X-Git-Url: https://git.sesse.net/?p=movit;a=blobdiff_plain;f=effect_chain.cpp;h=63fcdac68fc8f1a019f179cb664fee243641feb8;hp=bfb30bfc152e2189a80d1b4fabdbc6d18056f507;hb=45636792070587fb38cc84927f4e3d9c2ce8bd33;hpb=34121ba75f6274c25c2cee53169819ae96e77d66 diff --git a/effect_chain.cpp b/effect_chain.cpp index bfb30bf..63fcdac 100644 --- a/effect_chain.cpp +++ b/effect_chain.cpp @@ -4,37 +4,41 @@ #include #include -#include -#include - #include #include +#include +#include #include "util.h" #include "effect_chain.h" #include "gamma_expansion_effect.h" #include "gamma_compression_effect.h" -#include "lift_gamma_gain_effect.h" #include "colorspace_conversion_effect.h" -#include "sandbox_effect.h" -#include "saturation_effect.h" -#include "mirror_effect.h" -#include "vignette_effect.h" -#include "blur_effect.h" -#include "diffusion_effect.h" +#include "input.h" +#include "opengl.h" EffectChain::EffectChain(unsigned width, unsigned height) : width(width), height(height), - use_srgb_texture_format(false), finalized(false) {} -void EffectChain::add_input(const ImageFormat &format) +Input *EffectChain::add_input(Input *input) { - input_format = format; - output_color_space.insert(std::make_pair(static_cast(NULL), format.color_space)); - output_gamma_curve.insert(std::make_pair(static_cast(NULL), format.gamma_curve)); - effect_ids.insert(std::make_pair(static_cast(NULL), "src_image")); + char eff_id[256]; + sprintf(eff_id, "src_image%u", (unsigned)inputs.size()); + + inputs.push_back(input); + + Node *node = new Node; + node->effect = input; + node->effect_id = eff_id; + node->output_color_space = input->get_color_space(); + node->output_gamma_curve = input->get_gamma_curve(); + + nodes.push_back(node); + node_map[input] = node; + + return input; } void EffectChain::add_output(const ImageFormat &format) @@ -45,99 +49,128 @@ void EffectChain::add_output(const ImageFormat &format) void EffectChain::add_effect_raw(Effect *effect, const std::vector &inputs) { char effect_id[256]; - sprintf(effect_id, "eff%u", (unsigned)effects.size()); + sprintf(effect_id, "eff%u", (unsigned)nodes.size()); + + Node *node = new Node; + node->effect = effect; + node->effect_id = effect_id; - effects.push_back(effect); - effect_ids.insert(std::make_pair(effect, effect_id)); assert(inputs.size() == effect->num_inputs()); + assert(inputs.size() >= 1); for (unsigned i = 0; i < inputs.size(); ++i) { - if (inputs[i] != NULL) { - assert(std::find(effects.begin(), effects.end(), inputs[i]) != effects.end()); + assert(node_map.count(inputs[i]) != 0); + node_map[inputs[i]]->outgoing_links.push_back(node); + node->incoming_links.push_back(node_map[inputs[i]]); + if (i == 0) { + node->output_gamma_curve = node_map[inputs[i]]->output_gamma_curve; + node->output_color_space = node_map[inputs[i]]->output_color_space; + } else { + assert(node->output_gamma_curve == node_map[inputs[i]]->output_gamma_curve); + assert(node->output_color_space == node_map[inputs[i]]->output_color_space); } - outgoing_links[inputs[i]].push_back(effect); } - incoming_links.insert(std::make_pair(effect, inputs)); - output_gamma_curve[effect] = output_gamma_curve[last_added_effect()]; - output_color_space[effect] = output_color_space[last_added_effect()]; + + nodes.push_back(node); + node_map[effect] = node; } -Effect *instantiate_effect(EffectId effect) +void EffectChain::find_all_nonlinear_inputs(Node *node, + std::vector *nonlinear_inputs, + std::vector *intermediates) { - switch (effect) { - case EFFECT_GAMMA_EXPANSION: - return new GammaExpansionEffect(); - case EFFECT_GAMMA_COMPRESSION: - return new GammaCompressionEffect(); - case EFFECT_COLOR_SPACE_CONVERSION: - return new ColorSpaceConversionEffect(); - case EFFECT_SANDBOX: - return new SandboxEffect(); - case EFFECT_LIFT_GAMMA_GAIN: - return new LiftGammaGainEffect(); - case EFFECT_SATURATION: - return new SaturationEffect(); - case EFFECT_MIRROR: - return new MirrorEffect(); - case EFFECT_VIGNETTE: - return new VignetteEffect(); - case EFFECT_BLUR: - return new BlurEffect(); - case EFFECT_DIFFUSION: - return new DiffusionEffect(); + if (node->output_gamma_curve == GAMMA_LINEAR) { + return; + } + if (node->effect->num_inputs() == 0) { + nonlinear_inputs->push_back(node); + } else { + intermediates->push_back(node); + assert(node->effect->num_inputs() == node->incoming_links.size()); + for (unsigned i = 0; i < node->incoming_links.size(); ++i) { + find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs, intermediates); + } } - assert(false); } -Effect *EffectChain::normalize_to_linear_gamma(Effect *input) +Node *EffectChain::normalize_to_linear_gamma(Node *input) { - assert(output_gamma_curve.count(input) != 0); - if (output_gamma_curve[input] == GAMMA_sRGB) { - // TODO: check if the extension exists - use_srgb_texture_format = true; - output_gamma_curve[input] = GAMMA_LINEAR; + // Find out if all the inputs can be set to deliver sRGB inputs. + // If so, we can just ask them to do that instead of inserting a + // (possibly expensive) conversion operation. + // + // NOTE: We assume that effects generally don't mess with the gamma + // curve (except GammaCompressionEffect, which should never be + // inserted into a chain when this is called), so that we can just + // update the output gamma as we go. + // + // TODO: Setting this flag for one source might confuse a different + // part of the pipeline using the same source. + std::vector nonlinear_inputs; + std::vector intermediates; + find_all_nonlinear_inputs(input, &nonlinear_inputs, &intermediates); + + bool all_ok = true; + for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { + Input *input = static_cast(nonlinear_inputs[i]->effect); + all_ok &= input->can_output_linear_gamma(); + } + + if (all_ok) { + for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { + bool ok = nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1); + assert(ok); + nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR; + } + for (unsigned i = 0; i < intermediates.size(); ++i) { + intermediates[i]->output_gamma_curve = GAMMA_LINEAR; + } return input; - } else { - GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect(); - gamma_conversion->set_int("source_curve", output_gamma_curve[input]); - std::vector inputs; - inputs.push_back(input); - gamma_conversion->add_self_to_effect_chain(this, inputs); - output_gamma_curve[gamma_conversion] = GAMMA_LINEAR; - return gamma_conversion; } + + // OK, that didn't work. Insert a conversion effect. + GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect(); + gamma_conversion->set_int("source_curve", input->output_gamma_curve); + std::vector inputs; + inputs.push_back(input->effect); + gamma_conversion->add_self_to_effect_chain(this, inputs); + + assert(node_map.count(gamma_conversion) != 0); + Node *node = node_map[gamma_conversion]; + node->output_gamma_curve = GAMMA_LINEAR; + return node; } -Effect *EffectChain::normalize_to_srgb(Effect *input) +Node *EffectChain::normalize_to_srgb(Node *input) { - assert(output_gamma_curve.count(input) != 0); - assert(output_color_space.count(input) != 0); - assert(output_gamma_curve[input] == GAMMA_LINEAR); + assert(input->output_gamma_curve == GAMMA_LINEAR); ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect(); - colorspace_conversion->set_int("source_space", output_color_space[input]); + colorspace_conversion->set_int("source_space", input->output_color_space); colorspace_conversion->set_int("destination_space", COLORSPACE_sRGB); std::vector inputs; - inputs.push_back(input); + inputs.push_back(input->effect); colorspace_conversion->add_self_to_effect_chain(this, inputs); - output_color_space[colorspace_conversion] = COLORSPACE_sRGB; - return colorspace_conversion; + + assert(node_map.count(colorspace_conversion) != 0); + Node *node = node_map[colorspace_conversion]; + node->output_color_space = COLORSPACE_sRGB; + return node; } -Effect *EffectChain::add_effect(EffectId effect_id, const std::vector &inputs) +Effect *EffectChain::add_effect(Effect *effect, const std::vector &inputs) { - Effect *effect = instantiate_effect(effect_id); - assert(inputs.size() == effect->num_inputs()); std::vector normalized_inputs = inputs; for (unsigned i = 0; i < normalized_inputs.size(); ++i) { - assert(output_gamma_curve.count(normalized_inputs[i]) != 0); - if (effect->needs_linear_light() && output_gamma_curve[normalized_inputs[i]] != GAMMA_LINEAR) { - normalized_inputs[i] = normalize_to_linear_gamma(normalized_inputs[i]); + assert(node_map.count(normalized_inputs[i]) != 0); + Node *input = node_map[normalized_inputs[i]]; + if (effect->needs_linear_light() && input->output_gamma_curve != GAMMA_LINEAR) { + input = normalize_to_linear_gamma(input); } - assert(output_color_space.count(normalized_inputs[i]) != 0); - if (effect->needs_srgb_primaries() && output_color_space[normalized_inputs[i]] != COLORSPACE_sRGB) { - normalized_inputs[i] = normalize_to_srgb(normalized_inputs[i]); + if (effect->needs_srgb_primaries() && input->output_color_space != COLORSPACE_sRGB) { + input = normalize_to_srgb(input); } + normalized_inputs[i] = input->effect; } effect->add_self_to_effect_chain(this, normalized_inputs); @@ -185,71 +218,54 @@ std::string replace_prefix(const std::string &text, const std::string &prefix) return output; } -EffectChain::Phase EffectChain::compile_glsl_program(const std::vector &inputs, const std::vector &effects) +Phase *EffectChain::compile_glsl_program( + const std::vector &inputs, + const std::vector &effects) { - assert(!inputs.empty()); assert(!effects.empty()); - // Figure out the true set of inputs to this phase. These are the ones - // that we need somehow but don't calculate ourselves. - std::set effect_set(effects.begin(), effects.end()); - std::set input_set(inputs.begin(), inputs.end()); - std::vector true_inputs; - std::set_difference(input_set.begin(), input_set.end(), - effect_set.begin(), effect_set.end(), - std::back_inserter(true_inputs)); + // Deduplicate the inputs. + std::vector true_inputs = inputs; + std::sort(true_inputs.begin(), true_inputs.end()); + true_inputs.erase(std::unique(true_inputs.begin(), true_inputs.end()), true_inputs.end()); bool input_needs_mipmaps = false; std::string frag_shader = read_file("header.frag"); // Create functions for all the texture inputs that we need. for (unsigned i = 0; i < true_inputs.size(); ++i) { - Effect *effect = true_inputs[i]; - assert(effect_ids.count(effect) != 0); - std::string effect_id = effect_ids[effect]; + Node *input = true_inputs[i]; - frag_shader += std::string("uniform sampler2D tex_") + effect_id + ";\n"; - frag_shader += std::string("vec4 ") + effect_id + "(vec2 tc) {\n"; - if (effect == NULL) { - // OpenGL's origin is bottom-left, but most graphics software assumes - // a top-left origin. Thus, for inputs that come from the user, - // we flip the y coordinate. However, for FBOs, the origin - // is all correct, so don't do anything. - frag_shader += "\ttc.y = 1.0f - tc.y;\n"; - } - frag_shader += "\treturn texture2D(tex_" + effect_id + ", tc);\n"; + frag_shader += std::string("uniform sampler2D tex_") + input->effect_id + ";\n"; + frag_shader += std::string("vec4 ") + input->effect_id + "(vec2 tc) {\n"; + frag_shader += "\treturn texture2D(tex_" + input->effect_id + ", tc);\n"; frag_shader += "}\n"; frag_shader += "\n"; } - std::string last_effect_id; for (unsigned i = 0; i < effects.size(); ++i) { - Effect *effect = effects[i]; - assert(effect != NULL); - assert(effect_ids.count(effect) != 0); - std::string effect_id = effect_ids[effect]; - last_effect_id = effect_id; - - if (incoming_links[effect].size() == 1) { - frag_shader += std::string("#define INPUT ") + effect_ids[incoming_links[effect][0]] + "\n"; + Node *node = effects[i]; + + if (node->incoming_links.size() == 1) { + frag_shader += std::string("#define INPUT ") + node->incoming_links[0]->effect_id + "\n"; } else { - for (unsigned j = 0; j < incoming_links[effect].size(); ++j) { + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { char buf[256]; - sprintf(buf, "#define INPUT%d %s\n", j + 1, effect_ids[incoming_links[effect][j]].c_str()); + sprintf(buf, "#define INPUT%d %s\n", j + 1, node->incoming_links[j]->effect_id.c_str()); frag_shader += buf; } } frag_shader += "\n"; - frag_shader += std::string("#define FUNCNAME ") + effect_id + "\n"; - frag_shader += replace_prefix(effect->output_convenience_uniforms(), effect_id); - frag_shader += replace_prefix(effect->output_fragment_shader(), effect_id); + frag_shader += std::string("#define FUNCNAME ") + node->effect_id + "\n"; + frag_shader += replace_prefix(node->effect->output_convenience_uniforms(), node->effect_id); + frag_shader += replace_prefix(node->effect->output_fragment_shader(), node->effect_id); frag_shader += "#undef PREFIX\n"; frag_shader += "#undef FUNCNAME\n"; - if (incoming_links[effect].size() == 1) { + if (node->incoming_links.size() == 