X-Git-Url: https://git.sesse.net/?p=movit;a=blobdiff_plain;f=effect_chain.cpp;h=b04727bf1bb8c973bc3c9eff7f935578c12d9f18;hp=aae2941f791ca86faf9ce16cea4912cd9c05fd1b;hb=e655afd53f2e56938bd4e7f72640eff56ef4a1ee;hpb=fdad0932f08649e69e824ee73a787671a5bc93a5 diff --git a/effect_chain.cpp b/effect_chain.cpp index aae2941..b04727b 100644 --- a/effect_chain.cpp +++ b/effect_chain.cpp @@ -24,20 +24,11 @@ EffectChain::EffectChain(unsigned width, unsigned height) Input *EffectChain::add_input(Input *input) { - char eff_id[256]; - sprintf(eff_id, "src_image%u", (unsigned)inputs.size()); - inputs.push_back(input); - Node *node = new Node; - node->effect = input; - node->effect_id = eff_id; + Node *node = add_node(input); node->output_color_space = input->get_color_space(); node->output_gamma_curve = input->get_gamma_curve(); - - nodes.push_back(node); - node_map[input] = node; - return input; } @@ -46,37 +37,78 @@ void EffectChain::add_output(const ImageFormat &format) output_format = format; } -void EffectChain::add_effect_raw(Effect *effect, const std::vector &inputs) +Node *EffectChain::add_node(Effect *effect) { char effect_id[256]; sprintf(effect_id, "eff%u", (unsigned)nodes.size()); Node *node = new Node; node->effect = effect; + node->disabled = false; node->effect_id = effect_id; + node->output_color_space = COLORSPACE_INVALID; + node->output_gamma_curve = GAMMA_INVALID; - assert(inputs.size() == effect->num_inputs()); - assert(inputs.size() >= 1); - for (unsigned i = 0; i < inputs.size(); ++i) { - assert(node_map.count(inputs[i]) != 0); - node_map[inputs[i]]->outgoing_links.push_back(node); - node->incoming_links.push_back(node_map[inputs[i]]); - if (i == 0) { - node->output_gamma_curve = node_map[inputs[i]]->output_gamma_curve; - node->output_color_space = node_map[inputs[i]]->output_color_space; - } else { - assert(node->output_gamma_curve == node_map[inputs[i]]->output_gamma_curve); - assert(node->output_color_space == node_map[inputs[i]]->output_color_space); + nodes.push_back(node); + node_map[effect] = node; + return node; +} + +void EffectChain::connect_nodes(Node *sender, Node *receiver) +{ + sender->outgoing_links.push_back(receiver); + receiver->incoming_links.push_back(sender); +} + +void EffectChain::replace_receiver(Node *old_receiver, Node *new_receiver) +{ + new_receiver->incoming_links = old_receiver->incoming_links; + old_receiver->incoming_links.clear(); + + for (unsigned i = 0; i < new_receiver->incoming_links.size(); ++i) { + Node *sender = new_receiver->incoming_links[i]; + for (unsigned j = 0; j < sender->outgoing_links.size(); ++j) { + if (sender->outgoing_links[j] == old_receiver) { + sender->outgoing_links[j] = new_receiver; + } + } + } +} + +void EffectChain::replace_sender(Node *old_sender, Node *new_sender) +{ + new_sender->outgoing_links = old_sender->outgoing_links; + old_sender->outgoing_links.clear(); + + for (unsigned i = 0; i < new_sender->outgoing_links.size(); ++i) { + Node *receiver = new_sender->outgoing_links[i]; + for (unsigned j = 0; j < receiver->incoming_links.size(); ++j) { + if (receiver->incoming_links[j] == old_sender) { + receiver->incoming_links[j] = new_sender; + } + } + } +} + +void EffectChain::insert_node_between(Node *sender, Node *middle, Node *receiver) +{ + for (unsigned i = 0; i < sender->outgoing_links.size(); ++i) { + if (sender->outgoing_links[i] == receiver) { + sender->outgoing_links[i] = middle; + middle->incoming_links.push_back(sender); + } + } + for (unsigned i = 0; i < receiver->incoming_links.size(); ++i) { + if (receiver->incoming_links[i] == sender) { + receiver->incoming_links[i] = middle; + middle->outgoing_links.push_back(receiver); } } - nodes.push_back(node); - node_map[effect] = node; + assert(middle->incoming_links.size() == middle->effect->num_inputs()); } -void EffectChain::find_all_nonlinear_inputs(Node *node, - std::vector *nonlinear_inputs, - std::vector *intermediates) +void EffectChain::find_all_nonlinear_inputs(Node *node, std::vector *nonlinear_inputs) { if (node->output_gamma_curve == GAMMA_LINEAR) { return; @@ -84,96 +116,21 @@ void EffectChain::find_all_nonlinear_inputs(Node *node, if (node->effect->num_inputs() == 0) { nonlinear_inputs->push_back(node); } else { - intermediates->push_back(node); assert(node->effect->num_inputs() == node->incoming_links.size()); for (unsigned i = 0; i < node->incoming_links.size(); ++i) { - find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs, intermediates); + find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs); } } } -Node *EffectChain::normalize_to_linear_gamma(Node *input) -{ - // Find out if all the inputs can be set to deliver sRGB inputs. - // If so, we can just ask them to do that instead of inserting a - // (possibly expensive) conversion operation. - // - // NOTE: We assume that effects generally don't mess with the gamma - // curve (except GammaCompressionEffect, which should never be - // inserted into a chain when this is called), so that we can just - // update the output gamma as we go. - // - // TODO: Setting this flag for one source might confuse a different - // part of the pipeline using the same source. - std::vector nonlinear_inputs; - std::vector intermediates; - find_all_nonlinear_inputs(input, &nonlinear_inputs, &intermediates); - - bool all_ok = true; - for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { - Input *input = static_cast(nonlinear_inputs[i]->effect); - all_ok &= input->can_output_linear_gamma(); - } - - if (all_ok) { - for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { - bool ok = nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1); - assert(ok); - nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR; - } - for (unsigned i = 0; i < intermediates.size(); ++i) { - intermediates[i]->output_gamma_curve = GAMMA_LINEAR; - } - return input; - } - - // OK, that didn't work. Insert a conversion effect. - GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect(); - gamma_conversion->set_int("source_curve", input->output_gamma_curve); - std::vector inputs; - inputs.push_back(input->effect); - gamma_conversion->add_self_to_effect_chain(this, inputs); - - assert(node_map.count(gamma_conversion) != 0); - Node *node = node_map[gamma_conversion]; - node->output_gamma_curve = GAMMA_LINEAR; - return node; -} - -Node *EffectChain::normalize_to_srgb(Node *input) -{ - assert(input->output_gamma_curve == GAMMA_LINEAR); - ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect(); - colorspace_conversion->set_int("source_space", input->output_color_space); - colorspace_conversion->set_int("destination_space", COLORSPACE_sRGB); - std::vector inputs; - inputs.push_back(input->effect); - colorspace_conversion->add_self_to_effect_chain(this, inputs); - - assert(node_map.count(colorspace_conversion) != 0); - Node *node = node_map[colorspace_conversion]; - node->output_color_space = COLORSPACE_sRGB; - return node; -} - Effect *EffectChain::add_effect(Effect *effect, const std::vector &inputs) { assert(inputs.size() == effect->num_inputs()); - - std::vector normalized_inputs = inputs; - for (unsigned i = 0; i < normalized_inputs.size(); ++i) { - assert(node_map.count(normalized_inputs[i]) != 0); - Node *input = node_map[normalized_inputs[i]]; - if (effect->needs_linear_light() && input->output_gamma_curve != GAMMA_LINEAR) { - input = normalize_to_linear_gamma(input); - } - if (effect->needs_srgb_primaries() && input->output_color_space != COLORSPACE_sRGB) { - input = normalize_to_srgb(input); - } - normalized_inputs[i] = input->effect; + Node *node = add_node(effect); + for (unsigned i = 0; i < inputs.size(); ++i) { + assert(node_map.count(inputs[i]) != 0); + connect_nodes(node_map[inputs[i]], node); } - - effect->add_self_to_effect_chain(this, normalized_inputs); return effect; } @@ -436,6 +393,9 @@ void EffectChain::output_dot(const char *filename) } switch (nodes[i]->output_color_space) { + case COLORSPACE_INVALID: + labels.push_back("spc[invalid]"); + break; case COLORSPACE_REC_601_525: labels.push_back("spc[rec601-525]"); break; @@ -447,6 +407,9 @@ void EffectChain::output_dot(const char *filename) } switch (nodes[i]->output_gamma_curve) { + case GAMMA_INVALID: + labels.push_back("gamma[invalid]"); + break; case GAMMA_sRGB: labels.push_back("gamma[sRGB]"); break; @@ -510,53 +473,349 @@ void EffectChain::find_output_size(Phase *phase) phase->output_height = height; } -void EffectChain::finalize() +void