X-Git-Url: https://git.sesse.net/?p=movit;a=blobdiff_plain;f=resample_effect.cpp;h=713df86d7e7dc864377c409c67709c99c32d6e61;hp=c2ef531d3dee6b9fa272bebfe2f97086ce23126a;hb=95edbfccb0843da3cc105dadc5bc6d8e102f6071;hpb=6f0d068e83d8aa03e1d530d02762da199fc5a1ff diff --git a/resample_effect.cpp b/resample_effect.cpp index c2ef531..713df86 100644 --- a/resample_effect.cpp +++ b/resample_effect.cpp @@ -1,7 +1,7 @@ // Three-lobed Lanczos, the most common choice. #define LANCZOS_RADIUS 3.0 -#include +#include #include #include #include @@ -10,9 +10,14 @@ #include "effect_chain.h" #include "effect_util.h" +#include "fp16.h" #include "resample_effect.h" #include "util.h" +using namespace std; + +namespace movit { + namespace { float sinc(float x) @@ -103,7 +108,10 @@ unsigned combine_samples(float *src, float *dst, unsigned num_src_samples, unsig ResampleEffect::ResampleEffect() : input_width(1280), - input_height(720) + input_height(720), + offset_x(0.0f), offset_y(0.0f), + zoom_x(1.0f), zoom_y(1.0f), + zoom_center_x(0.5f), zoom_center_y(0.5f) { register_int("width", &output_width); register_int("height", &output_height); @@ -138,7 +146,7 @@ void ResampleEffect::inform_input_size(unsigned input_num, unsigned width, unsig input_height = height; update_size(); } - + void ResampleEffect::update_size() { bool ok = true; @@ -153,9 +161,29 @@ void ResampleEffect::update_size() ok |= vpass->set_int("output_height", output_height); assert(ok); + + // The offset added due to zoom may have changed with the size. + update_offset_and_zoom(); } -bool ResampleEffect::set_float(const std::string &key, float value) { +void ResampleEffect::update_offset_and_zoom() +{ + bool ok = true; + + // Zoom from the right origin. (zoom_center is given in normalized coordinates, + // i.e. 0..1.) + float extra_offset_x = zoom_center_x * (1.0f - 1.0f / zoom_x) * input_width; + float extra_offset_y = (1.0f - zoom_center_y) * (1.0f - 1.0f / zoom_y) * input_height; + + ok |= hpass->set_float("offset", extra_offset_x + offset_x); + ok |= vpass->set_float("offset", extra_offset_y - offset_y); // Compensate for the bottom-left origin. + ok |= hpass->set_float("zoom", zoom_x); + ok |= vpass->set_float("zoom", zoom_y); + + assert(ok); +} + +bool ResampleEffect::set_float(const string &key, float value) { if (key == "width") { output_width = value; update_size(); @@ -166,6 +194,42 @@ bool ResampleEffect::set_float(const std::string &key, float value) { update_size(); return true; } + if (key == "top") { + offset_y = value; + update_offset_and_zoom(); + return true; + } + if (key == "left") { + offset_x = value; + update_offset_and_zoom(); + return true; + } + if (key == "zoom_x") { + if (value <= 0.0f) { + return false; + } + zoom_x = value; + update_offset_and_zoom(); + return true; + } + if (key == "zoom_y") { + if (value <= 0.0f) { + return false; + } + zoom_y = value; + update_offset_and_zoom(); + return true; + } + if (key == "zoom_center_x") { + zoom_center_x = value; + update_offset_and_zoom(); + return true; + } + if (key == "zoom_center_y") { + zoom_center_y = value; + update_offset_and_zoom(); + return true; + } return false; } @@ -174,16 +238,22 @@ SingleResamplePassEffect::SingleResamplePassEffect(ResampleEffect *parent) direction(HORIZONTAL), input_width(1280), input_height(720), + offset(0.0), + zoom(1.0), last_input_width(-1), last_input_height(-1), last_output_width(-1), - last_output_height(-1) + last_output_height(-1), + last_offset(0.0 / 0.0), // NaN. + last_zoom(0.0 / 0.0) // NaN. { register_int("direction", (int *)&direction); register_int("input_width", &input_width); register_int("input_height", &input_height); register_int("output_width", &output_width); register_int("output_height", &output_height); + register_float("offset", &offset); + register_float("zoom", &zoom); glGenTextures(1, &texnum); } @@ -193,7 +263,7 @@ SingleResamplePassEffect::~SingleResamplePassEffect() glDeleteTextures(1, &texnum); } -std::string SingleResamplePassEffect::output_fragment_shader() +string