X-Git-Url: https://git.sesse.net/?p=movit;a=blobdiff_plain;f=effect_chain.cpp;h=d80c4f82a28b33c39c983b38f02894ad514979e1;hp=5c1ba69e64a71ad65fe34ad3d7c53d76f4471fd9;hb=85f9719bf3519b1f1942738d11601584f5d38725;hpb=17c083aad45a10df14c38cfe879a87220dfd4fb9 diff --git a/effect_chain.cpp b/effect_chain.cpp index 5c1ba69..d80c4f8 100644 --- a/effect_chain.cpp +++ b/effect_chain.cpp @@ -1,109 +1,189 @@ #define GL_GLEXT_PROTOTYPES 1 +#include +#include +#include +#include +#include #include +#include #include -#include +#include +#include +#include +#include -#include -#include - -#include "util.h" +#include "alpha_division_effect.h" +#include "alpha_multiplication_effect.h" +#include "colorspace_conversion_effect.h" +#include "dither_effect.h" +#include "effect.h" #include "effect_chain.h" -#include "gamma_expansion_effect.h" #include "gamma_compression_effect.h" -#include "lift_gamma_gain_effect.h" -#include "colorspace_conversion_effect.h" -#include "saturation_effect.h" -#include "vignette_effect.h" -#include "texture_enum.h" +#include "gamma_expansion_effect.h" +#include "init.h" +#include "input.h" +#include "resource_pool.h" +#include "util.h" + +using namespace std; + +EffectChain::EffectChain(float aspect_nom, float aspect_denom, ResourcePool *resource_pool) + : aspect_nom(aspect_nom), + aspect_denom(aspect_denom), + dither_effect(NULL), + num_dither_bits(0), + finalized(false), + resource_pool(resource_pool) { + if (resource_pool == NULL) { + this->resource_pool = new ResourcePool(); + owns_resource_pool = true; + } else { + owns_resource_pool = false; + } +} -EffectChain::EffectChain(unsigned width, unsigned height) - : width(width), height(height), use_srgb_texture_format(false), finalized(false) {} +EffectChain::~EffectChain() +{ + for (unsigned i = 0; i < nodes.size(); ++i) { + delete nodes[i]->effect; + delete nodes[i]; + } + for (unsigned i = 0; i < phases.size(); ++i) { + resource_pool->release_glsl_program(phases[i]->glsl_program_num); + delete phases[i]; + } + if (owns_resource_pool) { + delete resource_pool; + } +} -void EffectChain::add_input(const ImageFormat &format) +Input *EffectChain::add_input(Input *input) { - input_format = format; - current_color_space = format.color_space; - current_gamma_curve = format.gamma_curve; + assert(!finalized); + inputs.push_back(input); + add_node(input); + return input; } -void EffectChain::add_output(const ImageFormat &format) +void EffectChain::add_output(const ImageFormat &format, OutputAlphaFormat alpha_format) { + assert(!finalized); output_format = format; + output_alpha_format = alpha_format; } - -Effect *instantiate_effect(EffectId effect) -{ - switch (effect) { - case EFFECT_GAMMA_EXPANSION: - return new GammaExpansionEffect(); - case EFFECT_GAMMA_COMPRESSION: - return new GammaCompressionEffect(); - case EFFECT_COLOR_SPACE_CONVERSION: - return new ColorSpaceConversionEffect(); - case EFFECT_LIFT_GAMMA_GAIN: - return new LiftGammaGainEffect(); - case EFFECT_SATURATION: - return new SaturationEffect(); - case EFFECT_VIGNETTE: - return new VignetteEffect(); - } - assert(false); -} - -void EffectChain::normalize_to_linear_gamma() -{ - if (current_gamma_curve == GAMMA_sRGB) { - // TODO: check if the extension exists - use_srgb_texture_format = true; - } else { - GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect(); - gamma_conversion->set_int("source_curve", current_gamma_curve); - effects.push_back(gamma_conversion); + +Node *EffectChain::add_node(Effect *effect) +{ + for (unsigned i = 0; i < nodes.size(); ++i) { + assert(nodes[i]->effect != effect); } - current_gamma_curve = GAMMA_LINEAR; + + Node *node = new Node; + node->effect = effect; + node->disabled = false; + node->output_color_space = COLORSPACE_INVALID; + node->output_gamma_curve = GAMMA_INVALID; + node->output_alpha_type = ALPHA_INVALID; + + nodes.push_back(node); + node_map[effect] = node; + effect->inform_added(this); + return node; +} + +void EffectChain::connect_nodes(Node *sender, Node *receiver) +{ + sender->outgoing_links.push_back(receiver); + receiver->incoming_links.push_back(sender); } -void EffectChain::normalize_to_srgb() +void EffectChain::replace_receiver(Node *old_receiver, Node *new_receiver) { - assert(current_gamma_curve == GAMMA_LINEAR); - ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect(); - colorspace_conversion->set_int("source_space", current_color_space); - colorspace_conversion->set_int("destination_space", COLORSPACE_sRGB); - effects.push_back(colorspace_conversion); - current_color_space = COLORSPACE_sRGB; + new_receiver->incoming_links = old_receiver->incoming_links; + old_receiver->incoming_links.clear(); + + for (unsigned i = 0; i < new_receiver->incoming_links.size(); ++i) { + Node *sender = new_receiver->incoming_links[i]; + for (unsigned j = 0; j < sender->outgoing_links.size(); ++j) { + if (sender->outgoing_links[j] == old_receiver) { + sender->outgoing_links[j] = new_receiver; + } + } + } } -Effect *EffectChain::add_effect(EffectId effect_id) +void EffectChain::replace_sender(Node *old_sender, Node *new_sender) { - Effect *effect = instantiate_effect(effect_id); + new_sender->outgoing_links = old_sender->outgoing_links; + old_sender->outgoing_links.clear(); + + for (unsigned i = 0; i < new_sender->outgoing_links.size(); ++i) { + Node *receiver = new_sender->outgoing_links[i]; + for (unsigned j = 0; j < receiver->incoming_links.size(); ++j) { + if (receiver->incoming_links[j] == old_sender) { + receiver->incoming_links[j] = new_sender; + } + } + } +} - if (effect->needs_linear_light() && current_gamma_curve != GAMMA_LINEAR) { - normalize_to_linear_gamma(); +void EffectChain::insert_node_between(Node *sender, Node *middle, Node *receiver) +{ + for (unsigned i = 0; i < sender->outgoing_links.size(); ++i) { + if (sender->outgoing_links[i] == receiver) { + sender->outgoing_links[i] = middle; + middle->incoming_links.push_back(sender); + } } - - if (effect->needs_srgb_primaries() && current_color_space != COLORSPACE_sRGB) { - normalize_to_srgb(); + for (unsigned i = 0; i < receiver->incoming_links.size(); ++i) { + if (receiver->incoming_links[i] == sender) { + receiver->incoming_links[i] = middle; + middle->outgoing_links.push_back(receiver); + } } - // not handled yet - assert(!effect->needs_many_samples()); - assert(!effect->needs_mipmaps()); + assert(middle->incoming_links.size() == middle->effect->num_inputs()); +} - effects.push_back(effect); +void EffectChain::find_all_nonlinear_inputs(Node *node, vector *nonlinear_inputs) +{ + if (node->output_gamma_curve == GAMMA_LINEAR && + node->effect->effect_type_id() != "GammaCompressionEffect") { + return; + } + if (node->effect->num_inputs() == 0) { + nonlinear_inputs->push_back(node); + } else { + assert(node->effect->num_inputs() == node->incoming_links.size()); + for (unsigned i = 0; i < node->incoming_links.size(); ++i) { + find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs); + } + } +} + +Effect *EffectChain::add_effect(Effect *effect, const vector &inputs) +{ + assert(!finalized); + assert(inputs.size() == effect->num_inputs()); + Node *node = add_node(effect); + for (unsigned i = 0; i < inputs.size(); ++i) { + assert(node_map.count(inputs[i]) != 0); + connect_nodes(node_map[inputs[i]], node); + } return effect; } // GLSL pre-1.30 doesn't support token pasting. Replace PREFIX(x) with _x. -std::string replace_prefix(const std::string &text, const std::string &prefix) +string replace_prefix(const string &text, const string &prefix) { - std::string output; + string output; size_t start = 0; while (start < text.size()) { size_t pos = text.find("PREFIX(", start); - if (pos == std::string::npos) { - output.append(text.substr(start, std::string::npos)); + if (pos == string::npos) { + output.append(text.substr(start, string::npos)); break; } @@ -135,133 +215,1231 @@ std::string replace_prefix(const std::string &text, const std::string &prefix) return output; } -void EffectChain::finalize() +Phase *EffectChain::compile_glsl_program( + const vector &inputs, + const vector &effects) { - if (current_color_space != output_format.color_space) { - ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect(); - colorspace_conversion->set_int("source_space", current_color_space); - colorspace_conversion->set_int("destination_space", output_format.color_space); - effects.push_back(colorspace_conversion); - current_color_space = output_format.color_space; - } + Phase *phase = new Phase; + assert(!effects.empty()); - if (current_gamma_curve != output_format.gamma_curve) { - if (current_gamma_curve != GAMMA_LINEAR) { - normalize_to_linear_gamma(); - } - assert(current_gamma_curve == GAMMA_LINEAR); - GammaCompressionEffect *gamma_conversion = new GammaCompressionEffect(); - gamma_conversion->set_int("destination_curve", output_format.gamma_curve); - effects.push_back(gamma_conversion); - current_gamma_curve = output_format.gamma_curve; + // Deduplicate the inputs. + vector true_inputs = inputs; + sort(true_inputs.begin(), true_inputs.end()); + true_inputs.erase(unique(true_inputs.begin(), true_inputs.end()), true_inputs.end()); + + bool input_needs_mipmaps = false; + string frag_shader = read_file("header.frag"); + + // Create functions for all the texture inputs that we need. + for (unsigned i = 0; i < true_inputs.size(); ++i) { + Node *input = true_inputs[i]; + char effect_id[256]; + sprintf(effect_id, "in%u", i); + phase->effect_ids.insert(make_pair(input, effect_id)); + + frag_shader += string("uniform sampler2D tex_") + effect_id + ";\n"; + frag_shader += string("vec4 ") + effect_id + "(vec2 tc) {\n"; + frag_shader += "\treturn texture2D(tex_" + string(effect_id) + ", tc);\n"; + frag_shader += "}\n"; + frag_shader += "\n"; } - std::string frag_shader = read_file("header.glsl"); + vector sorted_effects = topological_sort(effects); - for (unsigned i = 0; i < effects.size(); ++i) { + for (unsigned i = 0; i < sorted_effects.size(); ++i) { + Node *node = sorted_effects[i]; char effect_id[256]; - sprintf(effect_id, "eff%d", i); + sprintf(effect_id, "eff%u", i); + phase->effect_ids.insert(make_pair(node, effect_id)); + + if (node->incoming_links.size() == 1) { + frag_shader += string("#define INPUT ") + phase->effect_ids[node->incoming_links[0]] + "\n"; + } else { + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + char buf[256]; + sprintf(buf, "#define INPUT%d %s\n", j + 1, phase->effect_ids[node->incoming_links[j]].c_str()); + frag_shader += buf; + } + } frag_shader += "\n"; - frag_shader += std::string("#define FUNCNAME ") + effect_id + "\n"; - frag_shader += replace_prefix(effects[i]->output_convenience_uniforms(), effect_id); - frag_shader += replace_prefix(effects[i]->output_fragment_shader(), effect_id); + frag_shader += string("#define FUNCNAME ") + effect_id + "\n"; + frag_shader += replace_prefix(node->effect->output_convenience_uniforms(), effect_id); + frag_shader += replace_prefix(node->effect->output_fragment_shader(), effect_id); frag_shader += "#undef PREFIX\n"; frag_shader += "#undef FUNCNAME\n"; - frag_shader += "#undef LAST_INPUT\n"; - frag_shader += std::string("#define LAST_INPUT ") + effect_id + "\n"; + if (node->incoming_links.size() == 1) { + frag_shader += "#undef INPUT\n"; + } else { + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + char buf[256]; + sprintf(buf, "#undef INPUT%d\n", j + 1); + frag_shader += buf; + } + } frag_shader += "\n"; + + input_needs_mipmaps |= node->effect->needs_mipmaps(); + } + for (unsigned i = 0; i < sorted_effects.size(); ++i) { + Node *node = sorted_effects[i]; + if (node->effect->num_inputs() == 0) { + CHECK(node->effect->set_int("needs_mipmaps", input_needs_mipmaps)); + } + } + frag_shader += string("#define INPUT ") + phase->effect_ids[sorted_effects.back()] + "\n"; + frag_shader.append(read_file("footer.frag")); + + phase->glsl_program_num = resource_pool->compile_glsl_program(read_file("vs.vert"), frag_shader); + phase->input_needs_mipmaps = input_needs_mipmaps; + phase->inputs = true_inputs; + phase->effects = sorted_effects; + + return phase; +} + +// Construct GLSL programs, starting at the given effect and following +// the chain from there. We end a program every time we come to an effect +// marked as "needs texture bounce", one that is used by multiple other +// effects, every time an effect wants to change the output size, +// and of course at the end. +// +// We follow a quite simple depth-first search from the output, although +// without any explicit recursion. +void EffectChain::construct_glsl_programs(Node *output) +{ + // Which effects have already been completed? + // We need to keep track of it, as an effect with multiple outputs + // could otherwise be calculated multiple times. + set completed_effects; + + // Effects in the current phase, as well as inputs (outputs from other phases + // that we depend on). Note that since we start iterating from the end, + // the effect list will be in the reverse order. + vector this_phase_inputs; + vector this_phase_effects; + + // Effects that we have yet to calculate, but that we know should + // be in the current phase. + stack effects_todo_this_phase; + + // Effects that we have yet to calculate, but that come from other phases. + // We delay these until we have this phase done in its entirety, + // at which point we pick any of them and start a new phase from that. + stack effects_todo_other_phases; + + effects_todo_this_phase.push(output); + + for ( ;; ) { // Termination condition within loop. + if (!effects_todo_this_phase.empty()) { + // OK, we have more to do this phase. + Node *node = effects_todo_this_phase.top(); + effects_todo_this_phase.pop(); + + // This should currently only happen for effects that are inputs + // (either true inputs or phase outputs). We special-case inputs, + // and then deduplicate phase outputs in compile_glsl_program(). + if (node->effect->num_inputs() == 0) { + if (find(this_phase_effects.begin(), this_phase_effects.end(), node) != this_phase_effects.end()) { + continue; + } + } else { + assert(completed_effects.count(node) == 0); + } + + this_phase_effects.push_back(node); + completed_effects.insert(node); + + // Find all the dependencies of this effect, and add them to the stack. + vector deps = node->incoming_links; + assert(node->effect->num_inputs() == deps.size()); + for (unsigned i = 0; i < deps.size(); ++i) { + bool start_new_phase = false; + + // FIXME: If we sample directly from a texture, we won't need this. + if (node->effect->needs_texture_bounce()) { + start_new_phase = true; + } + + if (deps[i]->outgoing_links.size() > 1) { + if (deps[i]->effect->num_inputs() > 0) { + // More than one effect uses this as the input, + // and it is not a texture itself. + // The easiest thing to do (and probably also the safest + // performance-wise in most cases) is to bounce it to a texture + // and then let the next passes read from that. + start_new_phase = true; + } else { + // For textures, we try to be slightly more clever; + // if none of our outputs need a bounce, we don't bounce + // but instead simply use the effect many times. + // + // Strictly speaking, we could bounce it for some outputs + // and use it directly for others, but the processing becomes + // somewhat simpler if the effect is only used in one such way. + for (unsigned j = 0; j < deps[i]->outgoing_links.size(); ++j) { + Node *rdep = deps[i]->outgoing_links[j]; + start_new_phase |= rdep->effect->needs_texture_bounce(); + } + } + } + + if (deps[i]->effect->changes_output_size()) { + start_new_phase = true; + } + + if (start_new_phase) { + effects_todo_other_phases.push(deps[i]); + this_phase_inputs.push_back(deps[i]); + } else { + effects_todo_this_phase.push(deps[i]); + } + } + continue; + } + + // No more effects to do this phase. Take all the ones we have, + // and create a GLSL program for it. + if (!this_phase_effects.empty()) { + reverse(this_phase_effects.begin(), this_phase_effects.end()); + phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects)); + this_phase_effects.back()->phase = phases.back(); + this_phase_inputs.clear(); + this_phase_effects.clear(); + } + assert(this_phase_inputs.empty()); + assert(this_phase_effects.empty()); + + // If we have no effects left, exit. + if (effects_todo_other_phases.empty()) { + break; + } + + Node *node = effects_todo_other_phases.top(); + effects_todo_other_phases.pop(); + + if (completed_effects.count(node) == 0) { + // Start a new phase, calculating from this effect. + effects_todo_this_phase.push(node); + } } - frag_shader.append(read_file("footer.glsl")); - printf("%s\n", frag_shader.c_str()); - - glsl_program_num = glCreateProgram(); - GLuint vs_obj = compile_shader(read_file("vs.glsl"), GL_VERTEX_SHADER); - GLuint fs_obj = compile_shader(frag_shader, GL_FRAGMENT_SHADER); - glAttachShader(glsl_program_num, vs_obj); - check_error(); - glAttachShader(glsl_program_num, fs_obj); - check_error(); - glLinkProgram(glsl_program_num); - check_error(); - // Translate the format to OpenGL's enums. - GLenum internal_format; - if (use_srgb_texture_format) { - internal_format = GL_SRGB8; + // Finally, since the phases are found from the output but must be executed + // from the input(s), reverse them, too. + reverse(phases.begin(), phases.end()); +} + +void EffectChain::output_dot(const char *filename) +{ + if (movit_debug_level != MOVIT_DEBUG_ON) { + return; + } + + FILE *fp = fopen(filename, "w"); + if (fp == NULL) { + perror(filename); + exit(1); + } + + fprintf(fp, "digraph G {\n"); + fprintf(fp, " output [shape=box label=\"(output)\"];\n"); + for (unsigned i = 0; i < nodes.size(); ++i) { + // Find out which phase this event belongs to. + vector in_phases; + for (unsigned j = 0; j < phases.size(); ++j) { + const Phase* p = phases[j]; + if (find(p->effects.begin(), p->effects.end(), nodes[i]) != p->effects.end()) { + in_phases.push_back(j); + } + } + + if (in_phases.empty()) { + fprintf(fp, " n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str()); + } else if (in_phases.size() == 1) { + fprintf(fp, " n%ld [label=\"%s\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n", + (long)nodes[i], nodes[i]->effect->effect_type_id().c_str(), + (in_phases[0] % 8) + 1); + } else { + // If we had new enough Graphviz, style="wedged" would probably be ideal here. + // But alas. + fprintf(fp, " n%ld [label=\"%s [in multiple phases]\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n", + (long)nodes[i], nodes[i]->effect->effect_type_id().c_str(), + (in_phases[0] % 8) + 1); + } + + char from_node_id[256]; + snprintf(from_node_id, 256, "n%ld", (long)nodes[i]); + + for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) { + char to_node_id[256]; + snprintf(to_node_id, 256, "n%ld", (long)nodes[i]->outgoing_links[j]); + + vector labels = get_labels_for_edge(nodes[i], nodes[i]->outgoing_links[j]); + output_dot_edge(fp, from_node_id, to_node_id, labels); + } + + if (nodes[i]->outgoing_links.empty() && !nodes[i]->disabled) { + // Output node. + vector labels = get_labels_for_edge(nodes[i], NULL); + output_dot_edge(fp, from_node_id, "output", labels); + } + } + fprintf(fp, "}\n"); + + fclose(fp); +} + +vector EffectChain::get_labels_for_edge(const Node *from, const Node *to) +{ + vector labels; + + if (to != NULL && to->effect->needs_texture_bounce()) { + labels.push_back("needs_bounce"); + } + if (from->effect->changes_output_size()) { + labels.push_back("resize"); + } + + switch (from->output_color_space) { + case COLORSPACE_INVALID: + labels.push_back("spc[invalid]"); + break; + case COLORSPACE_REC_601_525: + labels.push_back("spc[rec601-525]"); + break; + case COLORSPACE_REC_601_625: + labels.push_back("spc[rec601-625]"); + break; + default: + break; + } + + switch (from->output_gamma_curve) { + case GAMMA_INVALID: + labels.push_back("gamma[invalid]"); + break; + case GAMMA_sRGB: + labels.push_back("gamma[sRGB]"); + break; + case GAMMA_REC_601: // and GAMMA_REC_709 + labels.push_back("gamma[rec601/709]"); + break; + default: + break; + } + + switch (from->output_alpha_type) { + case ALPHA_INVALID: + labels.push_back("alpha[invalid]"); + break; + case ALPHA_BLANK: + labels.push_back("alpha[blank]"); + break; + case ALPHA_POSTMULTIPLIED: + labels.push_back("alpha[postmult]"); + break; + default: + break; + } + + return labels; +} + +void EffectChain::output_dot_edge(FILE *fp, + const string &from_node_id, + const string &to_node_id, + const vector &labels) +{ + if (labels.empty()) { + fprintf(fp, " %s -> %s;\n", from_node_id.c_str(), to_node_id.c_str()); } else { - internal_format = GL_RGBA8; - } - if (input_format.pixel_format == FORMAT_RGB) { - format = GL_RGB; - bytes_per_pixel = 3; - } else if (input_format.pixel_format == FORMAT_RGBA) { - format = GL_RGBA; - bytes_per_pixel = 4; - } else if (input_format.pixel_format == FORMAT_BGR) { - format = GL_BGR; - bytes_per_pixel = 3; - } else if (input_format.pixel_format == FORMAT_BGRA) { - format = GL_BGRA; - bytes_per_pixel = 4; + string label = labels[0]; + for (unsigned k = 1; k < labels.size(); ++k) { + label += ", " + labels[k]; + } + fprintf(fp, " %s -> %s [label=\"%s\"];\n", from_node_id.c_str(), to_node_id.c_str(), label.c_str()); + } +} + +void EffectChain::size_rectangle_to_fit(unsigned width, unsigned height, unsigned *output_width, unsigned *output_height) +{ + unsigned scaled_width, scaled_height; + + if (float(width) * aspect_denom >= float(height) * aspect_nom) { + // Same aspect, or W/H > aspect (image is wider than the frame). + // In either case, keep width, and adjust height. + scaled_width = width; + scaled_height = lrintf(width * aspect_denom / aspect_nom); } else { - assert(false); + // W/H < aspect (image is taller than the frame), so keep height, + // and adjust width. + scaled_width = lrintf(height * aspect_nom / aspect_denom); + scaled_height = height; } - // Create PBO to hold the texture, and then the texture itself. - glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 2); - check_error(); - glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, width * height * bytes_per_pixel, NULL, GL_STREAM_DRAW); - check_error(); + // We should be consistently larger or smaller then the existing choice, + // since we have the same aspect. + assert(!(scaled_width < *output_width && scaled_height > *output_height)); + assert(!(scaled_height < *output_height && scaled_width > *output_width)); + + if (scaled_width >= *output_width && scaled_height >= *output_height) { + *output_width = scaled_width; + *output_height = scaled_height; + } +} + +// Propagate input texture sizes throughout, and inform effects downstream. +// (Like a lot of other code, we depend on effects being in topological order.) +void EffectChain::inform_input_sizes(Phase *phase) +{ + // All effects that have a defined size (inputs and RTT inputs) + // get that. Reset all others. + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Node *node = phase->effects[i]; + if (node->effect->num_inputs() == 0) { + Input *input = static_cast(node->effect); + node->output_width = input->get_width(); + node->output_height = input->get_height(); + assert(node->output_width != 0); + assert(node->output_height != 0); + } else { + node->output_width = node->output_height = 0; + } + } + for (unsigned i = 0; i < phase->inputs.size(); ++i) { + Node *input = phase->inputs[i]; + input->output_width = input->phase->virtual_output_width; + input->output_height = input->phase->virtual_output_height; + assert(input->output_width != 0); + assert(input->output_height != 0); + } - void *mapped_pbo = glMapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, GL_WRITE_ONLY); - memset(mapped_pbo, 0, width * height * bytes_per_pixel); - glUnmapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB); + // Now propagate from the inputs towards the end, and inform as we go. + // The rules are simple: + // + // 1. Don't touch effects that already have given sizes (ie., inputs). + // 2. If all of your inputs have the same size, that will be your output size. + // 3. Otherwise, your output size is 0x0. + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Node *node = phase->effects[i]; + if (node->effect->num_inputs() == 0) { + continue; + } + unsigned this_output_width = 0; + unsigned this_output_height = 0; + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + Node *input = node->incoming_links[j]; + node->effect->inform_input_size(j, input->output_width, input->output_height); + if (j == 0) { + this_output_width = input->output_width; + this_output_height = input->output_height; + } else if (input->output_width != this_output_width || input->output_height != this_output_height) { + // Inputs disagree. + this_output_width = 0; + this_output_height = 0; + } + } + node->output_width = this_output_width; + node->output_height = this_output_height; + } +} + +// Note: You should call inform_input_sizes() before this, as the last effect's +// desired output size might change based on the inputs. +void EffectChain::find_output_size(Phase *phase) +{ + Node *output_node = phase->effects.back(); + + // If the last effect explicitly sets an output size, use that. + if (output_node->effect->changes_output_size()) { + output_node->effect->get_output_size(&phase->output_width, &phase->output_height, + &phase->virtual_output_width, &phase->virtual_output_height); + return; + } + + // If all effects have the same size, use that. + unsigned output_width = 0, output_height = 0; + bool all_inputs_same_size = true; + + for (unsigned i = 0; i < phase->inputs.size(); ++i) { + Node *input = phase->inputs[i]; + assert(input->phase->output_width != 0); + assert(input->phase->output_height != 0); + if (output_width == 0 && output_height == 0) { + output_width = input->phase->virtual_output_width; + output_height = input->phase->virtual_output_height; + } else if (output_width != input->phase->virtual_output_width || + output_height != input->phase->virtual_output_height) { + all_inputs_same_size = false; + } + } + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Effect *effect = phase->effects[i]->effect; + if (effect->num_inputs() != 0) { + continue; + } + + Input *input = static_cast(effect); + if (output_width == 0 && output_height == 0) { + output_width = input->get_width(); + output_height = input->get_height(); + } else if (output_width != input->get_width() || + output_height != input->get_height()) { + all_inputs_same_size = false; + } + } + + if (all_inputs_same_size) { + assert(output_width != 0); + assert(output_height != 0); + phase->virtual_output_width = phase->output_width = output_width; + phase->virtual_output_height = phase->output_height = output_height; + return; + } + + // If not, fit all the inputs into the current aspect, and select the largest one. + output_width = 0; + output_height = 0; + for (unsigned i = 0; i < phase->inputs.size(); ++i) { + Node *input = phase->inputs[i]; + assert(input->phase->output_width != 0); + assert(input->phase->output_height != 0); + size_rectangle_to_fit(input->phase->output_width, input->phase->output_height, &output_width, &output_height); + } + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Effect *effect = phase->effects[i]->effect; + if (effect->num_inputs() != 0) { + continue; + } + + Input *input = static_cast(effect); + size_rectangle_to_fit(input->get_width(), input->get_height(), &output_width, &output_height); + } + assert(output_width != 0); + assert(output_height != 0); + phase->virtual_output_width = phase->output_width = output_width; + phase->virtual_output_height = phase->output_height = output_height; +} + +void EffectChain::sort_all_nodes_topologically() +{ + nodes = topological_sort(nodes); +} + +vector EffectChain::topological_sort(const vector &nodes) +{ + set nodes_left_to_visit(nodes.begin(), nodes.end()); + vector sorted_list; + for (unsigned i = 0; i < nodes.size(); ++i) { + topological_sort_visit_node(nodes[i], &nodes_left_to_visit, &sorted_list); + } + reverse(sorted_list.begin(), sorted_list.end()); + return sorted_list; +} + +void EffectChain::topological_sort_visit_node(Node *node, set *nodes_left_to_visit, vector *sorted_list) +{ + if (nodes_left_to_visit->count(node) == 0) { + return; + } + nodes_left_to_visit->erase(node); + for (unsigned i = 0; i < node->outgoing_links.size(); ++i) { + topological_sort_visit_node(node->outgoing_links[i], nodes_left_to_visit, sorted_list); + } + sorted_list->push_back(node); +} + +void EffectChain::find_color_spaces_for_inputs() +{ + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + if (node->incoming_links.size() == 0) { + Input *input = static_cast(node->effect); + node->output_color_space = input->get_color_space(); + node->output_gamma_curve = input->get_gamma_curve(); + + Effect::AlphaHandling alpha_handling = input->alpha_handling(); + switch (alpha_handling) { + case Effect::OUTPUT_BLANK_ALPHA: + node->output_alpha_type = ALPHA_BLANK; + break; + case Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA: + node->output_alpha_type = ALPHA_PREMULTIPLIED; + break; + case Effect::OUTPUT_POSTMULTIPLIED_ALPHA: + node->output_alpha_type = ALPHA_POSTMULTIPLIED; + break; + case Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK: + case Effect::DONT_CARE_ALPHA_TYPE: + default: + assert(false); + } + + if (node->output_alpha_type == ALPHA_PREMULTIPLIED) { + assert(node->output_gamma_curve == GAMMA_LINEAR); + } + } + } +} + +// Propagate gamma and color space information as far as we can in the graph. +// The rules are simple: Anything where all the inputs agree, get that as +// output as well. Anything else keeps having *_INVALID. +void EffectChain::propagate_gamma_and_color_space() +{ + // We depend on going through the nodes in order. + sort_all_nodes_topologically(); + + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->incoming_links.size() == node->effect->num_inputs()); + if (node->incoming_links.size() == 0) { + assert(node->output_color_space != COLORSPACE_INVALID); + assert(node->output_gamma_curve != GAMMA_INVALID); + continue; + } + + Colorspace color_space = node->incoming_links[0]->output_color_space; + GammaCurve gamma_curve = node->incoming_links[0]->output_gamma_curve; + for (unsigned j = 1; j < node->incoming_links.size(); ++j) { + if (node->incoming_links[j]->output_color_space != color_space) { + color_space = COLORSPACE_INVALID; + } + if (node->incoming_links[j]->output_gamma_curve != gamma_curve) { + gamma_curve = GAMMA_INVALID; + } + } + + // The conversion effects already have their outputs set correctly, + // so leave them alone. + if (node->effect->effect_type_id() != "ColorspaceConversionEffect") { + node->output_color_space = color_space; + } + if (node->effect->effect_type_id() != "GammaCompressionEffect" && + node->effect->effect_type_id() != "GammaExpansionEffect") { + node->output_gamma_curve = gamma_curve; + } + } +} + +// Propagate alpha information as far as we can in the graph. +// Similar to propagate_gamma_and_color_space(). +void EffectChain::propagate_alpha() +{ + // We depend on going through the nodes in order. + sort_all_nodes_topologically(); + + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->incoming_links.size() == node->effect->num_inputs()); + if (node->incoming_links.size() == 0) { + assert(node->output_alpha_type != ALPHA_INVALID); + continue; + } + + // The alpha multiplication/division effects are special cases. + if (node->effect->effect_type_id() == "AlphaMultiplicationEffect") { + assert(node->incoming_links.size() == 1); + assert(node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED); + node->output_alpha_type = ALPHA_PREMULTIPLIED; + continue; + } + if (node->effect->effect_type_id() == "AlphaDivisionEffect") { + assert(node->incoming_links.size() == 1); + assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED); + node->output_alpha_type = ALPHA_POSTMULTIPLIED; + continue; + } + + // GammaCompressionEffect and GammaExpansionEffect are also a special case, + // because they are the only one that _need_ postmultiplied alpha. + if (node->effect->effect_type_id() == "GammaCompressionEffect" || + node->effect->effect_type_id() == "GammaExpansionEffect") { + assert(node->incoming_links.size() == 1); + if (node->incoming_links[0]->output_alpha_type == ALPHA_BLANK) { + node->output_alpha_type = ALPHA_BLANK; + } else if (node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED) { + node->output_alpha_type = ALPHA_POSTMULTIPLIED; + } else { + node->output_alpha_type = ALPHA_INVALID; + } + continue; + } + + // Only inputs can have unconditional alpha output (OUTPUT_BLANK_ALPHA + // or OUTPUT_POSTMULTIPLIED_ALPHA), and they have already been + // taken care of above. Rationale: Even if you could imagine + // e.g. an effect that took in an image and set alpha=1.0 + // unconditionally, it wouldn't make any sense to have it as + // e.g. OUTPUT_BLANK_ALPHA, since it wouldn't know whether it + // got its input pre- or postmultiplied, so it wouldn't know + // whether to divide away the old alpha or not. + Effect::AlphaHandling alpha_handling = node->effect->alpha_handling(); + assert(alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA || + alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK || + alpha_handling == Effect::DONT_CARE_ALPHA_TYPE); + + // If the node has multiple inputs, check that they are all valid and + // the same. + bool any_invalid = false; + bool any_premultiplied = false; + bool any_postmultiplied = false; + + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + switch (node->incoming_links[j]->output_alpha_type) { + case ALPHA_INVALID: + any_invalid = true; + break; + case ALPHA_BLANK: + // Blank is good as both pre- and postmultiplied alpha, + // so just ignore it. + break; + case ALPHA_PREMULTIPLIED: + any_premultiplied = true; + break; + case ALPHA_POSTMULTIPLIED: + any_postmultiplied = true; + break; + default: + assert(false); + } + } + + if (any_invalid) { + node->output_alpha_type = ALPHA_INVALID; + continue; + } + + // Inputs must be of the same type. + if (any_premultiplied && any_postmultiplied) { + node->output_alpha_type = ALPHA_INVALID; + continue; + } + + if (alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA || + alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) { + // If the effect has asked for premultiplied alpha, check that it has got it. + if (any_postmultiplied) { + node->output_alpha_type = ALPHA_INVALID; + } else if (!any_premultiplied && + alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) { + // Blank input alpha, and the effect preserves blank alpha. + node->output_alpha_type = ALPHA_BLANK; + } else { + node->output_alpha_type = ALPHA_PREMULTIPLIED; + } + } else { + // OK, all inputs are the same, and this effect is not going + // to change it. + assert(alpha_handling == Effect::DONT_CARE_ALPHA_TYPE); + if (any_premultiplied) { + node->output_alpha_type = ALPHA_PREMULTIPLIED; + } else if (any_postmultiplied) { + node->output_alpha_type = ALPHA_POSTMULTIPLIED; + } else { + node->output_alpha_type = ALPHA_BLANK; + } + } + } +} + +bool EffectChain::node_needs_colorspace_fix(Node *node) +{ + if (node->disabled) { + return false; + } + if (node->effect->num_inputs() == 0) { + return false; + } + + // propagate_gamma_and_color_space() has already set our output + // to COLORSPACE_INVALID if the inputs differ, so we can rely on that. + if (node->output_color_space == COLORSPACE_INVALID) { + return true; + } + return (node->effect->needs_srgb_primaries() && node->output_color_space != COLORSPACE_sRGB); +} + +// Fix up color spaces so that there are no COLORSPACE_INVALID nodes left in +// the graph. Our strategy is not always optimal, but quite simple: +// Find an effect that's as early as possible where the inputs are of +// unacceptable colorspaces (that is, either different, or, if the effect only +// wants sRGB, not sRGB.) Add appropriate conversions on all its inputs, +// propagate the information anew, and repeat until there are no more such +// effects. +void EffectChain::fix_internal_color_spaces() +{ + unsigned colorspace_propagation_pass = 0; + bool found_any; + do { + found_any = false; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (!node_needs_colorspace_fix(node)) { + continue; + } + + // Go through each input that is not sRGB, and insert + // a colorspace conversion after it. + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + Node *input = node->incoming_links[j]; + assert(input->output_color_space != COLORSPACE_INVALID); + if (input->output_color_space == COLORSPACE_sRGB) { + continue; + } + Node *conversion = add_node(new ColorspaceConversionEffect()); + CHECK(conversion->effect->set_int("source_space", input->output_color_space)); + CHECK(conversion->effect->set_int("destination_space", COLORSPACE_sRGB)); + conversion->output_color_space = COLORSPACE_sRGB; + replace_sender(input, conversion); + connect_nodes(input, conversion); + } + + // Re-sort topologically, and propagate the new information. + propagate_gamma_and_color_space(); + + found_any = true; + break; + } - glBindTexture(GL_TEXTURE_2D, SOURCE_IMAGE); - check_error(); - glTexImage2D(GL_TEXTURE_2D, 0, internal_format, width, height, 0, format, GL_UNSIGNED_BYTE, BUFFER_OFFSET(0)); - check_error(); - glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0); - check_error(); + char filename[256]; + sprintf(filename, "step5-colorspacefix-iter%u.dot", ++colorspace_propagation_pass); + output_dot(filename); + assert(colorspace_propagation_pass < 100); + } while (found_any); - finalized = true; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->output_color_space != COLORSPACE_INVALID); + } } -void EffectChain::render_to_screen(unsigned char *src) +bool EffectChain::node_needs_alpha_fix(Node *node) { - assert(finalized); + if (node->disabled) { + return false; + } - // Copy the pixel data into the PBO. - glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 2); - check_error(); - void *mapped_pbo = glMapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, GL_WRITE_ONLY); - memcpy(mapped_pbo, src, width * height * bytes_per_pixel); - glUnmapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB); - check_error(); + // propagate_alpha() has already set our output to ALPHA_INVALID if the + // inputs differ or we are otherwise in mismatch, so we can rely on that. + return (node->output_alpha_type == ALPHA_INVALID); +} - // Re-upload the texture from the PBO. - glActiveTexture(GL_TEXTURE0); - check_error(); - glBindTexture(GL_TEXTURE_2D, SOURCE_IMAGE); - check_error(); - glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, format, GL_UNSIGNED_BYTE, BUFFER_OFFSET(0)); - check_error(); - glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0); - check_error(); +// Fix up alpha so that there are no ALPHA_INVALID nodes left in +// the graph. Similar to fix_internal_color_spaces(). +void EffectChain::fix_internal_alpha(unsigned step) +{ + unsigned alpha_propagation_pass = 0; + bool found_any; + do { + found_any = false; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (!node_needs_alpha_fix(node)) { + continue; + } - glUseProgram(glsl_program_num); - check_error(); + // If we need to fix up GammaExpansionEffect, then clearly something + // is wrong, since the combination of premultiplied alpha and nonlinear inputs + // is meaningless. + assert(node->effect->effect_type_id() != "GammaExpansionEffect"); - check_error(); - glUniform1i(glGetUniformLocation(glsl_program_num, "input_tex"), 0); + AlphaType desired_type = ALPHA_PREMULTIPLIED; - for (unsigned i = 0; i < effects.size(); ++i) { - char effect_id[256]; - sprintf(effect_id, "eff%d", i); - effects[i]->set_uniforms(glsl_program_num, effect_id); + // GammaCompressionEffect is special; it needs postmultiplied alpha. + if (node->effect->effect_type_id() == "GammaCompressionEffect") { + assert(node->incoming_links.size() == 1); + assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED); + desired_type = ALPHA_POSTMULTIPLIED; + } + + // Go through each input that is not premultiplied alpha, and insert + // a conversion before it. + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + Node *input = node->incoming_links[j]; + assert(input->output_alpha_type != ALPHA_INVALID); + if (input->output_alpha_type == desired_type || + input->output_alpha_type == ALPHA_BLANK) { + continue; + } + Node *conversion; + if (desired_type == ALPHA_PREMULTIPLIED) { + conversion = add_node(new AlphaMultiplicationEffect()); + } else { + conversion = add_node(new AlphaDivisionEffect()); + } + conversion->output_alpha_type = desired_type; + replace_sender(input, conversion); + connect_nodes(input, conversion); + } + + // Re-sort topologically, and propagate the new information. + propagate_gamma_and_color_space(); + propagate_alpha(); + + found_any = true; + break; + } + + char filename[256]; + sprintf(filename, "step%u-alphafix-iter%u.dot", step, ++alpha_propagation_pass); + output_dot(filename); + assert(alpha_propagation_pass < 100); + } while (found_any); + + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->output_alpha_type != ALPHA_INVALID); + } +} + +// Make so that the output is in the desired color space. +void EffectChain::fix_output_color_space() +{ + Node *output = find_output_node(); + if (output->output_color_space != output_format.color_space) { + Node *conversion = add_node(new ColorspaceConversionEffect()); + CHECK(conversion->effect->set_int("source_space", output->output_color_space)); + CHECK(conversion->effect->set_int("destination_space", output_format.color_space)); + conversion->output_color_space = output_format.color_space; + connect_nodes(output, conversion); + propagate_alpha(); + propagate_gamma_and_color_space(); + } +} + +// Make so that the output is in the desired pre-/postmultiplication alpha state. +void EffectChain::fix_output_alpha() +{ + Node *output = find_output_node(); + assert(output->output_alpha_type != ALPHA_INVALID); + if (output->output_alpha_type == ALPHA_BLANK) { + // No alpha output, so we don't care. + return; + } + if (output->output_alpha_type == ALPHA_PREMULTIPLIED && + output_alpha_format == OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED) { + Node *conversion = add_node(new AlphaDivisionEffect()); + connect_nodes(output, conversion); + propagate_alpha(); + propagate_gamma_and_color_space(); + } + if (output->output_alpha_type == ALPHA_POSTMULTIPLIED && + output_alpha_format == OUTPUT_ALPHA_FORMAT_PREMULTIPLIED) { + Node *conversion = add_node(new AlphaMultiplicationEffect()); + connect_nodes(output, conversion); + propagate_alpha(); + propagate_gamma_and_color_space(); + } +} + +bool EffectChain::node_needs_gamma_fix(Node *node) +{ + if (node->disabled) { + return false; + } + + // Small hack since the output is not an explicit node: + // If we are the last node and our output is in the wrong + // space compared to EffectChain's output, we need to fix it. + // This will only take us to linear, but fix_output_gamma() + // will come and take us to the desired output gamma + // if it is needed. + // + // This needs to be before everything else, since it could + // even apply to inputs (if they are the only effect). + if (node->outgoing_links.empty() && + node->output_gamma_curve != output_format.gamma_curve && + node->output_gamma_curve != GAMMA_LINEAR) { + return true; + } + + if (node->effect->num_inputs() == 0) { + return false; + } + + // propagate_gamma_and_color_space() has already set our output + // to GAMMA_INVALID if the inputs differ, so we can rely on that, + // except for GammaCompressionEffect. + if (node->output_gamma_curve == GAMMA_INVALID) { + return true; + } + if (node->effect->effect_type_id() == "GammaCompressionEffect") { + assert(node->incoming_links.size() == 1); + return node->incoming_links[0]->output_gamma_curve != GAMMA_LINEAR; } + return (node->effect->needs_linear_light() && node->output_gamma_curve != GAMMA_LINEAR); +} + +// Very similar to fix_internal_color_spaces(), but for gamma. +// There is one difference, though; before we start adding conversion nodes, +// we see if we can get anything out of asking the sources to deliver +// linear gamma directly. fix_internal_gamma_by_asking_inputs() +// does that part, while fix_internal_gamma_by_inserting_nodes() +// inserts nodes as needed afterwards. +void EffectChain::fix_internal_gamma_by_asking_inputs(unsigned step) +{ + unsigned gamma_propagation_pass = 0; + bool found_any; + do { + found_any = false; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (!node_needs_gamma_fix(node)) { + continue; + } + + // See if all inputs can give us linear gamma. If not, leave it. + vector nonlinear_inputs; + find_all_nonlinear_inputs(node, &nonlinear_inputs); + assert(!nonlinear_inputs.empty()); + + bool all_ok = true; + for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { + Input *input = static_cast(nonlinear_inputs[i]->effect); + all_ok &= input->can_output_linear_gamma(); + } + + if (!all_ok) { + continue; + } + + for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { + CHECK(nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1)); + nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR; + } + + // Re-sort topologically, and propagate the new information. + propagate_gamma_and_color_space(); + + found_any = true; + break; + } + + char filename[256]; + sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass); + output_dot(filename); + assert(gamma_propagation_pass < 100); + } while (found_any); +} + +void EffectChain::fix_internal_gamma_by_inserting_nodes(unsigned step) +{ + unsigned gamma_propagation_pass = 0; + bool found_any; + do { + found_any = false; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (!node_needs_gamma_fix(node)) { + continue; + } + + // Special case: We could be an input and still be asked to + // fix our gamma; if so, we should be the only node + // (as node_needs_gamma_fix() would only return true in + // for an input in that case). That means we should insert + // a conversion node _after_ ourselves. + if (node->incoming_links.empty()) { + assert(node->outgoing_links.empty()); + Node *conversion = add_node(new GammaExpansionEffect()); + CHECK(conversion->effect->set_int("source_curve", node->output_gamma_curve)); + conversion->output_gamma_curve = GAMMA_LINEAR; + connect_nodes(node, conversion); + } + + // If not, go through each input that is not linear gamma, + // and insert a gamma conversion after it. + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + Node *input = node->incoming_links[j]; + assert(input->output_gamma_curve != GAMMA_INVALID); + if (input->output_gamma_curve == GAMMA_LINEAR) { + continue; + } + Node *conversion = add_node(new GammaExpansionEffect()); + CHECK(conversion->effect->set_int("source_curve", input->output_gamma_curve)); + conversion->output_gamma_curve = GAMMA_LINEAR; + replace_sender(input, conversion); + connect_nodes(input, conversion); + } + + // Re-sort topologically, and propagate the new information. + propagate_alpha(); + propagate_gamma_and_color_space(); + + found_any = true; + break; + } + + char filename[256]; + sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass); + output_dot(filename); + assert(gamma_propagation_pass < 100); + } while (found_any); + + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->output_gamma_curve != GAMMA_INVALID); + } +} + +// Make so that the output is in the desired gamma. +// Note that this assumes linear input gamma, so it might create the need +// for another pass of fix_internal_gamma(). +void EffectChain::fix_output_gamma() +{ + Node *output = find_output_node(); + if (output->output_gamma_curve != output_format.gamma_curve) { + Node *conversion = add_node(new GammaCompressionEffect()); + CHECK(conversion->effect->set_int("destination_curve", output_format.gamma_curve)); + conversion->output_gamma_curve = output_format.gamma_curve; + connect_nodes(output, conversion); + } +} + +// If the user has requested dither, add a DitherEffect right at the end +// (after GammaCompressionEffect etc.). This needs to be done after everything else, +// since dither is about the only effect that can _not_ be done in linear space. +void EffectChain::add_dither_if_needed() +{ + if (num_dither_bits == 0) { + return; + } + Node *output = find_output_node(); + Node *dither = add_node(new DitherEffect()); + CHECK(dither->effect->set_int("num_bits", num_dither_bits)); + connect_nodes(output, dither); + + dither_effect = dither->effect; +} + +// Find the output node. This is, simply, one that has no outgoing links. +// If there are multiple ones, the graph is malformed (we do not support +// multiple outputs right now). +Node *EffectChain::find_output_node() +{ + vector output_nodes; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + if (node->outgoing_links.empty()) { + output_nodes.push_back(node); + } + } + assert(output_nodes.size() == 1); + return output_nodes[0]; +} + +void EffectChain::finalize() +{ + // Save the current locale, and set it to C, so that we can output decimal + // numbers with printf and be sure to get them in the format mandated by GLSL. + char *saved_locale = setlocale(LC_NUMERIC, "C"); + + // Output the graph as it is before we do any conversions on it. + output_dot("step0-start.dot"); + + // Give each effect in turn a chance to rewrite its own part of the graph. + // Note that if more effects are added as part of this, they will be + // picked up as part of the same for loop, since they are added at the end. + for (unsigned i = 0; i < nodes.size(); ++i) { + nodes[i]->effect->rewrite_graph(this, nodes[i]); + } + output_dot("step1-rewritten.dot"); + + find_color_spaces_for_inputs(); + output_dot("step2-input-colorspace.dot"); + + propagate_alpha(); + output_dot("step3-propagated-alpha.dot"); + + propagate_gamma_and_color_space(); + output_dot("step4-propagated-all.dot"); + + fix_internal_color_spaces(); + fix_internal_alpha(6); + fix_output_color_space(); + output_dot("step7-output-colorspacefix.dot"); + fix_output_alpha(); + output_dot("step8-output-alphafix.dot"); + + // Note that we need to fix gamma after colorspace conversion, + // because colorspace conversions might create needs for gamma conversions. + // Also, we need to run an extra pass of fix_internal_gamma() after + // fixing the output gamma, as we only have conversions to/from linear, + // and fix_internal_alpha() since GammaCompressionEffect needs + // postmultiplied input. + fix_internal_gamma_by_asking_inputs(9); + fix_internal_gamma_by_inserting_nodes(10); + fix_output_gamma(); + output_dot("step11-output-gammafix.dot"); + propagate_alpha(); + output_dot("step12-output-alpha-propagated.dot"); + fix_internal_alpha(13); + output_dot("step14-output-alpha-fixed.dot"); + fix_internal_gamma_by_asking_inputs(15); + fix_internal_gamma_by_inserting_nodes(16); + + output_dot("step17-before-dither.dot"); + + add_dither_if_needed(); + + output_dot("step18-final.dot"); + + // Construct all needed GLSL programs, starting at the output. + construct_glsl_programs(find_output_node()); + + output_dot("step19-split-to-phases.dot"); + + for (unsigned i = 0; i < inputs.size(); ++i) { + inputs[i]->finalize(); + } + + assert(phases[0]->inputs.empty()); + + finalized = true; + setlocale(LC_NUMERIC, saved_locale); +} + +void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height) +{ + assert(finalized); + + // Save original viewport. + GLuint x = 0, y = 0; + GLuint fbo = 0; + + if (width == 0 && height == 0) { + GLint viewport[4]; + glGetIntegerv(GL_VIEWPORT, viewport); + x = viewport[0]; + y = viewport[1]; + width = viewport[2]; + height = viewport[3]; + } + + // Basic state. glDisable(GL_BLEND); check_error(); glDisable(GL_DEPTH_TEST); @@ -276,20 +1454,128 @@ void EffectChain::render_to_screen(unsigned char *src) glMatrixMode(GL_MODELVIEW); glLoadIdentity(); - glBegin(GL_QUADS); + if (phases.size() > 1) { + glGenFramebuffers(1, &fbo); + check_error(); + glBindFramebuffer(GL_FRAMEBUFFER, fbo); + check_error(); + } - glTexCoord2f(0.0f, 1.0f); - glVertex2f(0.0f, 0.0f); + set generated_mipmaps; - glTexCoord2f(1.0f, 1.0f); - glVertex2f(1.0f, 0.0f); + // We choose the simplest option of having one texture per output, + // since otherwise this turns into an (albeit simple) register allocation problem. + map output_textures; - glTexCoord2f(1.0f, 0.0f); - glVertex2f(1.0f, 1.0f); + for (unsigned phase = 0; phase < phases.size(); ++phase) { + // Find a texture for this phase. + inform_input_sizes(phases[phase]); + if (phase != phases.size() - 1) { + find_output_size(phases[phase]); - glTexCoord2f(0.0f, 0.0f); - glVertex2f(0.0f, 1.0f); + GLuint tex_num = resource_pool->create_2d_texture(GL_RGBA16F_ARB, phases[phase]->output_width, phases[phase]->output_height); + output_textures.insert(make_pair(phases[phase], tex_num)); + } + + glUseProgram(phases[phase]->glsl_program_num); + check_error(); + + // Set up RTT inputs for this phase. + for (unsigned sampler = 0; sampler < phases[phase]->inputs.size(); ++sampler) { + glActiveTexture(GL_TEXTURE0 + sampler); + Node *input = phases[phase]->inputs[sampler]; + glBindTexture(GL_TEXTURE_2D, output_textures[input->phase]); + check_error(); + if (phases[phase]->input_needs_mipmaps) { + if (generated_mipmaps.count(input) == 0) { + glGenerateMipmap(GL_TEXTURE_2D); + check_error(); + generated_mipmaps.insert(input); + } + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); + check_error(); + } else { + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); + check_error(); + } + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); + check_error(); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); + check_error(); + + string texture_name = string("tex_") + phases[phase]->effect_ids[input]; + glUniform1i(glGetUniformLocation(phases[phase]->glsl_program_num, texture_name.c_str()), sampler); + check_error(); + } + + // And now the output. + if (phase == phases.size() - 1) { + // Last phase goes to the output the user specified. + glBindFramebuffer(GL_FRAMEBUFFER, dest_fbo); + check_error(); + GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); + assert(status == GL_FRAMEBUFFER_COMPLETE); + glViewport(x, y, width, height); + if (dither_effect != NULL) { + CHECK(dither_effect->set_int("output_width", width)); + CHECK(dither_effect->set_int("output_height", height)); + } + } else { + glFramebufferTexture2D( + GL_FRAMEBUFFER, + GL_COLOR_ATTACHMENT0, + GL_TEXTURE_2D, + output_textures[phases[phase]], + 0); + check_error(); + GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); + assert(status == GL_FRAMEBUFFER_COMPLETE); + glViewport(0, 0, phases[phase]->output_width, phases[phase]->output_height); + } + + // Give the required parameters to all the effects. + unsigned sampler_num = phases[phase]->inputs.size(); + for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) { + Node *node = phases[phase]->effects[i]; + node->effect->set_gl_state(phases[phase]->glsl_program_num, phases[phase]->effect_ids[node], &sampler_num); + check_error(); + } + + // Now draw! + glBegin(GL_QUADS); - glEnd(); + glTexCoord2f(0.0f, 0.0f); + glVertex2f(0.0f, 0.0f); + + glTexCoord2f(1.0f, 0.0f); + glVertex2f(1.0f, 0.0f); + + glTexCoord2f(1.0f, 1.0f); + glVertex2f(1.0f, 1.0f); + + glTexCoord2f(0.0f, 1.0f); + glVertex2f(0.0f, 1.0f); + + glEnd(); + check_error(); + + for (unsigned i = 0; i < phases[phase]->effects.size(); ++i) { + Node *node = phases[phase]->effects[i]; + node->effect->clear_gl_state(); + } + } + + for (map::const_iterator texture_it = output_textures.begin(); + texture_it != output_textures.end(); + ++texture_it) { + resource_pool->release_2d_texture(texture_it->second); + } + + glBindFramebuffer(GL_FRAMEBUFFER, 0); check_error(); + + if (fbo != 0) { + glDeleteFramebuffers(1, &fbo); + check_error(); + } }