(colorspace_propagation_pass < 100); + } while (found_any); + + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->output_color_space != COLORSPACE_INVALID); + } +} + +// Make so that the output is in the desired color space. +void EffectChain::fix_output_color_space() +{ + Node *output = find_output_node(); + if (output->output_color_space != output_format.color_space) { + Node *conversion = add_node(new ColorspaceConversionEffect()); + CHECK(conversion->effect->set_int("source_space", output->output_color_space)); + CHECK(conversion->effect->set_int("destination_space", output_format.color_space)); + conversion->output_color_space = output_format.color_space; + connect_nodes(output, conversion); + propagate_gamma_and_color_space(); + } +} + +bool EffectChain::node_needs_gamma_fix(Node *node) +{ + if (node->disabled) { + return false; + } + + // Small hack since the output is not an explicit node: + // If we are the last node and our output is in the wrong + // space compared to EffectChain's output, we need to fix it. + // This will only take us to linear, but fix_output_gamma() + // will come and take us to the desired output gamma + // if it is needed. + // + // This needs to be before everything else, since it could + // even apply to inputs (if they are the only effect). + if (node->outgoing_links.empty() && + node->output_gamma_curve != output_format.gamma_curve && + node->output_gamma_curve != GAMMA_LINEAR) { + return true; + } + + if (node->effect->num_inputs() == 0) { + return false; + } + + // propagate_gamma_and_color_space() has already set our output + // to GAMMA_INVALID if the inputs differ, so we can rely on that, + // except for GammaCompressionEffect. + if (node->output_gamma_curve == GAMMA_INVALID) { + return true; + } + if (node->effect->effect_type_id() == "GammaCompressionEffect") { + assert(node->incoming_links.size() == 1); + return node->incoming_links[0]->output_gamma_curve != GAMMA_LINEAR; + } + + return (node->effect->needs_linear_light() && node->output_gamma_curve != GAMMA_LINEAR); +} + +// Very similar to fix_internal_color_spaces(), but for gamma. +// There is one difference, though; before we start adding conversion nodes, +// we see if we can get anything out of asking the sources to deliver +// linear gamma directly. fix_internal_gamma_by_asking_inputs() +// does that part, while fix_internal_gamma_by_inserting_nodes() +// inserts nodes as needed afterwards. +void EffectChain::fix_internal_gamma_by_asking_inputs(unsigned step) +{ + unsigned gamma_propagation_pass = 0; + bool found_any; + do { + found_any = false; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (!node_needs_gamma_fix(node)) { + continue; + } + + // See if all inputs can give us linear gamma. If not, leave it. + std::vector nonlinear_inputs; + find_all_nonlinear_inputs(node, &nonlinear_inputs); + assert(!nonlinear_inputs.empty()); + + bool all_ok = true; + for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { + Input *input = static_cast(nonlinear_inputs[i]->effect); + all_ok &= input->can_output_linear_gamma(); + } + + if (!all_ok) { + continue; + } + + for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { + CHECK(nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1)); + nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR; + } + + // Re-sort topologically, and propagate the new information. + propagate_gamma_and_color_space(); + + found_any = true; + break; + } + + char filename[256]; + sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass); + output_dot(filename); + assert(gamma_propagation_pass < 100); + } while (found_any); +} + +void EffectChain::fix_internal_gamma_by_inserting_nodes(unsigned step) +{ + unsigned gamma_propagation_pass = 0; + bool found_any; + do { + found_any = false; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (!node_needs_gamma_fix(node)) { + continue; + } + + // Special case: We could be an input and still be asked to + // fix our gamma; if so, we should be the only node + // (as