X-Git-Url: https://git.sesse.net/?p=movit;a=blobdiff_plain;f=fp16.h;h=535eccf36b04c181f08cc432b3fca5785ca54da4;hp=9f7eff926fca594d54198b14b3ec30d834124508;hb=d7def3f9e42e72566d7aedd52ffdeb5851da8314;hpb=82464681eca54bf11be3ca53eed20841ff6eb204 diff --git a/fp16.h b/fp16.h index 9f7eff9..535eccf 100644 --- a/fp16.h +++ b/fp16.h @@ -1,26 +1,140 @@ #ifndef _MOVIT_FP16_H #define _MOVIT_FP16_H 1 +#ifdef __F16C__ +#include +#endif + // Code for converting to and from fp16 (from fp64), without any particular // machine support, with proper IEEE round-to-even behavior (and correct // handling of NaNs and infinities). This is needed because some OpenGL // drivers don't properly round off when asked to convert data themselves. // -// These routines are not particularly fast. +// These routines are originally written by Fabian Giesen, and released by +// him into the public domain; +// see https://fgiesen.wordpress.com/2012/03/28/half-to-float-done-quic/. +// They are quite fast, and can be vectorized if need be; of course, using +// the f16c instructions (see below) will be faster still. namespace movit { -typedef unsigned int fp32_int_t; -typedef unsigned short fp16_int_t; +// structs instead of ints, so that they are not implicitly convertible. +struct fp32_int_t { + unsigned int val; +}; +struct fp16_int_t { + unsigned short val; +}; + +#ifdef __F16C__ + +// Use the f16c instructions from Haswell if available (and we know that they +// are at compile time). +static inline float fp16_to_fp32(fp16_int_t x) +{ + return _cvtsh_ss(x.val); +} + +static inline fp16_int_t fp32_to_fp16(float x) +{ + fp16_int_t ret; + ret.val = _cvtss_sh(x, 0); + return ret; +} + +#else + +union fp32 { + float f; + unsigned int u; +}; + +static inline float fp16_to_fp32(fp16_int_t h) +{ + fp32 magic; magic.u = 113 << 23; + unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift + fp32 o; + + // mantissa+exponent + unsigned int shifted = (h.val & 0x7fff) << 13; + unsigned int exponent = shifted & shifted_exp; + + // exponent cases + o.u = shifted; + if (exponent == 0) { // Zero / Denormal + o.u += magic.u; + o.f -= magic.f; + } else if (exponent == shifted_exp) { // Inf/NaN + o.u += (255 - 31) << 23; + } else { + o.u += (127 - 15) << 23; + } + + o.u |= (h.val & 0x8000) << 16; // copy sign bit + return o.f; +} + +static inline fp16_int_t fp32_to_fp16(float x) +{ + fp32 f; f.f = x; + unsigned int f32infty = 255 << 23; + unsigned int f16max = (127 + 16) << 23; + fp32 denorm_magic; denorm_magic.u = ((127 - 15) + (23 - 10) + 1) << 23; + unsigned int sign_mask = 0x80000000u; + fp16_int_t o = { 0 }; + + unsigned int sign = f.u & sign_mask; + f.u ^= sign; + + // NOTE all the integer compares in this function can be safely + // compiled into signed compares since all operands are below + // 0x80000000. Important if you want fast straight SSE2 code + // (since there's no unsigned PCMPGTD). + + if (f.u >= f16max) { // result is Inf or NaN (all exponent bits set) + o.val = (f.u > f32infty) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf + } else { // (De)normalized number or zero + if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero + // use a magic value to align our 10 mantissa bits at the bottom of + // the float. as long as FP addition is round-to-nearest-even this + // just works. + f.f += denorm_magic.f; + + // and one integer subtract of the bias later, we have our final float! + o.val = f.u - denorm_magic.u; + } else { + unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd + + // update exponent, rounding bias part 1 + f.u += (unsigned(15 - 127) << 23) + 0xfff; + // rounding bias part 2 + f.u += mant_odd; + // take the bits! + o.val = f.u >> 13; + } + } + + o.val |= sign >> 16; + return o; +} + +#endif + +// Overloads for use in templates. +static inline float to_fp32(double x) { return x; } +static inline float to_fp32(float x) { return x; } +static inline float to_fp32(fp16_int_t x) { return fp16_to_fp32(x); } + +template inline T from_fp32(float x); +template<> inline double from_fp32(float x) { return x; } +template<> inline float from_fp32(float x) { return x; } +template<> inline fp16_int_t from_fp32(float x) { return fp32_to_fp16(x); } -double fp16_to_fp64(fp16_int_t x); -fp16_int_t fp64_to_fp16(double x); +template +inline To convert_float(From x) { return from_fp32(to_fp32(x)); } -// These are not very useful by themselves, but are implemented using the same -// code as the fp16 ones (just with different constants), so they are useful -// for verifying against the FPU in unit tests. -double fp32_to_fp64(fp32_int_t x); -fp32_int_t fp64_to_fp32(double x); +template +inline Same convert_float(Same x) { return x; } } // namespace movit