1) { frag_shader += "#undef INPUT\n"; } else { - for (unsigned j = 0; j < incoming_links[effect].size(); ++j) { + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { char buf[256]; sprintf(buf, "#undef INPUT%d\n", j + 1); frag_shader += buf; @@ -257,10 +273,15 @@ EffectChain::Phase EffectChain::compile_glsl_program(const std::vector } frag_shader += "\n"; - input_needs_mipmaps |= effect->needs_mipmaps(); + input_needs_mipmaps |= node->effect->needs_mipmaps(); + } + for (unsigned i = 0; i < effects.size(); ++i) { + Node *node = effects[i]; + if (node->effect->num_inputs() == 0) { + node->effect->set_int("needs_mipmaps", input_needs_mipmaps); + } } - assert(!last_effect_id.empty()); - frag_shader += std::string("#define INPUT ") + last_effect_id + "\n"; + frag_shader += std::string("#define INPUT ") + effects.back()->effect_id + "\n"; frag_shader.append(read_file("footer.frag")); printf("%s\n", frag_shader.c_str()); @@ -274,11 +295,11 @@ EffectChain::Phase EffectChain::compile_glsl_program(const std::vector glLinkProgram(glsl_program_num); check_error(); - Phase phase; - phase.glsl_program_num = glsl_program_num; - phase.input_needs_mipmaps = input_needs_mipmaps; - phase.inputs = true_inputs; - phase.effects = effects; + Phase *phase = new Phase; + phase->glsl_program_num = glsl_program_num; + phase->input_needs_mipmaps = input_needs_mipmaps; + phase->inputs = true_inputs; + phase->effects = effects; return phase; } @@ -286,115 +307,259 @@ EffectChain::Phase EffectChain::compile_glsl_program(const std::vector // Construct GLSL programs, starting at the given effect and following // the chain from there. We end a program every time we come to an effect // marked as "needs texture bounce", one that is used by multiple other -// effects, and of course at the end. -void EffectChain::construct_glsl_programs(Effect *start, std::set *completed_effects) +// effects, every time an effect wants to change the output size, +// and of course at the end. +// +// We follow a quite simple depth-first search from the output, although +// without any explicit recursion. +void EffectChain::construct_glsl_programs(Node *output) { - if (completed_effects->count(start) != 0) { - // This has already been done for us. - return; - } + // Which effects have already been completed in this phase? + // We need to keep track of it, as an effect with multiple outputs + // could otherwise be calculate multiple times. + std::set completed_effects; + + // Effects in the current phase, as well as inputs (outputs from other phases + // that we depend on). Note that since we start iterating from the end, + // the effect list will be in the reverse order. + std::vector this_phase_inputs; + std::vector this_phase_effects; + + // Effects that we have yet to calculate, but that we know should + // be in the current phase. + std::stack effects_todo_this_phase; + + // Effects that we have yet to calculate, but that come from other phases. + // We delay these until we have this phase done in its entirety, + // at which point we pick any of them and start a new phase from that. + std::stack effects_todo_other_phases; + + effects_todo_this_phase.push(output); - std::vector this_phase_inputs; // Also includes all intermediates; these will be filtered away later. - std::vector this_phase_effects; - Effect *node = start; for ( ;; ) { // Termination condition within loop. - if (node == NULL) { - this_phase_inputs.push_back(node); - } else { - // Check that we have all the inputs we need for this effect. - // If not, we end the phase here right away; the other side - // of the input chain will eventually come and pick the effect up. - assert(incoming_links.count(node) != 0); - std::vector deps = incoming_links[node]; - assert(!deps.empty()); - bool have_all_deps = true; + if (!effects_todo_this_phase.empty()) { + // OK, we have more to do this phase. + Node *node = effects_todo_this_phase.top(); + effects_todo_this_phase.pop(); + + // This should currently only happen for effects that are phase outputs, + // and we throw those out separately below. + assert(completed_effects.count(node) == 0); + + this_phase_effects.push_back(node); + completed_effects.insert(node); + + // Find all the dependencies of this effect, and add them to the stack. + std::vector deps = node->incoming_links; + assert(node->effect->num_inputs() == deps.size()); for (unsigned i = 0; i < deps.size(); ++i) { - if (completed_effects->count(deps[i]) == 0) { - have_all_deps = false; - break; + bool start_new_phase = false; + + // FIXME: If we sample directly from a texture, we won't need this. + if (node->effect->needs_texture_bounce()) { + start_new_phase = true; } - } - - if (!have_all_deps) { - if (!this_phase_effects.empty()) { - phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects)); + + if (deps[i]->outgoing_links.size() > 1 && deps[i]->effect->num_inputs() > 0) { + // More than one effect uses this as the input, + // and it is not a texture itself. + // The easiest thing to do (and probably also the safest + // performance-wise in most cases) is to bounce it to a texture + // and then let the next passes read from that. + start_new_phase = true; + } + + if (deps[i]->effect->changes_output_size()) { + start_new_phase = true; + } + + if (start_new_phase) { + effects_todo_other_phases.push(deps[i]); + this_phase_inputs.push_back(deps[i]); + } else { + effects_todo_this_phase.push(deps[i]); } - return; } - this_phase_inputs.insert(this_phase_inputs.end(), deps.begin(), deps.end()); - this_phase_effects.push_back(node); + continue; } - completed_effects->insert(node); - // Find all the effects that use this one as a direct input. - if (outgoing_links.count(node) == 0) { - // End of the line; output. + // No more effects to do this phase. Take all the ones we have, + // and create a GLSL program for it. + if (!this_phase_effects.empty()) { + reverse(this_phase_effects.begin(), this_phase_effects.end()); phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects)); - return; + this_phase_effects.back()->phase = phases.back(); + this_phase_inputs.clear(); + this_phase_effects.clear(); } + assert(this_phase_inputs.empty()); + assert(this_phase_effects.empty()); + + // If we have no effects left, exit. + if (effects_todo_other_phases.empty()) { + break; + } + + Node *node = effects_todo_other_phases.top(); + effects_todo_other_phases.pop(); + + if (completed_effects.count(node) == 0) { + // Start a new phase, calculating from this effect. + effects_todo_this_phase.push(node); + } + } + + // Finally, since the phases are found from the output but must be executed + // from the input(s), reverse them, too. + std::reverse(phases.begin(), phases.end()); +} + +void EffectChain::output_dot(const char *filename) +{ + FILE *fp = fopen(filename, "w"); + if (fp == NULL) { + perror(filename); + exit(1); + } + + fprintf(fp, "digraph G {\n"); + for (unsigned i = 0; i < nodes.size(); ++i) { + fprintf(fp, " n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str()); + for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) { + std::vector labels; + + if (nodes[i]->outgoing_links[j]->effect->needs_texture_bounce()) { + labels.push_back("needs_bounce"); + } + if (nodes[i]->effect->changes_output_size()) { + labels.push_back("resize"); + } - std::vector next = outgoing_links[node]; - assert(!next.empty()); - if (next.size() > 1) { - // More than one effect uses this as the input. - // The easiest thing to do (and probably also the safest - // performance-wise in most cases) is to bounce it to a texture - // and then let the next passes read from that. - if (node != NULL) { - phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects)); + switch (nodes[i]->output_color_space) { + case COLORSPACE_REC_709: + labels.push_back("spc[rec709]"); + break; + case COLORSPACE_REC_601_525: + labels.push_back("spc[rec601-525]"); + break; + case COLORSPACE_REC_601_625: + labels.push_back("spc[rec601-625]"); + break; + default: + break; } - // Start phases for all the effects that need us (in arbitrary order). - for (unsigned i = 0; i < next.size(); ++i) { - construct_glsl_programs(next[i], completed_effects); + switch (nodes[i]->output_gamma_curve) { + case GAMMA_sRGB: + labels.push_back("gamma[sRGB]"); + break; + case GAMMA_REC_601: // and GAMMA_REC_709 + labels.push_back("gamma[rec601/709]"); + break; + default: + break; + } + + if (labels.empty()) { + fprintf(fp, " n%ld -> n%ld;\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j]); + } else { + std::string label = labels[0]; + for (unsigned k = 1; k < labels.size(); ++k) { + label += ", " + labels[k]; + } + fprintf(fp, " n%ld -> n%ld [label=\"%s\"];\n", (long)nodes[i], (long)nodes[i]->outgoing_links[j], label.c_str()); } - return; } - - // OK, only one effect uses this as the input. Keep iterating, - // but first see if it requires a texture bounce; if so, give it - // one by starting a new phase. - node = next[0]; - if (node->needs_texture_bounce()) { - phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects)); - this_phase_inputs.clear(); - this_phase_effects.clear(); + } + fprintf(fp, "}\n"); + + fclose(fp); +} + +void EffectChain::find_output_size(Phase *phase) +{ + Node *output_node = phase->effects.back(); + + // If the last effect explicitly sets an output size, + // use that. + if (output_node->effect->changes_output_size()) { + output_node->effect->get_output_size(&phase->output_width, &phase->output_height); + return; + } + + // If not, look at the input phases, if any. We select the largest one + // (really assuming they all have the same aspect currently), by pixel count. + if (!phase->inputs.empty()) { + unsigned best_width = 0, best_height = 0; + for (unsigned i = 0; i < phase->inputs.size(); ++i) { + Node *input = phase->inputs[i]; + assert(input->phase->output_width != 0); + assert(input->phase->output_height != 0); + if (input->phase->output_width * input->phase->output_height > best_width * best_height) { + best_width = input->phase->output_width; + best_height = input->phase->output_height; + } } + assert(best_width != 0); + assert(best_height != 0); + phase->output_width = best_width; + phase->output_height = best_height; + return; } + + // OK, no inputs. Just use the global width/height. + // TODO: We probably want to use the texture's size eventually. + phase->output_width = width; + phase->output_height = height; } void EffectChain::finalize() { + output_dot("final.dot"); + + // Find the output effect. This is, simply, one that has no outgoing links. + // If there are multiple ones, the graph is malformed (we do not support + // multiple outputs right now). + std::vector output_nodes; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->outgoing_links.empty()) { + output_nodes.push_back(node); + } + } + assert(output_nodes.size() == 1); + Node *output_node = output_nodes[0]; + // Add normalizers to get the output format right. - assert(output_gamma_curve.count(last_added_effect()) != 0); - assert(output_color_space.count(last_added_effect()) != 0); - ColorSpace current_color_space = output_color_space[last_added_effect()]; // FIXME - if (current_color_space != output_format.color_space) { + if (output_node->output_color_space != output_format.color_space) { ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect(); - colorspace_conversion->set_int("source_space", current_color_space); + colorspace_conversion->set_int("source_space", output_node->output_color_space); colorspace_conversion->set_int("destination_space", output_format.color_space); std::vector inputs; - inputs.push_back(last_added_effect()); + inputs.push_back(output_node->effect); colorspace_conversion->add_self_to_effect_chain(this, inputs); - output_color_space[colorspace_conversion] = output_format.color_space; + + assert(node_map.count(colorspace_conversion) != 0); + output_node = node_map[colorspace_conversion]; + output_node->output_color_space = output_format.color_space; } - GammaCurve current_gamma_curve = output_gamma_curve[last_added_effect()]; // FIXME - if (current_gamma_curve != output_format.gamma_curve) { - if (current_gamma_curve != GAMMA_LINEAR) { - normalize_to_linear_gamma(last_added_effect()); // FIXME + if (output_node->output_gamma_curve != output_format.gamma_curve) { + if (output_node->output_gamma_curve != GAMMA_LINEAR) { + output_node = normalize_to_linear_gamma(output_node); } - assert(current_gamma_curve == GAMMA_LINEAR); GammaCompressionEffect *gamma_conversion = new GammaCompressionEffect(); gamma_conversion->set_int("destination_curve", output_format.gamma_curve); std::vector inputs; - inputs.push_back(last_added_effect()); + inputs.push_back(output_node->effect); gamma_conversion->add_self_to_effect_chain(this, inputs); - output_gamma_curve[gamma_conversion] = output_format.gamma_curve; + + assert(node_map.count(gamma_conversion) != 0); + output_node = node_map[gamma_conversion]; + output_node->output_gamma_curve = output_format.gamma_curve; } - // Construct all needed GLSL programs, starting at the input. - std::set completed_effects; - construct_glsl_programs(NULL, &completed_effects); + // Construct all needed GLSL programs, starting at the output. + construct_glsl_programs(output_node); // If we have more than one phase, we need intermediate render-to-texture. // Construct an FBO, and then as many textures as we need. @@ -405,94 +570,38 @@ void EffectChain::finalize() glGenFramebuffers(1, &fbo); for (unsigned i = 0; i < phases.size() - 1; ++i) { - Effect *output_effect = phases[i].effects.back(); - GLuint temp_texture; - glGenTextures(1, &temp_texture); + find_output_size(phases[i]); + + Node *output_node = phases[i]->effects.back(); + glGenTextures(1, &output_node->output_texture); check_error(); - glBindTexture(GL_TEXTURE_2D, temp_texture); + glBindTexture(GL_TEXTURE_2D, output_node->output_texture); check_error(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); check_error(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); check_error(); - glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); + glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, phases[i]->output_width, phases[i]->output_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); check_error(); - effect_output_textures.insert(std::make_pair(output_effect, temp_texture)); + + output_node->output_texture_width = phases[i]->output_width; + output_node->output_texture_height = phases[i]->output_height; } } - - // Translate the input format to OpenGL's enums. - GLenum internal_format; - if (use_srgb_texture_format) { - internal_format = GL_SRGB8; - } else { - internal_format = GL_RGBA8; - } - if (input_format.pixel_format == FORMAT_RGB) { - format = GL_RGB; - bytes_per_pixel = 3; - } else if (input_format.pixel_format == FORMAT_RGBA) { - format = GL_RGBA; - bytes_per_pixel = 4; - } else if (input_format.pixel_format == FORMAT_BGR) { - format = GL_BGR; - bytes_per_pixel = 3; - } else if (input_format.pixel_format == FORMAT_BGRA) { - format = GL_BGRA; - bytes_per_pixel = 4; - } else { - assert(false); + + for (unsigned i = 0; i < inputs.size(); ++i) { + inputs[i]->finalize(); } - // Create PBO to hold the texture holding the input image, and then the texture itself. - glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 2); - check_error(); - glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, width * height * bytes_per_pixel, NULL, GL_STREAM_DRAW); - check_error(); - glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0); - check_error(); + assert(phases[0]->inputs.empty()); - glGenTextures(1, &source_image_num); - check_error(); - glBindTexture(GL_TEXTURE_2D, source_image_num); - check_error(); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); - check_error(); - // Intel/Mesa seems to have a broken glGenerateMipmap() for non-FBO textures, so do it here. - glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, phases[0].input_needs_mipmaps ? GL_TRUE : GL_FALSE); - check_error(); - glTexImage2D(GL_TEXTURE_2D, 0, internal_format, width, height, 0, format, GL_UNSIGNED_BYTE, NULL); - check_error(); - finalized = true; } -void EffectChain::render_to_screen(unsigned char *src) +void EffectChain::render_to_screen() { assert(finalized); - // Copy the pixel data into the PBO. - glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 2); - check_error(); - void *mapped_pbo = glMapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, GL_WRITE_ONLY); - memcpy(mapped_pbo, src, width * height * bytes_per_pixel); - glUnmapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB); - check_error(); - - // Re-upload the texture from the PBO. - glActiveTexture(GL_TEXTURE0); - check_error(); - glBindTexture(GL_TEXTURE_2D, source_image_num); - check_error(); - glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, format, GL_UNSIGNED_BYTE, BUFFER_OFFSET(0)); - check_error(); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); - check_error(); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); - check_error(); - glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0); - check_error(); - // Basic state. glDisable(GL_BLEND); check_error(); @@ -513,27 +622,42 @@ void EffectChain::render_to_screen(unsigned