EffectChain::sort_nodes_topologically() { - output_dot("final.dot"); + std::set visited_nodes; + std::vector sorted_list; + for (unsigned i = 0; i < nodes.size(); ++i) { + if (nodes[i]->incoming_links.size() == 0) { + topological_sort_visit_node(nodes[i], &visited_nodes, &sorted_list); + } + } + reverse(sorted_list.begin(), sorted_list.end()); + nodes = sorted_list; +} + +void EffectChain::topological_sort_visit_node(Node *node, std::set *visited_nodes, std::vector *sorted_list) +{ + if (visited_nodes->count(node) != 0) { + return; + } + visited_nodes->insert(node); + for (unsigned i = 0; i < node->outgoing_links.size(); ++i) { + topological_sort_visit_node(node->outgoing_links[i], visited_nodes, sorted_list); + } + sorted_list->push_back(node); +} + +// Propagate gamma and color space information as far as we can in the graph. +// The rules are simple: Anything where all the inputs agree, get that as +// output as well. Anything else keeps having *_INVALID. +void EffectChain::propagate_gamma_and_color_space() +{ + // We depend on going through the nodes in order. + sort_nodes_topologically(); - // Find the output effect. This is, simply, one that has no outgoing links. - // If there are multiple ones, the graph is malformed (we do not support - // multiple outputs right now). - std::vector output_nodes; for (unsigned i = 0; i < nodes.size(); ++i) { Node *node = nodes[i]; - if (node->outgoing_links.empty()) { - output_nodes.push_back(node); + if (node->disabled) { + continue; + } + assert(node->incoming_links.size() == node->effect->num_inputs()); + if (node->incoming_links.size() == 0) { + assert(node->output_color_space != COLORSPACE_INVALID); + assert(node->output_gamma_curve != GAMMA_INVALID); + continue; + } + + ColorSpace color_space = node->incoming_links[0]->output_color_space; + GammaCurve gamma_curve = node->incoming_links[0]->output_gamma_curve; + for (unsigned j = 1; j < node->incoming_links.size(); ++j) { + if (node->incoming_links[j]->output_color_space != color_space) { + color_space = COLORSPACE_INVALID; + } + if (node->incoming_links[j]->output_gamma_curve != gamma_curve) { + gamma_curve = GAMMA_INVALID; + } } + + // The conversion effects already have their outputs set correctly, + // so leave them alone. + if (node->effect->effect_type_id() != "ColorSpaceConversionEffect") { + node->output_color_space = color_space; + } + if (node->effect->effect_type_id() != "GammaCompressionEffect" && + node->effect->effect_type_id() != "GammaExpansionEffect") { + node->output_gamma_curve = gamma_curve; + } } - assert(output_nodes.size() == 1); - Node *output_node = output_nodes[0]; +} - // Add normalizers to get the output format right. - if (output_node->output_color_space != output_format.color_space) { - ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect(); - colorspace_conversion->set_int("source_space", output_node->output_color_space); - colorspace_conversion->set_int("destination_space", output_format.color_space); - std::vector inputs; - inputs.push_back(output_node->effect); - colorspace_conversion->add_self_to_effect_chain(this, inputs); +bool EffectChain::node_needs_colorspace_fix(Node *node) +{ + if (node->disabled) { + return false; + } + if (node->effect->num_inputs() == 0) { + return false; + } - assert(node_map.count(colorspace_conversion) != 0); - output_node = node_map[colorspace_conversion]; - output_node->output_color_space = output_format.color_space; + // propagate_gamma_and_color_space() has already set our output + // to COLORSPACE_INVALID if the inputs differ, so we can rely on that. + if (node->output_color_space == COLORSPACE_INVALID) { + return true; } - if (output_node->output_gamma_curve != output_format.gamma_curve) { - if (output_node->output_gamma_curve != GAMMA_LINEAR) { - output_node = normalize_to_linear_gamma(output_node); + return (node->effect->needs_srgb_primaries() && node->output_color_space != COLORSPACE_sRGB); +} + +// Fix up color spaces so that there are no COLORSPACE_INVALID nodes left in +// the graph. Our strategy is not always optimal, but quite simple: +// Find an effect that's as early as possible where the inputs are of +// unacceptable colorspaces (that is, either different, or, if the