X-Git-Url: https://git.sesse.net/?p=movit;a=blobdiff_plain;f=effect_chain.cpp;h=f11a5e45a3ada2ccbbaf38a5b76630ceb2f41915;hp=f4706a4324239e3e34b300423f9c6204e22e9fac;hb=eff011224abc5dc81f801f3ea44572287a55bcac;hpb=d3cf1194740dbecde06f5e721a7e1910437a7666 diff --git a/effect_chain.cpp b/effect_chain.cpp index f4706a4..f11a5e4 100644 --- a/effect_chain.cpp +++ b/effect_chain.cpp @@ -1,160 +1,286 @@ -#define GL_GLEXT_PROTOTYPES 1 - +#include +#include +#include +#include #include +#include #include -#include - -#include -#include - #include #include +#include +#include +#include +#include -#include "util.h" +#include "alpha_division_effect.h" +#include "alpha_multiplication_effect.h" +#include "colorspace_conversion_effect.h" +#include "dither_effect.h" +#include "effect.h" #include "effect_chain.h" -#include "gamma_expansion_effect.h" +#include "effect_util.h" #include "gamma_compression_effect.h" -#include "lift_gamma_gain_effect.h" -#include "colorspace_conversion_effect.h" -#include "sandbox_effect.h" -#include "saturation_effect.h" -#include "mirror_effect.h" -#include "vignette_effect.h" -#include "blur_effect.h" -#include "diffusion_effect.h" +#include "gamma_expansion_effect.h" +#include "init.h" #include "input.h" +#include "resource_pool.h" +#include "util.h" +#include "ycbcr_conversion_effect.h" + +using namespace Eigen; +using namespace std; + +namespace movit { + +namespace { + +// An effect whose only purpose is to sit in a phase on its own and take the +// texture output from a compute shader and display it to the normal backbuffer +// (or any FBO). That phase can be skipped when rendering using render_to_textures(). +class ComputeShaderOutputDisplayEffect : public Effect { +public: + ComputeShaderOutputDisplayEffect() {} + string effect_type_id() const override { return "ComputeShaderOutputDisplayEffect"; } + string output_fragment_shader() override { return read_file("identity.frag"); } + bool needs_texture_bounce() const override { return true; } +}; + +} // namespace -EffectChain::EffectChain(unsigned width, unsigned height) - : width(width), - height(height), - finalized(false) {} +EffectChain::EffectChain(float aspect_nom, float aspect_denom, ResourcePool *resource_pool) + : aspect_nom(aspect_nom), + aspect_denom(aspect_denom), + output_color_rgba(false), + num_output_color_ycbcr(0), + dither_effect(nullptr), + ycbcr_conversion_effect_node(nullptr), + intermediate_format(GL_RGBA16F), + intermediate_transformation(NO_FRAMEBUFFER_TRANSFORMATION), + num_dither_bits(0), + output_origin(OUTPUT_ORIGIN_BOTTOM_LEFT), + finalized(false), + resource_pool(resource_pool), + do_phase_timing(false) { + if (resource_pool == nullptr) { + this->resource_pool = new ResourcePool(); + owns_resource_pool = true; + } else { + owns_resource_pool = false; + } + + // Generate a VBO with some data in (shared position and texture coordinate data). + float vertices[] = { + 0.0f, 2.0f, + 0.0f, 0.0f, + 2.0f, 0.0f + }; + vbo = generate_vbo(2, GL_FLOAT, sizeof(vertices), vertices); +} + +EffectChain::~EffectChain() +{ + for (unsigned i = 0; i < nodes.size(); ++i) { + delete nodes[i]->effect; + delete nodes[i]; + } + for (unsigned i = 0; i < phases.size(); ++i) { + resource_pool->release_glsl_program(phases[i]->glsl_program_num); + delete phases[i]; + } + if (owns_resource_pool) { + delete resource_pool; + } + glDeleteBuffers(1, &vbo); + check_error(); +} -Input *EffectChain::add_input(const ImageFormat &format) +Input *EffectChain::add_input(Input *input) { - Input *input = new Input(format, width, height); - effects.push_back(input); - output_color_space.insert(std::make_pair(input, format.color_space)); - output_gamma_curve.insert(std::make_pair(input, format.gamma_curve)); - effect_ids.insert(std::make_pair(input, "src_image")); - incoming_links.insert(std::make_pair(input, std::vector())); + assert(!finalized); + inputs.push_back(input); + add_node(input); return input; } -void EffectChain::add_output(const ImageFormat &format) +void EffectChain::add_output(const ImageFormat &format, OutputAlphaFormat alpha_format) { + assert(!finalized); + assert(!output_color_rgba); output_format = format; + output_alpha_format = alpha_format; + output_color_rgba = true; } -void EffectChain::add_effect_raw(Effect *effect, const std::vector &inputs) +void EffectChain::add_ycbcr_output(const ImageFormat &format, OutputAlphaFormat alpha_format, + const YCbCrFormat &ycbcr_format, YCbCrOutputSplitting output_splitting, + GLenum output_type) { - char effect_id[256]; - sprintf(effect_id, "eff%u", (unsigned)effects.size()); + assert(!finalized); + assert(num_output_color_ycbcr < 2); + output_format = format; + output_alpha_format = alpha_format; - effects.push_back(effect); - effect_ids.insert(std::make_pair(effect, effect_id)); - assert(inputs.size() == effect->num_inputs()); - for (unsigned i = 0; i < inputs.size(); ++i) { - assert(std::find(effects.begin(), effects.end(), inputs[i]) != effects.end()); - outgoing_links[inputs[i]].push_back(effect); - } - incoming_links.insert(std::make_pair(effect, inputs)); - output_gamma_curve[effect] = output_gamma_curve[last_added_effect()]; - output_color_space[effect] = output_color_space[last_added_effect()]; -} - -Effect *instantiate_effect(EffectId effect) -{ - switch (effect) { - case EFFECT_GAMMA_EXPANSION: - return new GammaExpansionEffect(); - case EFFECT_GAMMA_COMPRESSION: - return new GammaCompressionEffect(); - case EFFECT_COLOR_SPACE_CONVERSION: - return new ColorSpaceConversionEffect(); - case EFFECT_SANDBOX: - return new SandboxEffect(); - case EFFECT_LIFT_GAMMA_GAIN: - return new LiftGammaGainEffect(); - case EFFECT_SATURATION: - return new SaturationEffect(); - case EFFECT_MIRROR: - return new MirrorEffect(); - case EFFECT_VIGNETTE: - return new VignetteEffect(); - case EFFECT_BLUR: - return new BlurEffect(); - case EFFECT_DIFFUSION: - return new DiffusionEffect(); - } - assert(false); -} - -Effect *EffectChain::normalize_to_linear_gamma(Effect *input) -{ - assert(output_gamma_curve.count(input) != 0); - if (output_gamma_curve[input] == GAMMA_sRGB) { - // TODO: check if the extension exists - effects[0]->set_int("use_srgb_texture_format", 1); - output_gamma_curve[input] = GAMMA_LINEAR; - return input; + if (num_output_color_ycbcr == 1) { + // Check that the format is the same. + assert(output_ycbcr_format.luma_coefficients == ycbcr_format.luma_coefficients); + assert(output_ycbcr_format.full_range == ycbcr_format.full_range); + assert(output_ycbcr_format.num_levels == ycbcr_format.num_levels); + assert(output_ycbcr_format.chroma_subsampling_x == 1); + assert(output_ycbcr_format.chroma_subsampling_y == 1); + assert(output_ycbcr_type == output_type); } else { - GammaExpansionEffect *gamma_conversion = new GammaExpansionEffect(); - gamma_conversion->set_int("source_curve", output_gamma_curve[input]); - std::vector inputs; - inputs.push_back(input); - gamma_conversion->add_self_to_effect_chain(this, inputs); - output_gamma_curve[gamma_conversion] = GAMMA_LINEAR; - return gamma_conversion; + output_ycbcr_format = ycbcr_format; + output_ycbcr_type = output_type; + } + output_ycbcr_splitting[num_output_color_ycbcr++] = output_splitting; + + assert(ycbcr_format.chroma_subsampling_x == 1); + assert(ycbcr_format.chroma_subsampling_y == 1); +} + +void EffectChain::change_ycbcr_output_format(const YCbCrFormat &ycbcr_format) +{ + assert(num_output_color_ycbcr > 0); + assert(output_ycbcr_format.chroma_subsampling_x == 1); + assert(output_ycbcr_format.chroma_subsampling_y == 1); + + output_ycbcr_format = ycbcr_format; + if (finalized) { + YCbCrConversionEffect *effect = (YCbCrConversionEffect *)(ycbcr_conversion_effect_node->effect); + effect->change_output_format(ycbcr_format); } } -Effect *EffectChain::normalize_to_srgb(Effect *input) +Node *EffectChain::add_node(Effect *effect) { - assert(output_gamma_curve.count(input) != 0); - assert(output_color_space.count(input) != 0); - assert(output_gamma_curve[input] == GAMMA_LINEAR); - ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect(); - colorspace_conversion->set_int("source_space", output_color_space[input]); - colorspace_conversion->set_int("destination_space", COLORSPACE_sRGB); - std::vector inputs; - inputs.push_back(input); - colorspace_conversion->add_self_to_effect_chain(this, inputs); - output_color_space[colorspace_conversion] = COLORSPACE_sRGB; - return colorspace_conversion; + for (unsigned i = 0; i < nodes.size(); ++i) { + assert(nodes[i]->effect != effect); + } + + Node *node = new Node; + node->effect = effect; + node->disabled = false; + node->output_color_space = COLORSPACE_INVALID; + node->output_gamma_curve = GAMMA_INVALID; + node->output_alpha_type = ALPHA_INVALID; + node->needs_mipmaps = Effect::DOES_NOT_NEED_MIPMAPS; + node->one_to_one_sampling = false; + node->strong_one_to_one_sampling = false; + + nodes.push_back(node); + node_map[effect] = node; + effect->inform_added(this); + return node; } -Effect *EffectChain::add_effect(EffectId effect_id, const std::vector &inputs) +void EffectChain::connect_nodes(Node *sender, Node *receiver) { - Effect *effect = instantiate_effect(effect_id); + sender->outgoing_links.push_back(receiver); + receiver->incoming_links.push_back(sender); +} - assert(inputs.size() == effect->num_inputs()); +void EffectChain::replace_receiver(Node *old_receiver, Node *new_receiver) +{ + new_receiver->incoming_links = old_receiver->incoming_links; + old_receiver->incoming_links.clear(); + + for (unsigned i = 0; i < new_receiver->incoming_links.size(); ++i) { + Node *sender = new_receiver->incoming_links[i]; + for (unsigned j = 0; j < sender->outgoing_links.size(); ++j) { + if (sender->outgoing_links[j] == old_receiver) { + sender->outgoing_links[j] = new_receiver; + } + } + } +} - std::vector normalized_inputs = inputs; - for (unsigned i = 0; i < normalized_inputs.size(); ++i) { - assert(output_gamma_curve.count(normalized_inputs[i]) != 0); - if (effect->needs_linear_light() && output_gamma_curve[normalized_inputs[i]] != GAMMA_LINEAR) { - normalized_inputs[i] = normalize_to_linear_gamma(normalized_inputs[i]); +void EffectChain::replace_sender(Node *old_sender, Node *new_sender) +{ + new_sender->outgoing_links = old_sender->outgoing_links; + old_sender->outgoing_links.clear(); + + for (unsigned i = 0; i < new_sender->outgoing_links.size(); ++i) { + Node *receiver = new_sender->outgoing_links[i]; + for (unsigned j = 0; j < receiver->incoming_links.size(); ++j) { + if (receiver->incoming_links[j] == old_sender) { + receiver->incoming_links[j] = new_sender; + } + } + } +} + +void EffectChain::insert_node_between(Node *sender, Node *middle, Node *receiver) +{ + for (unsigned i = 0; i < sender->outgoing_links.size(); ++i) { + if (sender->outgoing_links[i] == receiver) { + sender->outgoing_links[i] = middle; + middle->incoming_links.push_back(sender); + } + } + for (unsigned i = 0; i < receiver->incoming_links.size(); ++i) { + if (receiver->incoming_links[i] == sender) { + receiver->incoming_links[i] = middle; + middle->outgoing_links.push_back(receiver); } - assert(output_color_space.count(normalized_inputs[i]) != 0); - if (effect->needs_srgb_primaries() && output_color_space[normalized_inputs[i]] != COLORSPACE_sRGB) { - normalized_inputs[i] = normalize_to_srgb(normalized_inputs[i]); + } + + assert(middle->incoming_links.size() == middle->effect->num_inputs()); +} + +GLenum EffectChain::get_input_sampler(Node *node, unsigned input_num) const +{ + assert(node->effect->needs_texture_bounce()); + assert(input_num < node->incoming_links.size()); + assert(node->incoming_links[input_num]->bound_sampler_num >= 0); + assert(node->incoming_links[input_num]->bound_sampler_num < 8); + return GL_TEXTURE0 + node->incoming_links[input_num]->bound_sampler_num; +} + +GLenum EffectChain::has_input_sampler(Node *node, unsigned input_num) const +{ + assert(input_num < node->incoming_links.size()); + return node->incoming_links[input_num]->bound_sampler_num >= 0 && + node->incoming_links[input_num]->bound_sampler_num < 8; +} + +void EffectChain::find_all_nonlinear_inputs(Node *node, vector *nonlinear_inputs) +{ + if (node->output_gamma_curve == GAMMA_LINEAR && + node->effect->effect_type_id() != "GammaCompressionEffect") { + return; + } + if (node->effect->num_inputs() == 0) { + nonlinear_inputs->push_back(node); + } else { + assert(node->effect->num_inputs() == node->incoming_links.size()); + for (unsigned i = 0; i < node->incoming_links.size(); ++i) { + find_all_nonlinear_inputs(node->incoming_links[i], nonlinear_inputs); } } +} - effect->add_self_to_effect_chain(this, normalized_inputs); +Effect *EffectChain::add_effect(Effect *effect, const vector &inputs) +{ + assert(!finalized); + assert(inputs.size() == effect->num_inputs()); + Node *node = add_node(effect); + for (unsigned i = 0; i < inputs.size(); ++i) { + assert(node_map.count(inputs[i]) != 0); + connect_nodes(node_map[inputs[i]], node); + } return effect; } -// GLSL pre-1.30 doesn't support token pasting. Replace PREFIX(x) with _x. -std::string replace_prefix(const std::string &text, const std::string &prefix) +// ESSL doesn't support token pasting. Replace PREFIX(x) with _x. +string replace_prefix(const string &text, const string &prefix) { - std::string output; + string output; size_t start = 0; while (start < text.size()) { size_t pos = text.find("PREFIX(", start); - if (pos == std::string::npos) { - output.append(text.substr(start, std::string::npos)); + if (pos == string::npos) { + output.append(text.substr(start, string::npos)); break; } @@ -186,356 +312,2105 @@ std::string replace_prefix(const std::string &text, const std::string &prefix) return output; } -EffectChain::Phase EffectChain::compile_glsl_program(const std::vector &inputs, const std::vector &effects) +namespace { + +template +void extract_uniform_declarations(const vector> &effect_uniforms, + const string &type_specifier, + const string &effect_id, + vector> *phase_uniforms, + string *glsl_string) +{ + for (unsigned i = 0; i < effect_uniforms.size(); ++i) { + phase_uniforms->push_back(effect_uniforms[i]); + phase_uniforms->back().prefix = effect_id; + + *glsl_string += string("uniform ") + type_specifier + " " + effect_id + + "_" + effect_uniforms[i].name + ";\n"; + } +} + +template +void extract_uniform_array_declarations(const vector> &effect_uniforms, + const string &type_specifier, + const string &effect_id, + vector> *phase_uniforms, + string *glsl_string) +{ + for (unsigned i = 0; i < effect_uniforms.size(); ++i) { + phase_uniforms->push_back(effect_uniforms[i]); + phase_uniforms->back().prefix = effect_id; + + char buf[256]; + snprintf(buf, sizeof(buf), "uniform %s %s_%s[%d];\n", + type_specifier.c_str(), effect_id.c_str(), + effect_uniforms[i].name.c_str(), + int(effect_uniforms[i].num_values)); + *glsl_string += buf; + } +} + +template +void collect_uniform_locations(GLuint glsl_program_num, vector> *phase_uniforms) { - assert(!inputs.empty()); - assert(!effects.empty()); + for (unsigned i = 0; i < phase_uniforms->size(); ++i) { + Uniform &uniform = (*phase_uniforms)[i]; + uniform.location = get_uniform_location(glsl_program_num, uniform.prefix, uniform.name); + } +} - // Figure out the true set of inputs to this phase. These are the ones - // that we need somehow but don't calculate ourselves. - std::set effect_set(effects.begin(), effects.end()); - std::set input_set(inputs.begin(), inputs.end()); - std::vector true_inputs; - std::set_difference(input_set.begin(), input_set.end(), - effect_set.begin(), effect_set.end(), - std::back_inserter(true_inputs)); +} // namespace - bool input_needs_mipmaps = false; - std::string frag_shader = read_file("header.frag"); +void EffectChain::compile_glsl_program(Phase *phase) +{ + string frag_shader_header; + if (phase->is_compute_shader) { + frag_shader_header = read_file("header.comp"); + } else { + frag_shader_header = read_version_dependent_file("header", "frag"); + } + string frag_shader = ""; - // Create functions for all the texture inputs that we need. - for (unsigned i = 0; i < true_inputs.size(); ++i) { - Effect *effect = true_inputs[i]; - assert(effect_ids.count(effect) != 0); - std::string effect_id = effect_ids[effect]; + // Create functions and uniforms for all the texture inputs that we need. + for (unsigned i = 0; i < phase->inputs.size(); ++i) { + Node *input = phase->inputs[i]->output_node; + char effect_id[256]; + sprintf(effect_id, "in%u", i); + phase->effect_ids.insert(make_pair(make_pair(input, IN_ANOTHER_PHASE), effect_id)); - frag_shader += std::string("uniform sampler2D tex_") + effect_id + ";\n"; - frag_shader += std::string("vec4 ") + effect_id + "(vec2 tc) {\n"; - if (effect->num_inputs() == 0) { - // OpenGL's origin is bottom-left, but most graphics software assumes - // a top-left origin. Thus, for inputs that come from the user, - // we flip the y coordinate. However, for FBOs, the origin - // is all correct, so don't do anything. - frag_shader += "\ttc.y = 1.0f - tc.y;\n"; - } - frag_shader += "\treturn texture2D(tex_" + effect_id + ", tc);\n"; + frag_shader += string("uniform sampler2D tex_") + effect_id + ";\n"; + frag_shader += string("vec4 ") + effect_id + "(vec2 tc) {\n"; + frag_shader += "\tvec4 tmp = tex2D(tex_" + string(effect_id) + ", tc);\n"; + + if (intermediate_transformation == SQUARE_ROOT_FRAMEBUFFER_TRANSFORMATION && + phase->inputs[i]->output_node->output_gamma_curve == GAMMA_LINEAR) { + frag_shader += "\ttmp.rgb *= tmp.rgb;\n"; + } + + frag_shader += "\treturn tmp;\n"; frag_shader += "}\n"; frag_shader += "\n"; + + Uniform uniform; + uniform.name = effect_id; + uniform.value = &phase->input_samplers[i]; + uniform.prefix = "tex"; + uniform.num_values = 1; + uniform.location = -1; + phase->uniforms_sampler2d.push_back(uniform); } - std::string last_effect_id; - for (unsigned i = 0; i < effects.size(); ++i) { - Effect *effect = effects[i]; - assert(effect != NULL); - assert(effect_ids.count(effect) != 0); - std::string effect_id = effect_ids[effect]; - last_effect_id = effect_id; + // Give each effect in the phase its own ID. + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Node *node = phase->effects[i]; + char effect_id[256]; + sprintf(effect_id, "eff%u", i); + bool inserted = phase->effect_ids.insert(make_pair(make_pair(node, IN_SAME_PHASE), effect_id)).second; + assert(inserted); + } - if (incoming_links[effect].size() == 1) { - frag_shader += std::string("#define INPUT ") + effect_ids[incoming_links[effect][0]] + "\n"; - } else { - for (unsigned j = 0; j < incoming_links[effect].size(); ++j) { + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Node *node = phase->effects[i]; + const string effect_id = phase->effect_ids[make_pair(node, IN_SAME_PHASE)]; + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + if (node->incoming_links.size() == 1) { + frag_shader += "#define INPUT"; + } else { char buf[256]; - sprintf(buf, "#define INPUT%d %s\n", j + 1, effect_ids[incoming_links[effect][j]].c_str()); + sprintf(buf, "#define INPUT%d", j + 1); frag_shader += buf; } + + Node *input = node->incoming_links[j]; + NodeLinkType link_type = node->incoming_link_type[j]; + if (i != 0 && + input->effect->is_compute_shader() && + node->incoming_link_type[j] == IN_SAME_PHASE) { + // First effect after the compute shader reads the value + // that cs_output() wrote to a global variable, + // ignoring the tc (since all such effects have to be + // strong one-to-one). + frag_shader += "(tc) CS_OUTPUT_VAL\n"; + } else { + assert(phase->effect_ids.count(make_pair(input, link_type))); + frag_shader += string(" ") + phase->effect_ids[make_pair(input, link_type)] + "\n"; + } } frag_shader += "\n"; - frag_shader += std::string("#define FUNCNAME ") + effect_id + "\n"; - frag_shader += replace_prefix(effect->output_convenience_uniforms(), effect_id); - frag_shader += replace_prefix(effect->output_fragment_shader(), effect_id); - frag_shader += "#undef PREFIX\n"; + frag_shader += string("#define FUNCNAME ") + effect_id + "\n"; + if (node->effect->is_compute_shader()) { + frag_shader += string("#define NORMALIZE_TEXTURE_COORDS(tc) ((tc) * ") + effect_id + "_inv_output_size + " + effect_id + "_output_texcoord_adjust)\n"; + } + frag_shader += replace_prefix(node->effect->output_fragment_shader(), effect_id); frag_shader += "#undef FUNCNAME\n"; - if (incoming_links[effect].size() == 1) { + if (node->incoming_links.size() == 1) { frag_shader += "#undef INPUT\n"; } else { - for (unsigned j = 0; j < incoming_links[effect].size(); ++j) { + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { char buf[256]; sprintf(buf, "#undef INPUT%d\n", j + 1); frag_shader += buf; } } frag_shader += "\n"; + } + if (phase->is_compute_shader) { + assert(phase->effect_ids.count(make_pair(phase->compute_shader_node, IN_SAME_PHASE))); + frag_shader += string("#define INPUT ") + phase->effect_ids[make_pair(phase->compute_shader_node, IN_SAME_PHASE)] + "\n"; + if (phase->compute_shader_node == phase->effects.back()) { + // No postprocessing. + frag_shader += "#define CS_POSTPROC(tc) CS_OUTPUT_VAL\n"; + } else { + frag_shader += string("#define CS_POSTPROC ") + phase->effect_ids[make_pair(phase->effects.back(), IN_SAME_PHASE)] + "\n"; + } + } else { + assert(phase->effect_ids.count(make_pair(phase->effects.back(), IN_SAME_PHASE))); + frag_shader += string("#define INPUT ") + phase->effect_ids[make_pair(phase->effects.back(), IN_SAME_PHASE)] + "\n"; + } + + // If we're the last phase, add the right #defines for Y'CbCr multi-output as needed. + vector frag_shader_outputs; // In order. + if (phase->output_node->outgoing_links.empty() && num_output_color_ycbcr > 0) { + switch (output_ycbcr_splitting[0]) { + case YCBCR_OUTPUT_INTERLEAVED: + // No #defines set. + frag_shader_outputs.push_back("FragColor"); + break; + case YCBCR_OUTPUT_SPLIT_Y_AND_CBCR: + frag_shader += "#define YCBCR_OUTPUT_SPLIT_Y_AND_CBCR 1\n"; + frag_shader_outputs.push_back("Y"); + frag_shader_outputs.push_back("Chroma"); + break; + case YCBCR_OUTPUT_PLANAR: + frag_shader += "#define YCBCR_OUTPUT_PLANAR 1\n"; + frag_shader_outputs.push_back("Y"); + frag_shader_outputs.push_back("Cb"); + frag_shader_outputs.push_back("Cr"); + break; + default: + assert(false); + } + + if (num_output_color_ycbcr > 1) { + switch (output_ycbcr_splitting[1]) { + case YCBCR_OUTPUT_INTERLEAVED: + frag_shader += "#define SECOND_YCBCR_OUTPUT_INTERLEAVED 1\n"; + frag_shader_outputs.push_back("YCbCr2"); + break; + case YCBCR_OUTPUT_SPLIT_Y_AND_CBCR: + frag_shader += "#define SECOND_YCBCR_OUTPUT_SPLIT_Y_AND_CBCR 1\n"; + frag_shader_outputs.push_back("Y2"); + frag_shader_outputs.push_back("Chroma2"); + break; + case YCBCR_OUTPUT_PLANAR: + frag_shader += "#define SECOND_YCBCR_OUTPUT_PLANAR 1\n"; + frag_shader_outputs.push_back("Y2"); + frag_shader_outputs.push_back("Cb2"); + frag_shader_outputs.push_back("Cr2"); + break; + default: + assert(false); + } + } - input_needs_mipmaps |= effect->needs_mipmaps(); + if (output_color_rgba) { + // Note: Needs to come in the header, because not only the + // output needs to see it (YCbCrConversionEffect and DitherEffect + // do, too). + frag_shader_header += "#define YCBCR_ALSO_OUTPUT_RGBA 1\n"; + frag_shader_outputs.push_back("RGBA"); + } } - for (unsigned i = 0; i < effects.size(); ++i) { - Effect *effect = effects[i]; - if (effect->num_inputs() == 0) { - effect->set_int("needs_mipmaps", input_needs_mipmaps); + + // If we're bouncing to a temporary texture, signal transformation if desired. + if (!phase->output_node->outgoing_links.empty()) { + if (intermediate_transformation == SQUARE_ROOT_FRAMEBUFFER_TRANSFORMATION && + phase->output_node->output_gamma_curve == GAMMA_LINEAR) { + frag_shader += "#define SQUARE_ROOT_TRANSFORMATION 1\n"; } } - assert(!last_effect_id.empty()); - frag_shader += std::string("#define INPUT ") + last_effect_id + "\n"; - frag_shader.append(read_file("footer.frag")); - printf("%s\n", frag_shader.c_str()); - - GLuint glsl_program_num = glCreateProgram(); - GLuint vs_obj = compile_shader(read_file("vs.vert"), GL_VERTEX_SHADER); - GLuint fs_obj = compile_shader(frag_shader, GL_FRAGMENT_SHADER); - glAttachShader(glsl_program_num, vs_obj); - check_error(); - glAttachShader(glsl_program_num, fs_obj); - check_error(); - glLinkProgram(glsl_program_num); - check_error(); - Phase phase; - phase.glsl_program_num = glsl_program_num; - phase.input_needs_mipmaps = input_needs_mipmaps; - phase.inputs = true_inputs; - phase.effects = effects; + if (phase->is_compute_shader) { + frag_shader.append(read_file("footer.comp")); + phase->compute_shader_node->effect->register_uniform_ivec2("output_size", phase->uniform_output_size); + phase->compute_shader_node->effect->register_uniform_vec2("inv_output_size", (float *)&phase->inv_output_size); + phase->compute_shader_node->effect->register_uniform_vec2("output_texcoord_adjust", (float *)&phase->output_texcoord_adjust); + } else { + frag_shader.append(read_file("footer.frag")); + } + + // Collect uniforms from all effects and output them. Note that this needs + // to happen after output_fragment_shader(), even though the uniforms come + // before in the output source, since output_fragment_shader() is allowed + // to register new uniforms (e.g. arrays that are of unknown length until + // finalization time). + // TODO: Make a uniform block for platforms that support it. + string frag_shader_uniforms = ""; + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Node *node = phase->effects[i]; + Effect *effect = node->effect; + const string effect_id = phase->effect_ids[make_pair(node, IN_SAME_PHASE)]; + extract_uniform_declarations(effect->uniforms_image2d, "image2D", effect_id, &phase->uniforms_image2d, &frag_shader_uniforms); + extract_uniform_declarations(effect->uniforms_sampler2d, "sampler2D", effect_id, &phase->uniforms_sampler2d, &frag_shader_uniforms); + extract_uniform_declarations(effect->uniforms_bool, "bool", effect_id, &phase->uniforms_bool, &frag_shader_uniforms); + extract_uniform_declarations(effect->uniforms_int, "int", effect_id, &phase->uniforms_int, &frag_shader_uniforms); + extract_uniform_declarations(effect->uniforms_ivec2, "ivec2", effect_id, &phase->uniforms_ivec2, &frag_shader_uniforms); + extract_uniform_declarations(effect->uniforms_float, "float", effect_id, &phase->uniforms_float, &frag_shader_uniforms); + extract_uniform_declarations(effect->uniforms_vec2, "vec2", effect_id, &phase->uniforms_vec2, &frag_shader_uniforms); + extract_uniform_declarations(effect->uniforms_vec3, "vec3", effect_id, &phase->uniforms_vec3, &frag_shader_uniforms); + extract_uniform_declarations(effect->uniforms_vec4, "vec4", effect_id, &phase->uniforms_vec4, &frag_shader_uniforms); + extract_uniform_array_declarations(effect->uniforms_float_array, "float", effect_id, &phase->uniforms_float, &frag_shader_uniforms); + extract_uniform_array_declarations(effect->uniforms_vec2_array, "vec2", effect_id, &phase->uniforms_vec2, &frag_shader_uniforms); + extract_uniform_array_declarations(effect->uniforms_vec3_array, "vec3", effect_id, &phase->uniforms_vec3, &frag_shader_uniforms); + extract_uniform_array_declarations(effect->uniforms_vec4_array, "vec4", effect_id, &phase->uniforms_vec4, &frag_shader_uniforms); + extract_uniform_declarations(effect->uniforms_mat3, "mat3", effect_id, &phase->uniforms_mat3, &frag_shader_uniforms); + } + + string vert_shader = read_version_dependent_file("vs", "vert"); - return phase; + // If we're the last phase and need to flip the picture to compensate for + // the origin, tell the vertex or compute shader so. + bool is_last_phase; + if (has_dummy_effect) { + is_last_phase = (phase->output_node->outgoing_links.size() == 1 && + phase->output_node->outgoing_links[0]->effect->effect_type_id() == "ComputeShaderOutputDisplayEffect"); + } else { + is_last_phase = phase->output_node->outgoing_links.empty(); + } + if (is_last_phase && output_origin == OUTPUT_ORIGIN_TOP_LEFT) { + if (phase->is_compute_shader) { + frag_shader_header += "#define FLIP_ORIGIN 1\n"; + } else { + const string needle = "#define FLIP_ORIGIN 0"; + size_t pos = vert_shader.find(needle); + assert(pos != string::npos); + + vert_shader[pos + needle.size() - 1] = '1'; + } + } + + frag_shader = frag_shader_header + frag_shader_uniforms + frag_shader; + + if (phase->is_compute_shader) { + phase->glsl_program_num = resource_pool->compile_glsl_compute_program(frag_shader); + + Uniform uniform; + uniform.name = "outbuf"; + uniform.value = &phase->outbuf_image_unit; + uniform.prefix = "tex"; + uniform.num_values = 1; + uniform.location = -1; + phase->uniforms_image2d.push_back(uniform); + } else { + phase->glsl_program_num = resource_pool->compile_glsl_program(vert_shader, frag_shader, frag_shader_outputs); + } + GLint position_attribute_index = glGetAttribLocation(phase->glsl_program_num, "position"); + GLint texcoord_attribute_index = glGetAttribLocation(phase->glsl_program_num, "texcoord"); + if (position_attribute_index != -1) { + phase->attribute_indexes.insert(position_attribute_index); + } + if (texcoord_attribute_index != -1) { + phase->attribute_indexes.insert(texcoord_attribute_index); + } + + // Collect the resulting location numbers for each uniform. + collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_image2d); + collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_sampler2d); + collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_bool); + collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_int); + collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_ivec2); + collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_float); + collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec2); + collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec3); + collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_vec4); + collect_uniform_locations(phase->glsl_program_num, &phase->uniforms_mat3); } // Construct GLSL programs, starting at the given effect and following // the chain from there. We end a program every time we come to an effect // marked as "needs texture bounce", one that is used by multiple other -// effects, and of course at the end. -void EffectChain::construct_glsl_programs(Effect *start, std::set *completed_effects) +// effects, every time we need to bounce due to output size change +// (not all size changes require ending), and of course at the end. +// +// We follow a quite simple depth-first search from the output, although +// without recursing explicitly within each phase. +Phase *EffectChain::construct_phase(Node *output, map *completed_effects) { - assert(start != NULL); - if (completed_effects->count(start) != 0) { - // This has already been done for us. - return; + if (completed_effects->count(output)) { + return (*completed_effects)[output]; } - std::vector this_phase_inputs; // Also includes all intermediates; these will be filtered away later. - std::vector this_phase_effects; - Effect *node = start; - for ( ;; ) { // Termination condition within loop. - assert(node != NULL); - - // Check that we have all the inputs we need for this effect. - // If not, we end the phase here right away; the other side - // of the input chain will eventually come and pick the effect up. - assert(incoming_links.count(node) == 1); - std::vector deps = incoming_links[node]; - assert(node->num_inputs() == deps.size()); - if (!deps.empty()) { - bool have_all_deps = true; - for (unsigned i = 0; i < deps.size(); ++i) { - if (completed_effects->count(deps[i]) == 0) { - have_all_deps = false; - break; - } - } - - if (!have_all_deps) { - if (!this_phase_effects.empty()) { - phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects)); - } - return; + Phase *phase = new Phase; + phase->output_node = output; + phase->is_compute_shader = false; + phase->compute_shader_node = nullptr; + + // If the output effect has one-to-one sampling, we try to trace this + // status down through the dependency chain. This is important in case + // we hit an effect that changes output size (and not sets a virtual + // output size); if we have one-to-one sampling, we don't have to break + // the phase. + output->one_to_one_sampling = output->effect->one_to_one_sampling(); + output->strong_one_to_one_sampling = output->effect->strong_one_to_one_sampling(); + + // Effects that we have yet to calculate, but that we know should + // be in the current phase. + stack effects_todo_this_phase; + effects_todo_this_phase.push(output); + + while (!effects_todo_this_phase.empty()) { + Node *node = effects_todo_this_phase.top(); + effects_todo_this_phase.pop(); + + assert(node->effect->one_to_one_sampling() >= node->effect->strong_one_to_one_sampling()); + + if (node->effect->needs_mipmaps() != Effect::DOES_NOT_NEED_MIPMAPS) { + // Can't have incompatible requirements imposed on us from a dependent effect; + // if so, it should have started a new phase instead. + assert(node->needs_mipmaps == Effect::DOES_NOT_NEED_MIPMAPS || + node->needs_mipmaps == node->effect->needs_mipmaps()); + node->needs_mipmaps = node->effect->needs_mipmaps(); + } + + // This should currently only happen for effects that are inputs + // (either true inputs or phase outputs). We special-case inputs, + // and then deduplicate phase outputs below. + if (node->effect->num_inputs() == 0) { + if (find(phase->effects.begin(), phase->effects.end(), node) != phase->effects.end()) { + continue; } - this_phase_inputs.insert(this_phase_inputs.end(), deps.begin(), deps.end()); + } else { + assert(completed_effects->count(node) == 0); } - this_phase_effects.push_back(node); - completed_effects->insert(node); - // Find all the effects that use this one as a direct input. - if (outgoing_links.count(node) == 0) { - // End of the line; output. - phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects)); - return; + phase->effects.push_back(node); + if (node->effect->is_compute_shader()) { + assert(phase->compute_shader_node == nullptr || + phase->compute_shader_node == node); + phase->is_compute_shader = true; + phase->compute_shader_node = node; } - std::vector next = outgoing_links[node]; - assert(!next.empty()); - if (next.size() > 1) { - if (node->num_inputs() != 0) { - // More than one effect uses this as the input, and it is not a texture itself. - // The easiest thing to do (and probably also the safest - // performance-wise in most cases) is to bounce it to a texture - // and then let the next passes read from that. - phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects)); + // Find all the dependencies of this effect, and add them to the stack. + assert(node->effect->num_inputs() == node->incoming_links.size()); + for (Node *dep : node->incoming_links) { + bool start_new_phase = false; + + Effect::MipmapRequirements save_needs_mipmaps = dep->needs_mipmaps; + + if (node->effect->needs_texture_bounce() && + !dep->effect->is_single_texture() && + !dep->effect->override_disable_bounce()) { + start_new_phase = true; } - // Start phases for all the effects that need us (in arbitrary order). - for (unsigned i = 0; i < next.size(); ++i) { - construct_glsl_programs(next[i], completed_effects); + // Propagate information about needing mipmaps down the chain, + // breaking the phase if we notice an incompatibility. + // + // Note that we cannot do this propagation as a normal pass, + // because it needs information about where the phases end + // (we should not propagate the flag across phases). + if (node->needs_mipmaps != Effect::DOES_NOT_NEED_MIPMAPS) { + // The node can have a value set (ie. not DOES_NOT_NEED_MIPMAPS) + // if we have diamonds in the graph; if so, choose that. + // If not, the effect on the node can also decide (this is the + // more common case). + Effect::MipmapRequirements dep_mipmaps = dep->needs_mipmaps; + if (dep_mipmaps == Effect::DOES_NOT_NEED_MIPMAPS) { + if (dep->effect->num_inputs() == 0) { + Input *input = static_cast(dep->effect); + dep_mipmaps = input->can_supply_mipmaps() ? Effect::DOES_NOT_NEED_MIPMAPS : Effect::CANNOT_ACCEPT_MIPMAPS; + } else { + dep_mipmaps = dep->effect->needs_mipmaps(); + } + } + if (dep_mipmaps == Effect::DOES_NOT_NEED_MIPMAPS) { + dep->needs_mipmaps = node->needs_mipmaps; + } else if (dep_mipmaps != node->needs_mipmaps) { + // The dependency cannot supply our mipmap demands + // (either because it's an input that can't do mipmaps, + // or because there's a conflict between mipmap-needing + // and mipmap-refusing effects somewhere in the graph), + // so they cannot be in the same phase. + start_new_phase = true; + } } - return; - } - - // OK, only one effect uses this as the input. Keep iterating, - // but