node_needs_gamma_fix() would only return true in + // for an input in that case). That means we should insert + // a conversion node _after_ ourselves. + if (node->incoming_links.empty()) { + assert(node->outgoing_links.empty()); + Node *conversion = add_node(new GammaExpansionEffect()); + CHECK(conversion->effect->set_int("source_curve", node->output_gamma_curve)); + conversion->output_gamma_curve = GAMMA_LINEAR; + connect_nodes(node, conversion); + } + + // If not, go through each input that is not linear gamma, + // and insert a gamma conversion before it. + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + Node *input = node->incoming_links[j]; + assert(input->output_gamma_curve != GAMMA_INVALID); + if (input->output_gamma_curve == GAMMA_LINEAR) { + continue; + } + Node *conversion = add_node(new GammaExpansionEffect()); + CHECK(conversion->effect->set_int("source_curve", input->output_gamma_curve)); + conversion->output_gamma_curve = GAMMA_LINEAR; + insert_node_between(input, conversion, node); + } + + // Re-sort topologically, and propagate the new information. + propagate_gamma_and_color_space(); + + found_any = true; + break; + } + + char filename[256]; + sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass); + output_dot(filename); + assert(gamma_propagation_pass < 100); + } while (found_any); + + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->output_gamma_curve != GAMMA_INVALID); + } +} + +// Make so that the output is in the desired gamma. +// Note that this assumes linear input gamma, so it might create the need +// for another pass of fix_internal_gamma(). +void EffectChain::fix_output_gamma() +{ + Node *output = find_output_node(); + if (output->output_gamma_curve != output_format.gamma_curve) { + Node *conversion = add_node(new GammaCompressionEffect()); + CHECK(conversion->effect->set_int("destination_curve", output_format.gamma_curve)); + conversion->output_gamma_curve = output_format.gamma_curve; + connect_nodes(output, conversion); + } +} + +// If the user has requested dither, add a DitherEffect right at the end +// (after GammaCompressionEffect etc.). This needs to be done after everything else, +// since dither is about the only effect that can _not_ be done in linear space. +void EffectChain::add_dither_if_needed() +{ + if (num_dither_bits == 0) { + return; + } + Node *output = find_output_node(); + Node *dither = add_node(new DitherEffect()); + CHECK(dither->effect->set_int("num_bits", num_dither_bits)); + connect_nodes(output, dither); + + dither_effect = dither->effect; +} + +// Find the output node. This is, simply, one that has no outgoing links. +// If there are multiple ones, the graph is malformed (we do not support +// multiple outputs right now). +Node *EffectChain::find_output_node() +{ std::vector output_nodes; for (unsigned i = 0; i < nodes.size(); ++i) { Node *node = nodes[i]; + if (node->disabled) { + continue; + } if (node->outgoing_links.empty()) { output_nodes.push_back(node); } } assert(output_nodes.size() == 1); - Node *output_node = output_nodes[0]; + return output_nodes[0]; +} - // Add normalizers to get the output format right. - if (output_node->output_color_space != output_format.color_space) { - ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect(); - colorspace_conversion->set_int("source_space", output_node->output_color_space); - colorspace_conversion->set_int("destination_space", output_format.color_space); - std::vector inputs; - inputs.push_back(output_node->effect); - colorspace_conversion->add_self_to_effect_chain(this, inputs); +void EffectChain::finalize() +{ + // Output the graph as it is before we do any conversions on it. + output_dot("step0-start.dot"); - assert(node_map.count(colorspace_conversion) != 0); - output_node = node_map[colorspace_conversion]; - output_node->output_color_space = output_format.color_space; + // Give each effect in turn a chance to rewrite its own part of the graph. + // Note that if more effects are added as part of this, they will be + // picked