effect only +// wants sRGB, not sRGB.) Add appropriate conversions on all its inputs, +// propagate the information anew, and repeat until there are no more such +// effects. +void EffectChain::fix_internal_color_spaces() +{ + unsigned colorspace_propagation_pass = 0; + bool found_any; + do { + found_any = false; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (!node_needs_colorspace_fix(node)) { + continue; + } + + // Go through each input that is not sRGB, and insert + // a colorspace conversion before it. + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + Node *input = node->incoming_links[j]; + assert(input->output_color_space != COLORSPACE_INVALID); + if (input->output_color_space == COLORSPACE_sRGB) { + continue; + } + Node *conversion = add_node(new ColorSpaceConversionEffect()); + conversion->effect->set_int("source_space", input->output_color_space); + conversion->effect->set_int("destination_space", COLORSPACE_sRGB); + conversion->output_color_space = COLORSPACE_sRGB; + insert_node_between(input, conversion, node); + } + + // Re-sort topologically, and propagate the new information. + propagate_gamma_and_color_space(); + + found_any = true; + break; + } + + char filename[256]; + sprintf(filename, "step3-colorspacefix-iter%u.dot", ++colorspace_propagation_pass); + output_dot(filename); + assert(colorspace_propagation_pass < 100); + } while (found_any); + + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->output_color_space != COLORSPACE_INVALID); + } +} + +// Make so that the output is in the desired color space. +void EffectChain::fix_output_color_space() +{ + Node *output = find_output_node(); + if (output->output_color_space != output_format.color_space) { + Node *conversion = add_node(new ColorSpaceConversionEffect()); + conversion->effect->set_int("source_space", output->output_color_space); + conversion->effect->set_int("destination_space", output_format.color_space); + conversion->output_color_space = output_format.color_space; + connect_nodes(output, conversion); + } +} + +bool EffectChain::node_needs_gamma_fix(Node *node) +{ + if (node->disabled) { + return false; + } + if (node->effect->num_inputs() == 0) { + return false; + } + + // propagate_gamma_and_color_space() has already set our output + // to GAMMA_INVALID if the inputs differ, so we can rely on that, + // except for GammaCompressionEffect. + if (node->output_gamma_curve == GAMMA_INVALID) { + return true; + } + if (node->effect->effect_type_id() == "GammaCompressionEffect") { + assert(node->incoming_links.size() == 1); + return node->incoming_links[0]->output_gamma_curve != GAMMA_LINEAR; + } + return (node->effect->needs_linear_light() && node->output_gamma_curve != GAMMA_LINEAR); +} + +// Very similar to fix_internal_color_spaces(), but for gamma. +// There is one difference, though; before we start adding conversion nodes, +// we see if we can get anything out of asking the sources to deliver +// linear gamma directly. fix_internal_gamma_by_asking_inputs() +// does that part, while fix_internal_gamma_by_inserting_nodes() +// inserts nodes as needed afterwards. +void EffectChain::fix_internal_gamma_by_asking_inputs(unsigned step) +{ + unsigned gamma_propagation_pass = 0; + bool found_any; + do { + found_any = false; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (!node_needs_gamma_fix(node)) { + continue; + } + + // See if all inputs can give us linear gamma. If not, leave it. + std::vector nonlinear_inputs; + find_all_nonlinear_inputs(node, &nonlinear_inputs); + + bool all_ok = true; + for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { + Input *input = static_cast(nonlinear_inputs[i]->effect); + all_ok &= input->can_output_linear_gamma(); + } + + if (!all_ok) { + continue; + } + + for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { + nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1); + nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR; + } + + // Re-sort topologically, and propagate the new information. + propagate_gamma_and_color_space(); + + found_any = true; + break; } - GammaCompressionEffect *gamma_conversion = new GammaCompressionEffect(); - gamma_conversion->set_int("destination_curve", output_format.gamma_curve); - std::vector