first see if it requires a texture bounce; if so, give it - // one by starting a new phase. - node = next[0]; - if (node->needs_texture_bounce()) { - phases.push_back(compile_glsl_program(this_phase_inputs, this_phase_effects)); - this_phase_inputs.clear(); - this_phase_effects.clear(); + + if (dep->outgoing_links.size() > 1) { + if (!dep->effect->is_single_texture()) { + // More than one effect uses this as the input, + // and it is not a texture itself. + // The easiest thing to do (and probably also the safest + // performance-wise in most cases) is to bounce it to a texture + // and then let the next passes read from that. + start_new_phase = true; + } else { + assert(dep->effect->num_inputs() == 0); + + // For textures, we try to be slightly more clever; + // if none of our outputs need a bounce, we don't bounce + // but instead simply use the effect many times. + // + // Strictly speaking, we could bounce it for some outputs + // and use it directly for others, but the processing becomes + // somewhat simpler if the effect is only used in one such way. + for (unsigned j = 0; j < dep->outgoing_links.size(); ++j) { + Node *rdep = dep->outgoing_links[j]; + start_new_phase |= rdep->effect->needs_texture_bounce(); + } + } + } + + if (dep->effect->is_compute_shader()) { + if (phase->is_compute_shader) { + // Only one compute shader per phase. + start_new_phase = true; + } else if (!node->strong_one_to_one_sampling) { + // If all nodes so far are strong one-to-one, we can put them after + // the compute shader (ie., process them on the output). + start_new_phase = true; + } else if (!start_new_phase) { + phase->is_compute_shader = true; + phase->compute_shader_node = dep; + } + } else if (dep->effect->sets_virtual_output_size()) { + assert(dep->effect->changes_output_size()); + // If the next effect sets a virtual size to rely on OpenGL's + // bilinear sampling, we'll really need to break the phase here. + start_new_phase = true; + } else if (dep->effect->changes_output_size() && !node->one_to_one_sampling) { + // If the next effect changes size and we don't have one-to-one sampling, + // we also need to break here. + start_new_phase = true; + } + + if (start_new_phase) { + // Since we're starting a new phase here, we don't need to impose any + // new demands on this effect. Restore the status we had before we + // started looking at it. + dep->needs_mipmaps = save_needs_mipmaps; + + phase->inputs.push_back(construct_phase(dep, completed_effects)); + } else { + effects_todo_this_phase.push(dep); + + // Propagate the one-to-one status down through the dependency. + dep->one_to_one_sampling = node->one_to_one_sampling && + dep->effect->one_to_one_sampling(); + dep->strong_one_to_one_sampling = node->strong_one_to_one_sampling && + dep->effect->strong_one_to_one_sampling(); + } + + node->incoming_link_type.push_back(start_new_phase ? IN_ANOTHER_PHASE : IN_SAME_PHASE); } } -} -void EffectChain::finalize() -{ - // Add normalizers to get the output format right. - assert(output_gamma_curve.count(last_added_effect()) != 0); - assert(output_color_space.count(last_added_effect()) != 0); - ColorSpace current_color_space = output_color_space[last_added_effect()]; // FIXME - if (current_color_space != output_format.color_space) { - ColorSpaceConversionEffect *colorspace_conversion = new ColorSpaceConversionEffect(); - colorspace_conversion->set_int("source_space", current_color_space); - colorspace_conversion->set_int("destination_space", output_format.color_space); - std::vector inputs; - inputs.push_back(last_added_effect()); - colorspace_conversion->add_self_to_effect_chain(this, inputs); - output_color_space[colorspace_conversion] = output_format.color_space; - } - GammaCurve current_gamma_curve = output_gamma_curve[last_added_effect()]; // FIXME - if (current_gamma_curve != output_format.gamma_curve) { - if (current_gamma_curve != GAMMA_LINEAR) { - normalize_to_linear_gamma(last_added_effect()); // FIXME - } - assert(current_gamma_curve == GAMMA_LINEAR); - GammaCompressionEffect *gamma_conversion = new GammaCompressionEffect(); - gamma_conversion->set_int("destination_curve", output_format.gamma_curve); - std::vector inputs; - inputs.push_back(last_added_effect()); - gamma_conversion->add_self_to_effect_chain(this, inputs); - output_gamma_curve[gamma_conversion] = output_format.gamma_curve; - } - - // Construct all needed GLSL programs, starting at the input. - std::set completed_effects; - construct_glsl_programs(effects[0], &completed_effects); - - // If we have more than one phase, we need intermediate render-to-texture. - // Construct an FBO, and then as many textures as we need. - // We choose the simplest option of having one texture per output, - // since otherwise this turns into an (albeit simple) - // register allocation problem. - if (phases.size() > 1) { - glGenFramebuffers(1, &fbo); - - for (unsigned i = 0; i < phases.size() - 1; ++i) { - Effect *output_effect = phases[i].effects.back(); - GLuint temp_texture; - glGenTextures(1, &temp_texture); - check_error(); - glBindTexture(GL_TEXTURE_2D, temp_texture); - check_error(); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); - check_error(); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); - check_error(); - glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); - check_error(); - effect_output_textures.insert(std::make_pair(output_effect, temp_texture)); + // No more effects to do this phase. Take all the ones we have, + // and create a GLSL program for it. + assert(!phase->effects.empty()); + + // Deduplicate the inputs, but don't change the ordering e.g. by sorting; + // that would be nondeterministic and thus reduce cacheability. + // TODO: Make this even more deterministic. + vector dedup_inputs; + set seen_inputs; + for (size_t i = 0; i < phase->inputs.size(); ++i) { + if (seen_inputs.insert(phase->inputs[i]).second) { + dedup_inputs.push_back(phase->inputs[i]); } } - - (static_cast(effects[0]))->finalize(); - - finalized = true; -} + swap(phase->inputs, dedup_inputs); -void EffectChain::render_to_screen() -{ - assert(finalized); + // Allocate samplers for each input. + phase->input_samplers.resize(phase->inputs.size()); - // Basic state. - glDisable(GL_BLEND); - check_error(); - glDisable(GL_DEPTH_TEST); - check_error(); - glDepthMask(GL_FALSE); - check_error(); + // We added the effects from the output and back, but we need to output + // them in topological sort order in the shader. + phase->effects = topological_sort(phase->effects); - glMatrixMode(GL_PROJECTION); - glLoadIdentity(); - glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0); + // Figure out if we need mipmaps or not, and if so, tell the inputs that. + // (RTT inputs have different logic, which is checked in execute_phase().) + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Node *node = phase->effects[i]; + if (node->effect->num_inputs() == 0) { + Input *input = static_cast(node->effect); + assert(node->needs_mipmaps != Effect::NEEDS_MIPMAPS || input->can_supply_mipmaps()); + CHECK(input->set_int("needs_mipmaps", node->needs_mipmaps == Effect::NEEDS_MIPMAPS)); + } + } - glMatrixMode(GL_MODELVIEW); - glLoadIdentity(); + // Tell each node which phase it ended up in, so that the unit test + // can check that the phases were split in the right place. + // Note that this ignores that effects may be part of multiple phases; + // if the unit tests need to test such cases, we'll reconsider. + for (unsigned i = 0; i < phase->effects.size(); ++i) { + phase->effects[i]->containing_phase = phase; + } - if (phases.size() > 1) { - glBindFramebuffer(GL_FRAMEBUFFER, fbo); - check_error(); + // Actually make the shader for this phase. + compile_glsl_program(phase); + + // Initialize timers. + if (movit_timer_queries_supported) { + phase->time_elapsed_ns = 0; + phase->num_measured_iterations = 0; } - std::set generated_mipmaps; - generated_mipmaps.insert(effects[0]); // Already done further up. + assert(completed_effects->count(output) == 0); + completed_effects->insert(make_pair(output, phase)); + phases.push_back(phase); + return phase; +} - for (unsigned phase = 0; phase < phases.size(); ++phase) { - glUseProgram(phases[phase].glsl_program_num); - check_error(); +void EffectChain::output_dot(const char *filename) +{ + if (movit_debug_level != MOVIT_DEBUG_ON) { + return; + } - // Set up RTT inputs for this phase. - for (unsigned sampler = 0; sampler < phases[phase].inputs.size(); ++sampler) { - glActiveTexture(GL_TEXTURE0 + sampler); - Effect *input = phases[phase].inputs[sampler]; - assert(effect_output_textures.count(input) != 0); - glBindTexture(GL_TEXTURE_2D, effect_output_textures[input]); - check_error(); - if (phases[phase].input_needs_mipmaps) { - if (generated_mipmaps.count(input) == 0) { - glGenerateMipmap(GL_TEXTURE_2D); - check_error(); - generated_mipmaps.insert(input); - } - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); - check_error(); - } else { - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); - check_error(); - } + FILE *fp = fopen(filename, "w"); + if (fp == nullptr) { + perror(filename); + exit(1); + } - assert(effect_ids.count(input)); - std::string texture_name = std::string("tex_") + effect_ids[input]; - glUniform1i(glGetUniformLocation(phases[phase].glsl_program_num, texture_name.c_str()), sampler); - check_error(); + fprintf(fp, "digraph G {\n"); + fprintf(fp, " output [shape=box label=\"(output)\"];\n"); + for (unsigned i = 0; i < nodes.size(); ++i) { + // Find out which phase this event belongs to. + vector in_phases; + for (unsigned j = 0; j < phases.size(); ++j) { + const Phase* p = phases[j]; + if (find(p->effects.begin(), p->effects.end(), nodes[i]) != p->effects.end()) { + in_phases.push_back(j); + } } - // And now the output. - if (phase == phases.size() - 1) { - // Last phase goes directly to the screen. - glBindFramebuffer(GL_FRAMEBUFFER, 0); - check_error(); + if (in_phases.empty()) { + fprintf(fp, " n%ld [label=\"%s\"];\n", (long)nodes[i], nodes[i]->effect->effect_type_id().c_str()); + } else if (in_phases.size() == 1) { + fprintf(fp, " n%ld [label=\"%s\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n", + (long)nodes[i], nodes[i]->effect->effect_type_id().c_str(), + (in_phases[0] % 8) + 1); } else { - Effect *last_effect = phases[phase].effects.back(); - assert(effect_output_textures.count(last_effect) != 0); - glFramebufferTexture2D( - GL_FRAMEBUFFER, - GL_COLOR_ATTACHMENT0, - GL_TEXTURE_2D, - effect_output_textures[last_effect], - 0); - check_error(); + // If we had new enough Graphviz, style="wedged" would probably be ideal here. + // But alas. + fprintf(fp, " n%ld [label=\"%s [in multiple phases]\" style=\"filled\" fillcolor=\"/accent8/%d\"];\n", + (long)nodes[i], nodes[i]->effect->effect_type_id().c_str(), + (in_phases[0] % 8) + 1); + } + + char from_node_id[256]; + snprintf(from_node_id, 256, "n%ld", (long)nodes[i]); + + for (unsigned j = 0; j < nodes[i]->outgoing_links.size(); ++j) { + char to_node_id[256]; + snprintf(to_node_id, 256, "n%ld", (long)nodes[i]->outgoing_links[j]); + + vector labels = get_labels_for_edge(nodes[i], nodes[i]->outgoing_links[j]); + output_dot_edge(fp, from_node_id, to_node_id, labels); } - // Give the required parameters to all the effects. - unsigned sampler_num = phases[phase].inputs.size(); - for (unsigned i = 0; i < phases[phase].effects.size(); ++i) { - Effect *effect = phases[phase].effects[i]; - effect->set_gl_state(phases[phase].glsl_program_num, effect_ids[effect], &sampler_num); + if (nodes[i]->outgoing_links.empty() && !nodes[i]->disabled) { + // Output node. + vector labels = get_labels_for_edge(nodes[i], nullptr); + output_dot_edge(fp, from_node_id, "output", labels); } + } + fprintf(fp, "}\n"); + + fclose(fp); +} - // Now draw! - glBegin(GL_QUADS); +vector EffectChain::get_labels_for_edge(const Node *from, const Node *to) +{ + vector labels; - glTexCoord2f(0.0f, 0.0f); - glVertex2f(0.0f, 0.0f); + if (to != nullptr && to->effect->needs_texture_bounce()) { + labels.push_back("needs_bounce"); + } + if (from->effect->changes_output_size()) { + labels.push_back("resize"); + } - glTexCoord2f(1.0f, 0.0f); - glVertex2f(1.0f, 