up as part of the same for loop, since they are added at the end. + for (unsigned i = 0; i < nodes.size(); ++i) { + nodes[i]->effect->rewrite_graph(this, nodes[i]); } - if (output_node->output_gamma_curve != output_format.gamma_curve) { - if (output_node->output_gamma_curve != GAMMA_LINEAR) { - output_node = normalize_to_linear_gamma(output_node); - } - GammaCompressionEffect *gamma_conversion = new GammaCompressionEffect(); - gamma_conversion->set_int("destination_curve", output_format.gamma_curve); - std::vector inputs; - inputs.push_back(output_node->effect); - gamma_conversion->add_self_to_effect_chain(this, inputs); + output_dot("step1-rewritten.dot"); - assert(node_map.count(gamma_conversion) != 0); - output_node = node_map[gamma_conversion]; - output_node->output_gamma_curve = output_format.gamma_curve; - } + find_color_spaces_for_inputs(); + output_dot("step2-input-colorspace.dot"); + + propagate_gamma_and_color_space(); + output_dot("step3-propagated.dot"); + + fix_internal_color_spaces(); + fix_output_color_space(); + output_dot("step4-output-colorspacefix.dot"); + + // Note that we need to fix gamma after colorspace conversion, + // because colorspace conversions might create needs for gamma conversions. + // Also, we need to run an extra pass of fix_internal_gamma() after + // fixing the output gamma, as we only have conversions to/from linear. + fix_internal_gamma_by_asking_inputs(5); + fix_internal_gamma_by_inserting_nodes(6); + fix_output_gamma(); + output_dot("step7-output-gammafix.dot"); + fix_internal_gamma_by_asking_inputs(8); + fix_internal_gamma_by_inserting_nodes(9); + output_dot("step10-before-dither.dot"); + + add_dither_if_needed(); + + output_dot("step11-final.dot"); + // Construct all needed GLSL programs, starting at the output. - construct_glsl_programs(output_node); + construct_glsl_programs(find_output_node()); + + output_dot("step12-split-to-phases.dot"); // If we have more than one phase, we need intermediate render-to-texture. // Construct an FBO, and then as many textures as we need. @@ -528,6 +1045,7 @@ void EffectChain::finalize() glGenFramebuffers(1, &fbo); for (unsigned i = 0; i < phases.size() - 1; ++i) { + inform_input_sizes(phases[i]); find_output_size(phases[i]); Node *output_node = phases[i]->effects.back(); @@ -545,6 +1063,7 @@ void EffectChain::finalize() output_node->output_texture_width = phases[i]->output_width; output_node->output_texture_height = phases[i]->output_height; } + inform_input_sizes(phases.back()); } for (unsigned i = 0; i < inputs.size(); ++i) { @@ -556,10 +1075,22 @@ void EffectChain::finalize() finalized = true; } -void EffectChain::render_to_screen() +void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height) { assert(finalized); + // Save original viewport. + GLuint x = 0, y = 0; + + if (width == 0 && height == 0) { + GLint viewport[4]; + glGetIntegerv(GL_VIEWPORT, viewport); + x = viewport[0]; + y = viewport[1]; + width = viewport[2]; + height = viewport[3]; + } + // Basic state. glDisable(GL_BLEND); check_error(); @@ -585,6 +1116,7 @@ void EffectChain::render_to_screen() for (unsigned phase = 0; phase < phases.size(); ++phase) { // See if the requested output size has changed. If so, we need to recreate // the texture (and before we start setting up inputs). + inform_input_sizes(phases[phase]); if (phase != phases.size() - 1) { find_output_size(phases[phase]); @@ -635,10 +1167,14 @@ void EffectChain::render_to_screen() // And now the output. if (phase == phases.size() - 1) { - // Last phase goes directly to the screen. - glBindFramebuffer(GL_FRAMEBUFFER, 0); + // Last phase goes to the output the user specified. + glBindFramebuffer(GL_FRAMEBUFFER, dest_fbo); check_error(); - glViewport(0, 0, width, height); + glViewport(x, y, width, height); + if (dither_effect != NULL) { + CHECK(dither_effect->set_int("output_width", width)); + CHECK(dither_effect->set_int("output_height", height)); + } } else { Node *output_node = phases[phase]->effects.back(); glFramebufferTexture2D(