char *src) check_error(); } - std::set generated_mipmaps; - generated_mipmaps.insert(NULL); // Already done further up. + std::set generated_mipmaps; for (unsigned phase = 0; phase < phases.size(); ++phase) { - glUseProgram(phases[phase].glsl_program_num); - check_error(); + // See if the requested output size has changed. If so, we need to recreate + // the texture (and before we start setting up inputs). + if (phase != phases.size() - 1) { + find_output_size(phases[phase]); - // Set up inputs for this phase. - assert(!phases[phase].inputs.empty()); - for (unsigned sampler = 0; sampler < phases[phase].inputs.size(); ++sampler) { - glActiveTexture(GL_TEXTURE0 + sampler); - Effect *input = phases[phase].inputs[sampler]; - if (input == NULL) { - glBindTexture(GL_TEXTURE_2D, source_image_num); + Node *output_node = phases[phase]->effects.back(); + + if (output_node->output_texture_width != phases[phase]->output_width || + output_node->output_texture_height != phases[phase]->output_height) { + glActiveTexture(GL_TEXTURE0); check_error(); - } else { - assert(effect_output_textures.count(input) != 0); - glBindTexture(GL_TEXTURE_2D, effect_output_textures[input]); + glBindTexture(GL_TEXTURE_2D, output_node->output_texture); + check_error(); + glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, phases[phase]->output_width, phases[phase]->output_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); check_error(); + glBindTexture(GL_TEXTURE_2D, 0); + check_error(); + + output_node->output_texture_width = phases[phase]->output_width; + output_node->output_texture_height = phases[phase]->output_height; } - if (phases[phase].input_needs_mipmaps) { + } + + glUseProgram(phases[phase]->glsl_program_num); + check_error(); + + // Set up RTT inputs for this phase. + for (unsigned sampler = 0; sampler < phases[phase]->inputs.size(); ++sampler) { + glActiveTexture(GL_TEXTURE0 + sampler); + Node *input = phases[phase]->inputs[sampler]; + glBindTexture(GL_TEXTURE_2D, input->output_texture); + check_error(); + if (phases[phase]->input_needs_mipmaps) { if (generated_mipmaps.count(input) == 0) { glGenerateMipmap(GL_TEXTURE_2D); check_error(); @@ -546,9 +670,8 @@ void EffectChain::render_to_screen(unsigned char *src) check_error(); } - assert(effect_ids.count(input)); - std::string texture_name = std::string("tex_") + effect_ids[input]; - glUniform1i(glGetUniformLocation(phases[phase].glsl_program_num, texture_name.c_str()), sampler); + std::string texture_name = std::string("tex_") + input->effect_id; + glUniform1i(glGetUniformLocation(phases[phase]->glsl_program_num, texture_name.c_str()), sampler); check_error(); } @@ -557,23 +680,25 @@ void EffectChain::render_to_screen(unsigned char *src) // Last phase goes directly to the screen. glBindFramebuffer(GL_FRAMEBUFFER, 0); check_error(); + glViewport(0, 0, width, height); } else { - Effect *last_effect = phases[phase].effects.back(); - assert(effect_output_textures.count(last_effect) != 0); + Node *output_node = phases[phase]->effects.back(); glFramebufferTexture2D( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, - effect_output_textures[last_effect], + output_node->output_texture, 0); check_error(); + glViewport(0, 0, phases[phase]->output_width, phases[phase]->output_height); } // Give the required parameters to all the effects. - unsigned sampler_num = phases[phase].inputs.size(); - for (unsigned i = 0; i < phases[phase].effects.size(); ++i) { - Effect *effect = phases[phase].effects[i]; - effect->set_uniforms(phases[phase].glsl_program_num, effect_ids[effect], &sampler_num); + unsigned sampler_num = phases[phase]->inputs.size(); + for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) { + Node *node = phases[phase]->effects[i]; + node->effect->set_gl_state(phases[phase]->glsl_program_num, node->effect_id, &sampler_num); + check_error(); } // Now draw! @@ -594,11 +719,9 @@ void EffectChain::render_to_screen(unsigned char *src) glEnd(); check_error(); - // HACK - glActiveTexture(GL_TEXTURE0); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); - check_error(); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1000); - check_error(); + for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) { + Node *node = phases[phase]->effects[i]; + node->effect->clear_gl_state(); + } } }