0.0f); + switch (from->output_color_space) { + case COLORSPACE_INVALID: + labels.push_back("spc[invalid]"); + break; + case COLORSPACE_REC_601_525: + labels.push_back("spc[rec601-525]"); + break; + case COLORSPACE_REC_601_625: + labels.push_back("spc[rec601-625]"); + break; + default: + break; + } - glTexCoord2f(1.0f, 1.0f); - glVertex2f(1.0f, 1.0f); + switch (from->output_gamma_curve) { + case GAMMA_INVALID: + labels.push_back("gamma[invalid]"); + break; + case GAMMA_sRGB: + labels.push_back("gamma[sRGB]"); + break; + case GAMMA_REC_601: // and GAMMA_REC_709 + labels.push_back("gamma[rec601/709]"); + break; + default: + break; + } - glTexCoord2f(0.0f, 1.0f); - glVertex2f(0.0f, 1.0f); + switch (from->output_alpha_type) { + case ALPHA_INVALID: + labels.push_back("alpha[invalid]"); + break; + case ALPHA_BLANK: + labels.push_back("alpha[blank]"); + break; + case ALPHA_POSTMULTIPLIED: + labels.push_back("alpha[postmult]"); + break; + default: + break; + } - glEnd(); - check_error(); + return labels; +} - for (unsigned i = 0; i < phases[phase].effects.size(); ++i) { - Effect *effect = phases[phase].effects[i]; - effect->clear_gl_state(); +void EffectChain::output_dot_edge(FILE *fp, + const string &from_node_id, + const string &to_node_id, + const vector &labels) +{ + if (labels.empty()) { + fprintf(fp, " %s -> %s;\n", from_node_id.c_str(), to_node_id.c_str()); + } else { + string label = labels[0]; + for (unsigned k = 1; k < labels.size(); ++k) { + label += ", " + labels[k]; } + fprintf(fp, " %s -> %s [label=\"%s\"];\n", from_node_id.c_str(), to_node_id.c_str(), label.c_str()); + } +} + +void EffectChain::size_rectangle_to_fit(unsigned width, unsigned height, unsigned *output_width, unsigned *output_height) +{ + unsigned scaled_width, scaled_height; + + if (float(width) * aspect_denom >= float(height) * aspect_nom) { + // Same aspect, or W/H > aspect (image is wider than the frame). + // In either case, keep width, and adjust height. + scaled_width = width; + scaled_height = lrintf(width * aspect_denom / aspect_nom); + } else { + // W/H < aspect (image is taller than the frame), so keep height, + // and adjust width. + scaled_width = lrintf(height * aspect_nom / aspect_denom); + scaled_height = height; + } + + // We should be consistently larger or smaller then the existing choice, + // since we have the same aspect. + assert(!(scaled_width < *output_width && scaled_height > *output_height)); + assert(!(scaled_height < *output_height && scaled_width > *output_width)); + + if (scaled_width >= *output_width && scaled_height >= *output_height) { + *output_width = scaled_width; + *output_height = scaled_height; } } + +// Propagate input texture sizes throughout, and inform effects downstream. +// (Like a lot of other code, we depend on effects being in topological order.) +void EffectChain::inform_input_sizes(Phase *phase) +{ + // All effects that have a defined size (inputs and RTT inputs) + // get that. Reset all others. + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Node *node = phase->effects[i]; + if (node->effect->num_inputs() == 0) { + Input *input = static_cast(node->effect); + node->output_width = input->get_width(); + node->output_height = input->get_height(); + assert(node->output_width != 0); + assert(node->output_height != 0); + } else { + node->output_width = node->output_height = 0; + } + } + for (unsigned i = 0; i < phase->inputs.size(); ++i) { + Phase *input = phase->inputs[i]; + input->output_node->output_width = input->virtual_output_width; + input->output_node->output_height = input->virtual_output_height; + assert(input->output_node->output_width != 0); + assert(input->output_node->output_height != 0); + } + + // Now propagate from the inputs towards the end, and inform as we go. + // The rules are simple: + // + // 1. Don't touch effects that already have given sizes (ie., inputs + // or effects that change the output size). + // 2. If all of your inputs have the same size, that will be your output size. + // 3. Otherwise, your output size is 0x0. + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Node *node = phase->effects[i]; + if (node->effect->num_inputs() == 0) { + continue; + } + unsigned this_output_width = 0; + unsigned this_output_height = 0; + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + Node *input = node->incoming_links[j]; + node->effect->inform_input_size(j, input->output_width, input->output_height); + if (j == 0) { + this_output_width = input->output_width; + this_output_height = input->output_height; + } else if (input->output_width != this_output_width || input->output_height != this_output_height) { + // Inputs disagree. + this_output_width = 0; + this_output_height = 0; + } + } + if (node->effect->changes_output_size()) { + // We cannot call get_output_size() before we've done inform_input_size() + // on all inputs. + unsigned real_width, real_height; + node->effect->get_output_size(&real_width, &real_height, + &node->output_width, &node->output_height); + assert(node->effect->sets_virtual_output_size() || + (real_width == node->output_width && + real_height == node->output_height)); + } else { + node->output_width = this_output_width; + node->output_height = this_output_height; + } + } +} + +// Note: You should call inform_input_sizes() before this, as the last effect's +// desired output size might change based on the inputs. +void EffectChain::find_output_size(Phase *phase) +{ + Node *output_node = phase->is_compute_shader ? phase->compute_shader_node : phase->effects.back(); + + // If the last effect explicitly sets an output size, use that. + if (output_node->effect->changes_output_size()) { + output_node->effect->get_output_size(&phase->output_width, &phase->output_height, + &phase->virtual_output_width, &phase->virtual_output_height); + assert(output_node->effect->sets_virtual_output_size() || + (phase->output_width == phase->virtual_output_width && + phase->output_height == phase->virtual_output_height)); + return; + } + + // If all effects have the same size, use that. + unsigned output_width = 0, output_height = 0; + bool all_inputs_same_size = true; + + for (unsigned i = 0; i < phase->inputs.size(); ++i) { + Phase *input = phase->inputs[i]; + assert(input->output_width != 0); + assert(input->output_height != 0); + if (output_width == 0 && output_height == 0) { + output_width = input->virtual_output_width; + output_height = input->virtual_output_height; + } else if (output_width != input->virtual_output_width || + output_height != input->virtual_output_height) { + all_inputs_same_size = false; + } + } + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Effect *effect = phase->effects[i]->effect; + if (effect->num_inputs() != 0) { + continue; + } + + Input *input = static_cast(effect); + if (output_width == 0 && output_height == 0) { + output_width = input->get_width(); + output_height = input->get_height(); + } else if (output_width != input->get_width() || + output_height != input->get_height()) { + all_inputs_same_size = false; + } + } + + if (all_inputs_same_size) { + assert(output_width != 0); + assert(output_height != 0); + phase->virtual_output_width = phase->output_width = output_width; + phase->virtual_output_height = phase->output_height = output_height; + return; + } + + // If not, fit all the inputs into the current aspect, and select the largest one. + output_width = 0; + output_height = 0; + for (unsigned i = 0; i < phase->inputs.size(); ++i) { + Phase *input = phase->inputs[i]; + assert(input->output_width != 0); + assert(input->output_height != 0); + size_rectangle_to_fit(input->output_width, input->output_height, &output_width, &output_height); + } + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Effect *effect = phase->effects[i]->effect; + if (effect->num_inputs() != 0) { + continue; + } + + Input *input = static_cast(effect); + size_rectangle_to_fit(input->get_width(), input->get_height(), &output_width, &output_height); + } + assert(output_width != 0); + assert(output_height != 0); + phase->virtual_output_width = phase->output_width = output_width; + phase->virtual_output_height = phase->output_height = output_height; +} + +void EffectChain::sort_all_nodes_topologically() +{ + nodes = topological_sort(nodes); +} + +vector EffectChain::topological_sort(const vector &nodes) +{ + set nodes_left_to_visit(nodes.begin(), nodes.end()); + vector sorted_list; + for (unsigned i = 0; i < nodes.size(); ++i) { + topological_sort_visit_node(nodes[i], &nodes_left_to_visit, &sorted_list); + } + reverse(sorted_list.begin(), sorted_list.end()); + return sorted_list; +} + +void EffectChain::topological_sort_visit_node(Node *node, set *nodes_left_to_visit, vector *sorted_list) +{ + if (nodes_left_to_visit->count(node) == 0) { + return; + } + nodes_left_to_visit->erase(node); + for (unsigned i = 0; i < node->outgoing_links.size(); ++i) { + topological_sort_visit_node(node->outgoing_links[i], nodes_left_to_visit, sorted_list); + } + sorted_list->push_back(node); +} + +void EffectChain::find_color_spaces_for_inputs() +{ + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + if (node->incoming_links.size() == 0) { + Input *input = static_cast(node->effect); + node->output_color_space = input->get_color_space(); + node->output_gamma_curve = input->get_gamma_curve(); + + Effect::AlphaHandling alpha_handling = input->alpha_handling(); + switch (alpha_handling) { + case Effect::OUTPUT_BLANK_ALPHA: + node->output_alpha_type = ALPHA_BLANK; + break; + case Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA: + node->output_alpha_type = ALPHA_PREMULTIPLIED; + break; + case Effect::OUTPUT_POSTMULTIPLIED_ALPHA: + node->output_alpha_type = ALPHA_POSTMULTIPLIED; + break; + case Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK: + case Effect::DONT_CARE_ALPHA_TYPE: + default: + assert(false); + } + + if (node->output_alpha_type == ALPHA_PREMULTIPLIED) { + assert(node->output_gamma_curve == GAMMA_LINEAR); + } + } + } +} + +// Propagate gamma and color space information as far as we can in the graph. +// The rules are simple: Anything where all the inputs agree, get that as +// output as well. Anything else keeps having *_INVALID. +void EffectChain::propagate_gamma_and_color_space() +{ + // We depend on going through the nodes in order. + sort_all_nodes_topologically(); + + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->incoming_links.size() == node->effect->num_inputs()); + if (node->incoming_links.size() == 0) { + assert(node->output_color_space != COLORSPACE_INVALID); + assert(node->output_gamma_curve != GAMMA_INVALID); + continue; + } + + Colorspace color_space = node->incoming_links[0]->output_color_space; + GammaCurve gamma_curve = node->incoming_links[0]->output_gamma_curve; + for (unsigned j = 1; j < node->incoming_links.size(); ++j) { + if (node->incoming_links[j]->output_color_space != color_space) { + color_space = COLORSPACE_INVALID; + } + if (node->incoming_links[j]->output_gamma_curve != gamma_curve) { + gamma_curve = GAMMA_INVALID; + } + } + + // The conversion effects already have their outputs set correctly, + // so leave them alone. + if (node->effect->effect_type_id() != "ColorspaceConversionEffect") { + node->output_color_space = color_space; + } + if (node->effect->effect_type_id() != "GammaCompressionEffect" && + node->effect->effect_type_id() != "GammaExpansionEffect") { + node->output_gamma_curve = gamma_curve; + } + } +} + +// Propagate alpha information as far as we can in the graph. +// Similar to propagate_gamma_and_color_space(). +void EffectChain::propagate_alpha() +{ + // We depend on going through the nodes in order. + sort_all_nodes_topologically(); + + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->incoming_links.size() == node->effect->num_inputs()); + if (node->incoming_links.size() == 0) { + assert(node->output_alpha_type != ALPHA_INVALID); + continue; + } + + // The alpha multiplication/division effects are special cases. + if (node->effect->effect_type_id() == "AlphaMultiplicationEffect") { + assert(node->incoming_links.size() == 1); + assert(node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED); + node->output_alpha_type = ALPHA_PREMULTIPLIED; + continue; + } + if (node->effect->effect_type_id() == "AlphaDivisionEffect") { + assert(node->incoming_links.size() == 1); + assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED); + node->output_alpha_type = ALPHA_POSTMULTIPLIED; + continue; + } + + // GammaCompressionEffect and GammaExpansionEffect are also a special case, + // because they are the only one that _need_ postmultiplied alpha. + if (node->effect->effect_type_id() == "GammaCompressionEffect" || + node->effect->effect_type_id() == "GammaExpansionEffect") { + assert(node->incoming_links.size() == 1); + if (node->incoming_links[0]->output_alpha_type == ALPHA_BLANK) { + node->output_alpha_type = ALPHA_BLANK; + } else if (node->incoming_links[0]->output_alpha_type == ALPHA_POSTMULTIPLIED) { + node->output_alpha_type = ALPHA_POSTMULTIPLIED; + } else { + node->output_alpha_type = ALPHA_INVALID; + } + continue; + } + + // Only inputs can have unconditional alpha output (OUTPUT_BLANK_ALPHA + // or OUTPUT_POSTMULTIPLIED_ALPHA), and they have already been + // taken care of above. Rationale: Even if you could imagine + // e.g. an effect that took in an image and set alpha=1.0 + // unconditionally, it wouldn't make any sense to have it as + // e.g. OUTPUT_BLANK_ALPHA, since it wouldn't know whether it + // got its input pre- or postmultiplied, so it wouldn't know + // whether to divide away the old alpha or not. + Effect::AlphaHandling alpha_handling = node->effect->alpha_handling(); + assert(alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA || + alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK || + alpha_handling == Effect::DONT_CARE_ALPHA_TYPE); + + // If the node has multiple inputs, check that they are all valid and + // the same. + bool any_invalid = false; + bool any_premultiplied = false; + bool any_postmultiplied = false; + + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + switch (node->incoming_links[j]->output_alpha_type) { + case ALPHA_INVALID: + any_invalid = true; + break; + case ALPHA_BLANK: + // Blank is good as both pre- and postmultiplied alpha, + // so just ignore it. + break; + case ALPHA_PREMULTIPLIED: + any_premultiplied = true; + break; + case ALPHA_POSTMULTIPLIED: + any_postmultiplied = true; + break; + default: + assert(false); + } + } + + if (any_invalid) { + node->output_alpha_type = ALPHA_INVALID; + continue; + } + + // Inputs must be of the same type. + if (any_premultiplied && any_postmultiplied) { + node->output_alpha_type = ALPHA_INVALID; + continue; + } + + if (alpha_handling == Effect::INPUT_AND_OUTPUT_PREMULTIPLIED_ALPHA || + alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) { + // This combination (requiring premultiplied alpha, but _not_ requiring + // linear light) is illegal, since the combination of premultiplied alpha + // and nonlinear inputs is meaningless. + assert(node->effect->needs_linear_light()); + + // If the effect has asked for premultiplied alpha, check that it has got it. + if (any_postmultiplied) { + node->output_alpha_type = ALPHA_INVALID; + } else if (!any_premultiplied && + alpha_handling == Effect::INPUT_PREMULTIPLIED_ALPHA_KEEP_BLANK) { + // Blank input alpha, and the effect preserves blank alpha. + node->output_alpha_type = ALPHA_BLANK; + } else { + node->output_alpha_type = ALPHA_PREMULTIPLIED; + } + } else { + // OK, all inputs are the same, and this effect is not going + // to change it. + assert(alpha_handling == Effect::DONT_CARE_ALPHA_TYPE); + if (any_premultiplied) { + node->output_alpha_type = ALPHA_PREMULTIPLIED; + } else if (any_postmultiplied) { + node->output_alpha_type = ALPHA_POSTMULTIPLIED; + } else { + node->output_alpha_type = ALPHA_BLANK; + } + } + } +} + +bool EffectChain::node_needs_colorspace_fix(Node *node) +{ + if (node->disabled) { + return false; + } + if (node->effect->num_inputs() == 0) { + return false; + } + + // propagate_gamma_and_color_space() has already set our output + // to COLORSPACE_INVALID if the inputs differ, so we can rely on that. + if (node->output_color_space == COLORSPACE_INVALID) { + return true; + } + return (node->effect->needs_srgb_primaries() && node->output_color_space != COLORSPACE_sRGB); +} + +// Fix up color spaces so that there are no COLORSPACE_INVALID nodes left in +// the graph. Our strategy is not always optimal, but quite simple: +// Find an effect that's as early as possible where the inputs are of +// unacceptable colorspaces (that is, either different, or, if the effect only +// wants sRGB, not sRGB.) Add appropriate conversions on all its inputs, +// propagate the information anew, and repeat until there are no more such +// effects. +void EffectChain::fix_internal_color_spaces() +{ + unsigned colorspace_propagation_pass = 0; + bool found_any; + do { + found_any = false; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (!node_needs_colorspace_fix(node)) { + continue; + } + + // Go through each input that is not sRGB, and insert + // a colorspace conversion after it. + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + Node *input = node->incoming_links[j]; + assert(input->output_color_space != COLORSPACE_INVALID); + if (input->output_color_space == COLORSPACE_sRGB) { + continue; + } + Node *conversion = add_node(new ColorspaceConversionEffect()); + CHECK(conversion->effect->set_int("source_space", input->output_color_space)); + CHECK(conversion->effect->set_int("destination_space", COLORSPACE_sRGB)); + conversion->output_color_space = COLORSPACE_sRGB; + replace_sender(input, conversion); + connect_nodes(input, conversion); + } + + // Re-sort topologically, and propagate the new information. + propagate_gamma_and_color_space(); + + found_any = true; + break; + } + + char filename[256]; + sprintf(filename, "step5-colorspacefix-iter%u.dot", ++colorspace_propagation_pass); + output_dot(filename); + assert(colorspace_propagation_pass < 100); + } while (found_any); + + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->output_color_space != COLORSPACE_INVALID); + } +} + +bool EffectChain::node_needs_alpha_fix(Node *node) +{ + if (node->disabled) { + return false; + } + + // propagate_alpha() has already set our output to ALPHA_INVALID if the + // inputs differ or we are otherwise in mismatch, so we can rely on that. + return (node->output_alpha_type == ALPHA_INVALID); +} + +// Fix up alpha so that there are no ALPHA_INVALID nodes left in +// the graph. Similar to fix_internal_color_spaces(). +void EffectChain::fix_internal_alpha(unsigned step) +{ + unsigned alpha_propagation_pass = 0; + bool found_any; + do { + found_any = false; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (!node_needs_alpha_fix(node)) { + continue; + } + + // If we need to fix up GammaExpansionEffect, then clearly something + // is wrong, since the combination of premultiplied alpha and nonlinear inputs + // is meaningless. + assert(node->effect->effect_type_id() != "GammaExpansionEffect"); + + AlphaType desired_type = ALPHA_PREMULTIPLIED; + + // GammaCompressionEffect is special; it needs postmultiplied alpha. + if (node->effect->effect_type_id() == "GammaCompressionEffect") { + assert(node->incoming_links.size() == 1); + assert(node->incoming_links[0]->output_alpha_type == ALPHA_PREMULTIPLIED); + desired_type = ALPHA_POSTMULTIPLIED; + } + + // Go through each input that is not premultiplied alpha, and insert + // a conversion before it. + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + Node *input = node->incoming_links[j]; + assert(input->output_alpha_type != ALPHA_INVALID); + if (input->output_alpha_type == desired_type || + input->output_alpha_type == ALPHA_BLANK) { + continue; + } + Node *conversion; + if (desired_type == ALPHA_PREMULTIPLIED) { + conversion = add_node(new AlphaMultiplicationEffect()); + } else { + conversion = add_node(new AlphaDivisionEffect()); + } + conversion->output_alpha_type = desired_type; + replace_sender(input, conversion); + connect_nodes(input, conversion); + } + + // Re-sort topologically, and propagate the new information. + propagate_gamma_and_color_space(); + propagate_alpha(); + + found_any = true; + break; + } + + char filename[256]; + sprintf(filename, "step%u-alphafix-iter%u.dot", step, ++alpha_propagation_pass); + output_dot(filename); + assert(alpha_propagation_pass < 100); + } while (found_any); + + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->output_alpha_type != ALPHA_INVALID); + } +} + +// Make so that the output is in the desired color space. +void EffectChain::fix_output_color_space() +{ + Node *output = find_output_node(); + if (output->output_color_space != output_format.color_space) { + Node *conversion = add_node(new ColorspaceConversionEffect()); + CHECK(conversion->effect->set_int("source_space", output->output_color_space)); + CHECK(conversion->effect->set_int("destination_space", output_format.color_space)); + conversion->output_color_space = output_format.color_space; + connect_nodes(output, conversion); + propagate_alpha(); + propagate_gamma_and_color_space(); + } +} + +// Make so that the output is in the desired pre-/postmultiplication alpha state. +void EffectChain::fix_output_alpha() +{ + Node *output = find_output_node(); + assert(output->output_alpha_type != ALPHA_INVALID); + if (output->output_alpha_type == ALPHA_BLANK) { + // No alpha output, so we don't care. + return; + } + if (output->output_alpha_type == ALPHA_PREMULTIPLIED && + output_alpha_format == OUTPUT_ALPHA_FORMAT_POSTMULTIPLIED) { + Node *conversion = add_node(new AlphaDivisionEffect()); + connect_nodes(output, conversion); + propagate_alpha(); + propagate_gamma_and_color_space(); + } + if (output->output_alpha_type == ALPHA_POSTMULTIPLIED && + output_alpha_format == OUTPUT_ALPHA_FORMAT_PREMULTIPLIED) { + Node *conversion = add_node(new AlphaMultiplicationEffect()); + connect_nodes(output, conversion); + propagate_alpha(); + propagate_gamma_and_color_space(); + } +} + +bool EffectChain::node_needs_gamma_fix(Node *node) +{ + if (node->disabled) { + return false; + } + + // Small hack since the output is not an explicit node: + // If we are the last node and our output is in the wrong + // space compared to EffectChain's output, we need to fix it. + // This will only take us to linear, but fix_output_gamma() + // will come and take us to the desired output gamma + // if it is needed. + // + // This needs to be before everything else, since it could + // even apply to inputs (if they are the only effect). + if (node->outgoing_links.empty() && + node->output_gamma_curve != output_format.gamma_curve && + node->output_gamma_curve != GAMMA_LINEAR) { + return true; + } + + if (node->effect->num_inputs() == 0) { + return false; + } + + // propagate_gamma_and_color_space() has already set our output + // to GAMMA_INVALID if the inputs differ, so we can rely on that, + // except for GammaCompressionEffect. + if (node->output_gamma_curve == GAMMA_INVALID) { + return true; + } + if (node->effect->effect_type_id() == "GammaCompressionEffect") { + assert(node->incoming_links.size() == 1); + return node->incoming_links[0]->output_gamma_curve != GAMMA_LINEAR; + } + + return (node->effect->needs_linear_light() && node->output_gamma_curve != GAMMA_LINEAR); +} + +// Very similar to fix_internal_color_spaces(), but for gamma. +// There is one difference, though; before we start adding conversion nodes, +// we see if we can get anything out of asking the sources to deliver +// linear gamma directly. fix_internal_gamma_by_asking_inputs() +// does that part, while fix_internal_gamma_by_inserting_nodes() +// inserts nodes as needed afterwards. +void EffectChain::fix_internal_gamma_by_asking_inputs(unsigned step) +{ + unsigned gamma_propagation_pass = 0; + bool found_any; + do { + found_any = false; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (!node_needs_gamma_fix(node)) { + continue; + } + + // See if all inputs can give us linear gamma. If not, leave it. + vector nonlinear_inputs; + find_all_nonlinear_inputs(node, &nonlinear_inputs); + assert(!nonlinear_inputs.empty()); + + bool all_ok = true; + for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { + Input *input = static_cast(nonlinear_inputs[i]->effect); + all_ok &= input->can_output_linear_gamma(); + } + + if (!all_ok) { + continue; + } + + for (unsigned i = 0; i < nonlinear_inputs.size(); ++i) { + CHECK(nonlinear_inputs[i]->effect->set_int("output_linear_gamma", 1)); + nonlinear_inputs[i]->output_gamma_curve = GAMMA_LINEAR; + } + + // Re-sort topologically, and propagate the new information. + propagate_gamma_and_color_space(); + + found_any = true; + break; + } + + char filename[256]; + sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass); + output_dot(filename); + assert(gamma_propagation_pass < 100); + } while (found_any); +} + +void EffectChain::fix_internal_gamma_by_inserting_nodes(unsigned step) +{ + unsigned gamma_propagation_pass = 0; + bool found_any; + do { + found_any = false; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (!node_needs_gamma_fix(node)) { + continue; + } + + // Special case: We could be an input and still be asked to + // fix our gamma; if so, we should be the only node + // (as node_needs_gamma_fix() would only return true in + // for an input in that case). That means we should insert + // a conversion node _after_ ourselves. + if (node->incoming_links.empty()) { + assert(node->outgoing_links.empty()); + Node *conversion = add_node(new GammaExpansionEffect()); + CHECK(conversion->effect->set_int("source_curve", node->output_gamma_curve)); + conversion->output_gamma_curve = GAMMA_LINEAR; + connect_nodes(node, conversion); + } + + // If not, go through each input that is not linear gamma, + // and insert a gamma conversion after it. + for (unsigned j = 0; j < node->incoming_links.size(); ++j) { + Node *input = node->incoming_links[j]; + assert(input->output_gamma_curve != GAMMA_INVALID); + if (input->output_gamma_curve == GAMMA_LINEAR) { + continue; + } + Node *conversion = add_node(new GammaExpansionEffect()); + CHECK(conversion->effect->set_int("source_curve", input->output_gamma_curve)); + conversion->output_gamma_curve = GAMMA_LINEAR; + replace_sender(input, conversion); + connect_nodes(input, conversion); + } + + // Re-sort topologically, and propagate the new information. + propagate_alpha(); + propagate_gamma_and_color_space(); + + found_any = true; + break; + } + + char filename[256]; + sprintf(filename, "step%u-gammafix-iter%u.dot", step, ++gamma_propagation_pass); + output_dot(filename); + assert(gamma_propagation_pass < 100); + } while (found_any); + + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + assert(node->output_gamma_curve != GAMMA_INVALID); + } +} + +// Make so that the output is in the desired gamma. +// Note that this assumes linear input gamma, so it might create the need +// for another pass of fix_internal_gamma(). +void EffectChain::fix_output_gamma() +{ + Node *output = find_output_node(); + if (output->output_gamma_curve != output_format.gamma_curve) { + Node *conversion = add_node(new GammaCompressionEffect()); + CHECK(conversion->effect->set_int("destination_curve", output_format.gamma_curve)); + conversion->output_gamma_curve = output_format.gamma_curve; + connect_nodes(output, conversion); + } +} + +// If the user has requested Y'CbCr output, we need to do this conversion +// _after_ GammaCompressionEffect etc., but before dither (see below). +// This is because Y'CbCr, with the exception of a special optional mode +// in Rec. 2020 (which we currently don't support), is defined to work on +// gamma-encoded data. +void EffectChain::add_ycbcr_conversion_if_needed() +{ + assert(output_color_rgba || num_output_color_ycbcr > 0); + if (num_output_color_ycbcr == 0) { + return; + } + Node *output = find_output_node(); + ycbcr_conversion_effect_node = add_node(new YCbCrConversionEffect(output_ycbcr_format, output_ycbcr_type)); + connect_nodes(output, ycbcr_conversion_effect_node); +} + +// If the user has requested dither, add a DitherEffect right at the end +// (after GammaCompressionEffect etc.). This needs to be done after everything else, +// since dither is about the only effect that can _not_ be done in linear space. +void EffectChain::add_dither_if_needed() +{ + if (num_dither_bits == 0) { + return; + } + Node *output = find_output_node(); + Node *dither = add_node(new DitherEffect()); + CHECK(dither->effect->set_int("num_bits", num_dither_bits)); + connect_nodes(output, dither); + + dither_effect = dither->effect; +} + +namespace { + +// Whether this effect will cause the phase it is in to become a compute shader phase. +bool induces_compute_shader(Node *node) +{ + if (node->effect->is_compute_shader()) { + return true; + } + if (!node->effect->strong_one_to_one_sampling()) { + // This effect can't be chained after a compute shader. + return false; + } + // If at least one of the effects we depend on is a compute shader, + // one of them will be put in the same phase as us (the other ones, + // if any, will be bounced). + for (Node *dep : node->incoming_links) { + if (induces_compute_shader(dep)) { + return true; + } + } + return false; +} + +} // namespace + +// Compute shaders can't output to the framebuffer, so if the last +// phase ends in a compute shader, add a dummy phase at the end that +// only blits directly from the temporary texture. +void EffectChain::add_dummy_effect_if_needed() +{ + Node *output = find_output_node(); + if (induces_compute_shader(output)) { + Node *dummy = add_node(new ComputeShaderOutputDisplayEffect()); + connect_nodes(output, dummy); + has_dummy_effect = true; + } +} + +// Find the output node. This is, simply, one that has no outgoing links. +// If there are multiple ones, the graph is malformed (we do not support +// multiple outputs right now). +Node *EffectChain::find_output_node() +{ + vector output_nodes; + for (unsigned i = 0; i < nodes.size(); ++i) { + Node *node = nodes[i]; + if (node->disabled) { + continue; + } + if (node->outgoing_links.empty()) { + output_nodes.push_back(node); + } + } + assert(output_nodes.size() == 1); + return output_nodes[0]; +} + +void EffectChain::finalize() +{ + // Output the graph as it is before we do any conversions on it. + output_dot("step0-start.dot"); + + // Give each effect in turn a chance to rewrite its own part of the graph. + // Note that if more effects are added as part of this, they will be + // picked up as part of the same for loop, since they are added at the end. + for (unsigned i = 0; i < nodes.size(); ++i) { + nodes[i]->effect->rewrite_graph(this, nodes[i]); + } + output_dot("step1-rewritten.dot"); + + find_color_spaces_for_inputs(); + output_dot("step2-input-colorspace.dot"); + + propagate_alpha(); + output_dot("step3-propagated-alpha.dot"); + + propagate_gamma_and_color_space(); + output_dot("step4-propagated-all.dot"); + + fix_internal_color_spaces(); + fix_internal_alpha(6); + fix_output_color_space(); + output_dot("step7-output-colorspacefix.dot"); + fix_output_alpha(); + output_dot("step8-output-alphafix.dot"); + + // Note that we need to fix gamma after colorspace conversion, + // because colorspace conversions might create needs for gamma conversions. + // Also, we need to run an extra pass of fix_internal_gamma() after + // fixing the output gamma, as we only have conversions to/from linear, + // and fix_internal_alpha() since GammaCompressionEffect needs + // postmultiplied input. + fix_internal_gamma_by_asking_inputs(9); + fix_internal_gamma_by_inserting_nodes(10); + fix_output_gamma(); + output_dot("step11-output-gammafix.dot"); + propagate_alpha(); + output_dot("step12-output-alpha-propagated.dot"); + fix_internal_alpha(13); + output_dot("step14-output-alpha-fixed.dot"); + fix_internal_gamma_by_asking_inputs(15); + fix_internal_gamma_by_inserting_nodes(16); + + output_dot("step17-before-ycbcr.dot"); + add_ycbcr_conversion_if_needed(); + + output_dot("step18-before-dither.dot"); + add_dither_if_needed(); + + output_dot("step19-before-dummy-effect.dot"); + add_dummy_effect_if_needed(); + + output_dot("step20-final.dot"); + + // Construct all needed GLSL programs, starting at the output. + // We need to keep track of which effects have already been computed, + // as an effect with multiple users could otherwise be calculated + // multiple times. + map completed_effects; + construct_phase(find_output_node(), &completed_effects); + + output_dot("step21-split-to-phases.dot"); + + // There are some corner cases where we thought we needed to add a dummy + // effect, but then it turned out later we didn't (e.g. induces_compute_shader() + // didn't see a mipmap conflict coming, which would cause the compute shader + // to be split off from the inal phase); if so, remove the extra phase + // at the end, since it will give us some trouble during execution. + // + // TODO: Remove induces_compute_shader() and replace it with precise tracking. + if (has_dummy_effect && !phases[phases.size() - 2]->is_compute_shader) { + resource_pool->release_glsl_program(phases.back()->glsl_program_num); + delete phases.back(); + phases.pop_back(); + has_dummy_effect = false; + } + + output_dot("step22-dummy-phase-removal.dot"); + + assert(phases[0]->inputs.empty()); + + finalized = true; +} + +void EffectChain::render_to_fbo(GLuint dest_fbo, unsigned width, unsigned height) +{ + // Save original viewport. + GLuint x = 0, y = 0; + + if (width == 0 && height == 0) { + GLint viewport[4]; + glGetIntegerv(GL_VIEWPORT, viewport); + x = viewport[0]; + y = viewport[1]; + width = viewport[2]; + height = viewport[3]; + } + + render(dest_fbo, {}, x, y, width, height); +} + +void EffectChain::render_to_texture(const vector &destinations, unsigned width, unsigned height) +{ + assert(finalized); + assert(!destinations.empty()); + + if (!has_dummy_effect) { + // We don't end in a compute shader, so there's nothing specific for us to do. + // Create an FBO for this set of textures, and just render to that. + GLuint texnums[4] = { 0, 0, 0, 0 }; + for (unsigned i = 0; i < destinations.size() && i < 4; ++i) { + texnums[i] = destinations[i].texnum; + } + GLuint dest_fbo = resource_pool->create_fbo(texnums[0], texnums[1], texnums[2], texnums[3]); + render(dest_fbo, {}, 0, 0, width, height); + resource_pool->release_fbo(dest_fbo); + } else { + render((GLuint)-1, destinations, 0, 0, width, height); + } +} + +void EffectChain::render(GLuint dest_fbo, const vector &destinations, unsigned x, unsigned y, unsigned width, unsigned height) +{ + assert(finalized); + assert(destinations.size() <= 1); + + // This needs to be set anew, in case we are coming from a different context + // from when we initialized. + check_error(); + glDisable(GL_DITHER); + check_error(); + + const bool final_srgb = glIsEnabled(GL_FRAMEBUFFER_SRGB); + check_error(); + bool current_srgb = final_srgb; + + // Basic state. + check_error(); + glDisable(GL_BLEND); + check_error(); + glDisable(GL_DEPTH_TEST); + check_error(); + glDepthMask(GL_FALSE); + check_error(); + + set generated_mipmaps; + + // We keep one texture per output, but only for as long as we actually have any + // phases that need it as an input. (We don't make any effort to reorder phases + // to minimize the number of textures in play, as register allocation can be + // complicated and we rarely have much to gain, since our graphs are typically + // pretty linear.) + map output_textures; + map ref_counts; + for (Phase *phase : phases) { + for (Phase *input : phase->inputs) { + ++ref_counts[input]; + } + } + + size_t num_phases = phases.size(); + if (destinations.empty()) { + assert(dest_fbo != (GLuint)-1); + } else { + assert(has_dummy_effect); + assert(x == 0); + assert(y == 0); + assert(num_phases >= 2); + assert(!phases.back()->is_compute_shader); + assert(phases[phases.size() - 2]->is_compute_shader); + assert(phases.back()->effects.size() == 1); + assert(phases.back()->effects[0]->effect->effect_type_id() == "ComputeShaderOutputDisplayEffect"); + + // We are rendering to a set of textures, so we can run the compute shader + // directly and skip the dummy phase. + --num_phases; + } + + for (unsigned phase_num = 0; phase_num < num_phases; ++phase_num) { + Phase *phase = phases[phase_num]; + + if (do_phase_timing) { + GLuint timer_query_object; + if (phase->timer_query_objects_free.empty()) { + glGenQueries(1, &timer_query_object); + } else { + timer_query_object = phase->timer_query_objects_free.front(); + phase->timer_query_objects_free.pop_front(); + } + glBeginQuery(GL_TIME_ELAPSED, timer_query_object); + phase->timer_query_objects_running.push_back(timer_query_object); + } + bool last_phase = (phase_num == num_phases - 1); + if (last_phase) { + // Last phase goes to the output the user specified. + if (!phase->is_compute_shader) { + assert(dest_fbo != (GLuint)-1); + glBindFramebuffer(GL_FRAMEBUFFER, dest_fbo); + check_error(); + GLenum status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); + assert(status == GL_FRAMEBUFFER_COMPLETE); + glViewport(x, y, width, height); + } + if (dither_effect != nullptr) { + CHECK(dither_effect->set_int("output_width", width)); + CHECK(dither_effect->set_int("output_height", height)); + } + } + + // Enable sRGB rendering for intermediates in case we are + // rendering to an sRGB format. + // TODO: Support this for compute shaders. + bool needs_srgb = last_phase ? final_srgb : true; + if (needs_srgb && !current_srgb) { + glEnable(GL_FRAMEBUFFER_SRGB); + check_error(); + current_srgb = true; + } else if (!needs_srgb && current_srgb) { + glDisable(GL_FRAMEBUFFER_SRGB); + check_error(); + current_srgb = true; + } + + // Find a texture for this phase. + inform_input_sizes(phase); + find_output_size(phase); + vector phase_destinations; + if (!last_phase) { + GLuint tex_num = resource_pool->create_2d_texture(intermediate_format, phase->output_width, phase->output_height); + output_textures.insert(make_pair(phase, tex_num)); + phase_destinations.push_back(DestinationTexture{ tex_num, intermediate_format }); + + // The output texture needs to have valid state to be written to by a compute shader. + glActiveTexture(GL_TEXTURE0); + check_error(); + glBindTexture(GL_TEXTURE_2D, tex_num); + check_error(); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); + check_error(); + } else if (phase->is_compute_shader) { + assert(!destinations.empty()); + phase_destinations = destinations; + } + + execute_phase(phase, output_textures, phase_destinations, &generated_mipmaps); + if (do_phase_timing) { + glEndQuery(GL_TIME_ELAPSED); + } + + // Drop any input textures we don't need anymore. + for (Phase *input : phase->inputs) { + assert(ref_counts[input] > 0); + if (--ref_counts[input] == 0) { + resource_pool->release_2d_texture(output_textures[input]); + output_textures.erase(input); + } + } + } + + for (const auto &phase_and_texnum : output_textures) { + resource_pool->release_2d_texture(phase_and_texnum.second); + } + + glBindFramebuffer(GL_FRAMEBUFFER, 0); + check_error(); + glUseProgram(0); + check_error(); + + glBindBuffer(GL_ARRAY_BUFFER, 0); + check_error(); + glBindVertexArray(0); + check_error(); + + if (do_phase_timing) { + // Get back the timer queries. + for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) { + Phase *phase = phases[phase_num]; + for (auto timer_it = phase->timer_query_objects_running.cbegin(); + timer_it != phase->timer_query_objects_running.cend(); ) { + GLint timer_query_object = *timer_it; + GLint available; + glGetQueryObjectiv(timer_query_object, GL_QUERY_RESULT_AVAILABLE, &available); + if (available) { + GLuint64 time_elapsed; + glGetQueryObjectui64v(timer_query_object, GL_QUERY_RESULT, &time_elapsed); + phase->time_elapsed_ns += time_elapsed; + ++phase->num_measured_iterations; + phase->timer_query_objects_free.push_back(timer_query_object); + phase->timer_query_objects_running.erase(timer_it++); + } else { + ++timer_it; + } + } + } + } +} + +void EffectChain::enable_phase_timing(bool enable) +{ + if (enable) { + assert(movit_timer_queries_supported); + } + this->do_phase_timing = enable; +} + +void EffectChain::reset_phase_timing() +{ + for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) { + Phase *phase = phases[phase_num]; + phase->time_elapsed_ns = 0; + phase->num_measured_iterations = 0; + } +} + +void EffectChain::print_phase_timing() +{ + double total_time_ms = 0.0; + for (unsigned phase_num = 0; phase_num < phases.size(); ++phase_num) { + Phase *phase = phases[phase_num]; + double avg_time_ms = phase->time_elapsed_ns * 1e-6 / phase->num_measured_iterations; + printf("Phase %d: %5.1f ms [", phase_num, avg_time_ms); + for (unsigned effect_num = 0; effect_num < phase->effects.size(); ++effect_num) { + if (effect_num != 0) { + printf(", "); + } + printf("%s", phase->effects[effect_num]->effect->effect_type_id().c_str()); + } + printf("]\n"); + total_time_ms += avg_time_ms; + } + printf("Total: %5.1f ms\n", total_time_ms); +} + +void EffectChain::execute_phase(Phase *phase, + const map &output_textures, + const vector &destinations, + set *generated_mipmaps) +{ + // Set up RTT inputs for this phase. + for (unsigned sampler = 0; sampler < phase->inputs.size(); ++sampler) { + glActiveTexture(GL_TEXTURE0 + sampler); + Phase *input = phase->inputs[sampler]; + input->output_node->bound_sampler_num = sampler; + const auto it = output_textures.find(input); + assert(it != output_textures.end()); + glBindTexture(GL_TEXTURE_2D, it->second); + check_error(); + + // See if anything using this RTT input (in this phase) needs mipmaps. + // TODO: It could be that we get conflicting logic here, if we have + // multiple effects with incompatible mipmaps using the same + // RTT input. However, that is obscure enough that we can deal + // with it at some future point (preferably when we have + // universal support for separate sampler objects!). For now, + // an assert is good enough. See also the TODO at bound_sampler_num. + bool any_needs_mipmaps = false, any_refuses_mipmaps = false; + for (Node *node : phase->effects) { + assert(node->incoming_links.size() == node->incoming_link_type.size()); + for (size_t i = 0; i < node->incoming_links.size(); ++i) { + if (node->incoming_links[i] == input->output_node && + node->incoming_link_type[i] == IN_ANOTHER_PHASE) { + if (node->needs_mipmaps == Effect::NEEDS_MIPMAPS) { + any_needs_mipmaps = true; + } else if (node->needs_mipmaps == Effect::CANNOT_ACCEPT_MIPMAPS) { + any_refuses_mipmaps = true; + } + } + } + } + assert(!(any_needs_mipmaps && any_refuses_mipmaps)); + + if (any_needs_mipmaps && generated_mipmaps->count(input) == 0) { + glGenerateMipmap(GL_TEXTURE_2D); + check_error(); + generated_mipmaps->insert(input); + } + setup_rtt_sampler(sampler, any_needs_mipmaps); + phase->input_samplers[sampler] = sampler; // Bind the sampler to the right uniform. + } + + GLuint instance_program_num = resource_pool->use_glsl_program(phase->glsl_program_num); + check_error(); + + // And now the output. + GLuint fbo = 0; + if (phase->is_compute_shader) { + assert(!destinations.empty()); + + // This is currently the only place where we use image units, + // so we can always start at 0. TODO: Support multiple destinations. + phase->outbuf_image_unit = 0; + glBindImageTexture(phase->outbuf_image_unit, destinations[0].texnum, 0, GL_FALSE, 0, GL_WRITE_ONLY, destinations[0].format); + check_error(); + phase->uniform_output_size[0] = phase->output_width; + phase->uniform_output_size[1] = phase->output_height; + phase->inv_output_size.x = 1.0f / phase->output_width; + phase->inv_output_size.y = 1.0f / phase->output_height; + phase->output_texcoord_adjust.x = 0.5f / phase->output_width; + phase->output_texcoord_adjust.y = 0.5f / phase->output_height; + } else if (!destinations.empty()) { + assert(destinations.size() == 1); + fbo = resource_pool->create_fbo(destinations[0].texnum); + glBindFramebuffer(GL_FRAMEBUFFER, fbo); + glViewport(0, 0, phase->output_width, phase->output_height); + } + + // Give the required parameters to all the effects. + unsigned sampler_num = phase->inputs.size(); + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Node *node = phase->effects[i]; + unsigned old_sampler_num = sampler_num; + node->effect->set_gl_state(instance_program_num, phase->effect_ids[make_pair(node, IN_SAME_PHASE)], &sampler_num); + check_error(); + + if (node->effect->is_single_texture()) { + assert(sampler_num - old_sampler_num == 1); + node->bound_sampler_num = old_sampler_num; + } else { + node->bound_sampler_num = -1; + } + } + + if (phase->is_compute_shader) { + unsigned x, y, z; + phase->compute_shader_node->effect->get_compute_dimensions(phase->output_width, phase->output_height, &x, &y, &z); + + // Uniforms need to come after set_gl_state() _and_ get_compute_dimensions(), + // since they can be updated from there. + setup_uniforms(phase); + glDispatchCompute(x, y, z); + check_error(); + glMemoryBarrier(GL_TEXTURE_FETCH_BARRIER_BIT | GL_TEXTURE_UPDATE_BARRIER_BIT); + check_error(); + } else { + // Uniforms need to come after set_gl_state(), since they can be updated + // from there. + setup_uniforms(phase); + + // Bind the vertex data. + GLuint vao = resource_pool->create_vec2_vao(phase->attribute_indexes, vbo); + glBindVertexArray(vao); + + glDrawArrays(GL_TRIANGLES, 0, 3); + check_error(); + + resource_pool->release_vec2_vao(vao); + } + + for (unsigned i = 0; i < phase->effects.size(); ++i) { + Node *node = phase->effects[i]; + node->effect->clear_gl_state(); + } + + resource_pool->unuse_glsl_program(instance_program_num); + + if (fbo != 0) { + resource_pool->release_fbo(fbo); + } +} + +void EffectChain::setup_uniforms(Phase *phase) +{ + // TODO: Use UBO blocks. + for (size_t i = 0; i < phase->uniforms_image2d.size(); ++i) { + const Uniform &uniform = phase->uniforms_image2d[i]; + if (uniform.location != -1) { + glUniform1iv(uniform.location, uniform.num_values, uniform.value); + } + } + for (size_t i = 0; i < phase->uniforms_sampler2d.size(); ++i) { + const Uniform &uniform = phase->uniforms_sampler2d[i]; + if (uniform.location != -1) { + glUniform1iv(uniform.location, uniform.num_values, uniform.value); + } + } + for (size_t i = 0; i < phase->uniforms_bool.size(); ++i) { + const Uniform &uniform = phase->uniforms_bool[i]; + assert(uniform.num_values == 1); + if (uniform.location != -1) { + glUniform1i(uniform.location, *uniform.value); + } + } + for (size_t i = 0; i < phase->uniforms_int.size(); ++i) { + const Uniform &uniform = phase->uniforms_int[i]; + if (uniform.location != -1) { + glUniform1iv(uniform.location, uniform.num_values, uniform.value); + } + } + for (size_t i = 0; i < phase->uniforms_ivec2.size(); ++i) { + const Uniform &uniform = phase->uniforms_ivec2[i]; + if (uniform.location != -1) { + glUniform2iv(uniform.location, uniform.num_values, uniform.value); + } + } + for (size_t i = 0; i < phase->uniforms_float.size(); ++i) { + const Uniform &uniform = phase->uniforms_float[i]; + if (uniform.location != -1) { + glUniform1fv(uniform.location, uniform.num_values, uniform.value); + } + } + for (size_t i = 0; i < phase->uniforms_vec2.size(); ++i) { + const Uniform &uniform = phase->uniforms_vec2[i]; + if (uniform.location != -1) { + glUniform2fv(uniform.location, uniform.num_values, uniform.value); + } + } + for (size_t i = 0; i < phase->uniforms_vec3.size(); ++i) { + const Uniform &uniform = phase->uniforms_vec3[i]; + if (uniform.location != -1) { + glUniform3fv(uniform.location, uniform.num_values, uniform.value); + } + } + for (size_t i = 0; i < phase->uniforms_vec4.size(); ++i) { + const Uniform &uniform = phase->uniforms_vec4[i]; + if (uniform.location != -1) { + glUniform4fv(uniform.location, uniform.num_values, uniform.value); + } + } + for (size_t i = 0; i < phase->uniforms_mat3.size(); ++i) { + const Uniform &uniform = phase->uniforms_mat3[i]; + assert(uniform.num_values == 1); + if (uniform.location != -1) { + // Convert to float (GLSL has no double matrices). + float matrixf[9]; + for (unsigned y = 0; y < 3; ++y) { + for (unsigned x = 0; x < 3; ++x) { + matrixf[y + x * 3] = (*uniform.value)(y, x); + } + } + glUniformMatrix3fv(uniform.location, 1, GL_FALSE, matrixf); + } + } +} + +void EffectChain::setup_rtt_sampler(int sampler_num, bool use_mipmaps) +{ + glActiveTexture(GL_TEXTURE0 + sampler_num); + check_error(); + if (use_mipmaps) { + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); + check_error(); + } else { + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); + check_error(); + } + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); + check_error(); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); + check_error(); +} + +} // namespace movit