inputs; - inputs.push_back(output_node->effect); - gamma_conversion->add_self_to_effect_chain(this, inputs); + + char filename[256]; + sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass); + output_dot(filename); + assert(gamma_propagation_pass < 100); + } while (found_any); +} + +void EffectChain::fix_internal_gamma_by_inserting_nodes(unsigned step) +{ + unsigned gamma_propagation_pass = 0; + bool found_any; + do { + found_any = false; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (!node_needs_gamma_fix(node)) { + continue; + } - assert(node_map.count(gamma_conversion) != 0); - output_node = node_map[gamma_conversion]; - output_node->output_gamma_curve = output_format.gamma_curve; + // Go through each input that is not linear gamma, and insert + // a gamma conversion before it. + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + Node *input = node->incoming_links[j]; + assert(input->output_gamma_curve != GAMMA_INVALID); + if (input->output_gamma_curve == GAMMA_LINEAR) { + continue; + } + Node *conversion = add_node(new GammaExpansionEffect()); + conversion->effect->set_int("destination_curve", GAMMA_LINEAR); + conversion->output_gamma_curve = GAMMA_LINEAR; + insert_node_between(input, conversion, node); + } + + // Re-sort topologically, and propagate the new information. + propagate_gamma_and_color_space(); + + found_any = true; + break; + } + + char filename[256]; + sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass); + output_dot(filename); + assert(gamma_propagation_pass < 100); + } while (found_any); + + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->output_gamma_curve != GAMMA_INVALID); } +} +// Make so that the output is in the desired gamma. +// Note that this assumes linear input gamma, so it might create the need +// for another pass of fix_internal_gamma(). +void EffectChain::fix_output_gamma() +{ + Node *output = find_output_node(); + if (output->output_gamma_curve != output_format.gamma_curve) { + Node *conversion = add_node(new GammaCompressionEffect()); + conversion->effect->set_int("destination_curve", output_format.gamma_curve); + conversion->output_gamma_curve = output_format.gamma_curve; + connect_nodes(output, conversion); + } +} + +// Find the output node. This is, simply, one that has no outgoing links. +// If there are multiple ones, the graph is malformed (we do not support +// multiple outputs right now). +Node *EffectChain::find_output_node() +{ + std::vector output_nodes; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + if (node->outgoing_links.empty()) { + output_nodes.push_back(node); + } + } + assert(output_nodes.size() == 1); + return output_nodes[0]; +} + +void EffectChain::finalize() +{ + // Output the graph as it is before we do any conversions on it. + output_dot("step0-start.dot"); + + // Give each effect in turn a chance to rewrite its own part of the graph. + // Note that if more effects are added as part of this, they will be + // picked up as part of the same for loop, since they are added at the end. + for (unsigned i = 0; i < nodes.size(); ++i) { + nodes[i]->effect->rewrite_graph(this, nodes[i]); + } + output_dot("step1-rewritten.dot"); + + propagate_gamma_and_color_space(); + output_dot("step2-propagated.dot"); + + fix_internal_color_spaces(); + fix_output_color_space(); + output_dot("step4-output-colorspacefix.dot"); + + // Note that we need to fix gamma after colorspace conversion, + // because colorspace conversions might create needs for gamma conversions. + // Also, we need to run an extra pass of fix_internal_gamma() after + // fixing the output gamma, as we only have conversions to/from linear. + fix_internal_gamma_by_asking_inputs(5); + fix_internal_gamma_by_inserting_nodes(6); + fix_output_gamma(); + output_dot("step8-output-gammafix.dot"); + fix_internal_gamma_by_asking_inputs(9); + fix_internal_gamma_by_inserting_nodes(10); + + output_dot("step11-final.dot"); + // Construct all needed GLSL programs, starting at the output. - construct_glsl_programs(output_node); + construct_glsl_programs(find_output_node()); // If we have more than one phase, we need intermediate render-to-texture. // Construct an FBO, and then as many textures as we need.