SingleResamplePassEffect::output_fragment_shader() { char buf[256]; sprintf(buf, "#define DIRECTION_VERTICAL %d\n", (direction == VERTICAL)); @@ -212,7 +282,7 @@ std::string SingleResamplePassEffect::output_fragment_shader() // // For horizontal scaling, we fill in the exact same texture; // the shader just interprets it differently. -void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const std::string &prefix, unsigned *sampler_num) +void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num) { unsigned src_size, dst_size; if (direction == SingleResamplePassEffect::HORIZONTAL) { @@ -227,13 +297,24 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const std assert(false); } - // For many resamplings (e.g. 640 -> 1280), we will end up with the same // set of samples over and over again in a loop. Thus, we can compute only // the first such loop, and then ask the card to repeat the texture for us. // This is both easier on the texture cache and lowers our CPU cost for // generating the kernel somewhat. - num_loops = gcd(src_size, dst_size); + float scaling_factor; + if (fabs(zoom - 1.0f) < 1e-6) { + num_loops = gcd(src_size, dst_size); + scaling_factor = float(dst_size) / float(src_size); + } else { + // If zooming is enabled (ie., zoom != 1), we turn off the looping. + // We _could_ perhaps do it for rational zoom levels (especially + // things like 2:1), but it doesn't seem to be worth it, given that + // the most common use case would seem to be varying the zoom + // from frame to frame. + num_loops = 1; + scaling_factor = zoom * float(dst_size) / float(src_size); + } slice_height = 1.0f / num_loops; unsigned dst_samples = dst_size / num_loops; @@ -286,20 +367,22 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const std // Anyhow, in this case we clearly need to look at more source pixels // to compute the destination pixel, and how many depend on the scaling factor. // Thus, the kernel width will vary with how much we scale. - float radius_scaling_factor = std::min(float(dst_size) / float(src_size), 1.0f); + float radius_scaling_factor = min(scaling_factor, 1.0f); int int_radius = lrintf(LANCZOS_RADIUS / radius_scaling_factor); int src_samples = int_radius * 2 + 1; float *weights = new float[dst_samples * src_samples * 2]; + float subpixel_offset = offset - lrintf(offset); // The part not covered by whole_pixel_offset. + assert(subpixel_offset >= -0.5f && subpixel_offset <= 0.5f); for (unsigned y = 0; y < dst_samples; ++y) { // Find the point around which we want to sample the source image, // compensating for differing pixel centers as the scale changes. - float center_src_y = (y + 0.5f) * float(src_size) / float(dst_size) - 0.5f; + float center_src_y = (y + 0.5f) / scaling_factor - 0.5f; int base_src_y = lrintf(center_src_y); // Now sample pixels on each side around that point. for (int i = 0; i < src_samples; ++i) { int src_y = base_src_y + i - int_radius; - float weight = lanczos_weight(radius_scaling_factor * (src_y - center_src_y), LANCZOS_RADIUS); + float weight = lanczos_weight(radius_scaling_factor * (src_y - center_src_y - subpixel_offset), LANCZOS_RADIUS); weights[(y * src_samples + i) * 2 + 0] = weight * radius_scaling_factor; weights[(y * src_samples + i) * 2 + 1] = (src_y + 0.5) / float(src_size); } @@ -316,19 +399,41 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const std src_bilinear_samples = 0; for (unsigned y = 0; y < dst_samples; ++y) { unsigned num_samples_saved = combine_samples(weights + (y * src_samples) * 2, NULL, src_samples, UINT_MAX); - src_bilinear_samples = std::max(src_bilinear_samples, src_samples - num_samples_saved); + src_bilinear_samples = max(src_bilinear_samples, src_samples - num_samples_saved); } // Now that we know the right width, actually combine the samples. float *bilinear_weights = new float[dst_samples * src_bilinear_samples * 2]; + fp16_int_t *bilinear_weights_fp16 = new fp16_int_t[dst_samples * src_bilinear_samples * 2]; for (unsigned y = 0; y < dst_samples; ++y) { + float *bilinear_weights_ptr = bilinear_weights + (y * src_bilinear_samples) * 2; + fp16_int_t *bilinear_weights_fp16_ptr = bilinear_weights_fp16 + (y * src_bilinear_samples) * 2; unsigned num_samples_saved = combine_samples( weights + (y * src_samples) * 2, - bilinear_weights + (y * src_bilinear_samples) * 2, + bilinear_weights_ptr, src_samples, src_samples - src_bilinear_samples); assert(int(src_samples) - int(num_samples_saved) == src_bilinear_samples); - } + + // Convert to fp16. + for (int i = 0; i < src_bilinear_samples; ++i) { + bilinear_weights_fp16_ptr[i * 2 + 0] = fp64_to_fp16(bilinear_weights_ptr[i * 2 + 0]); + bilinear_weights_fp16_ptr[i * 2 + 1] = fp64_to_fp16(bilinear_weights_ptr[i * 2 + 1]); + } + + // Normalize so that the sum becomes one. Note that we do it twice; + // this sometimes helps a tiny little bit when we have many samples. + for (int normalize_pass = 0; normalize_pass < 2; ++normalize_pass) { + double sum = 0.0; + for (int i = 0; i < src_bilinear_samples; ++i) { + sum += fp16_to_fp64(bilinear_weights_fp16_ptr[i * 2 + 0]); + } + for (int i = 0; i < src_bilinear_samples; ++i) { + bilinear_weights_fp16_ptr[i * 2 + 0] = fp64_to_fp16( + fp16_to_fp64(bilinear_weights_fp16_ptr[i * 2 + 0]) / sum); + } + } + } // Encode as a two-component texture. Note the GL_REPEAT. glActiveTexture(GL_TEXTURE0 + *sampler_num); @@ -341,14 +446,15 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const std check_error(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); check_error(); - glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, src_bilinear_samples, dst_samples, 0, GL_RG, GL_FLOAT, bilinear_weights); + glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, src_bilinear_samples, dst_samples, 0, GL_RG, GL_HALF_FLOAT, bilinear_weights_fp16); check_error(); delete[] weights; delete[] bilinear_weights; + delete[] bilinear_weights_fp16; } -void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const std::string &prefix, unsigned *sampler_num) +void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num) { Effect::set_gl_state(glsl_program_num, prefix, sampler_num); @@ -360,12 +466,16 @@ void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const std:: if (input_width != last_input_width || input_height != last_input_height || output_width != last_output_width || - output_height != last_output_height) { + output_height != last_output_height || + offset != last_offset || + zoom != last_zoom) { update_texture(glsl_program_num, prefix, sampler_num); last_input_width = input_width; last_input_height = input_height; last_output_width = output_width; last_output_height = output_height; + last_offset = offset; + last_zoom = zoom; } glActiveTexture(GL_TEXTURE0 + *sampler_num); @@ -374,7 +484,7 @@ void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const std:: check_error(); set_uniform_int(glsl_program_num, prefix, "sample_tex", *sampler_num); - ++sampler_num; + ++*sampler_num; set_uniform_int(glsl_program_num, prefix, "num_samples", src_bilinear_samples); set_uniform_float(glsl_program_num, prefix, "num_loops", num_loops); set_uniform_float(glsl_program_num, prefix, "slice_height", slice_height); @@ -383,10 +493,21 @@ void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const std:: set_uniform_float(glsl_program_num, prefix, "sample_x_scale", 1.0f / src_bilinear_samples); set_uniform_float(glsl_program_num, prefix, "sample_x_offset", 0.5f / src_bilinear_samples); + float whole_pixel_offset; + if (direction == SingleResamplePassEffect::VERTICAL) { + whole_pixel_offset = lrintf(offset) / float(input_height); + } else { + whole_pixel_offset = lrintf(offset) / float(input_width); + } + set_uniform_float(glsl_program_num, prefix, "whole_pixel_offset", whole_pixel_offset); + // We specifically do not want mipmaps on the input texture; // they break minification. - glActiveTexture(GL_TEXTURE0); + Node *self = chain->find_node_for_effect(this); + glActiveTexture(chain->get_input_sampler(self, 0)); check_error(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); check_error(); } + +} // namespace movit