X-Git-Url: https://git.sesse.net/?p=movit;a=blobdiff_plain;f=resample_effect.cpp;h=802a8968a893482460988b910f2db707d68b692b;hp=9b6d5f3d4d964168d0a4a0f191e8552b1f54217d;hb=f8e5ddc082f2267198292ea9e53d4a8b45f7b3b1;hpb=b1b5194238dd8b357148a3eee48d8d3a1ad04b35 diff --git a/resample_effect.cpp b/resample_effect.cpp index 9b6d5f3..802a896 100644 --- a/resample_effect.cpp +++ b/resample_effect.cpp @@ -1,7 +1,7 @@ // Three-lobed Lanczos, the most common choice. // Note that if you change this, the accuracy for LANCZOS_TABLE_SIZE // needs to be recomputed. -#define LANCZOS_RADIUS 3.0 +#define LANCZOS_RADIUS 3.0f #include #include @@ -9,6 +9,7 @@ #include #include #include +#include #include #include #include @@ -72,7 +73,7 @@ float lanczos_weight(float x) // You need to call lanczos_table_init_done before the first call to // lanczos_weight_cached. #define LANCZOS_TABLE_SIZE 2048 -bool lanczos_table_init_done = false; +static once_flag lanczos_table_init_done; float lanczos_table[LANCZOS_TABLE_SIZE + 2]; void init_lanczos_table() @@ -80,7 +81,6 @@ void init_lanczos_table() for (unsigned i = 0; i < LANCZOS_TABLE_SIZE + 2; ++i) { lanczos_table[i] = lanczos_weight(float(i) * (LANCZOS_RADIUS / LANCZOS_TABLE_SIZE)); } - lanczos_table_init_done = true; } float lanczos_weight_cached(float x) @@ -90,7 +90,7 @@ float lanczos_weight_cached(float x) return 0.0f; } float table_pos = x * (LANCZOS_TABLE_SIZE / LANCZOS_RADIUS); - int table_pos_int = int(table_pos); // Truncate towards zero. + unsigned table_pos_int = int(table_pos); // Truncate towards zero. float table_pos_frac = table_pos - table_pos_int; assert(table_pos < LANCZOS_TABLE_SIZE + 2); return lanczos_table[table_pos_int] + @@ -109,7 +109,7 @@ unsigned gcd(unsigned a, unsigned b) } template -unsigned combine_samples(const Tap *src, Tap *dst, float num_subtexels, float inv_num_subtexels, unsigned num_src_samples, unsigned max_samples_saved) +unsigned combine_samples(const Tap *src, Tap *dst, float num_subtexels, float inv_num_subtexels, unsigned num_src_samples, unsigned max_samples_saved, float pos1_pos2_diff, float inv_pos1_pos2_diff) { // Cut off near-zero values at both sides. unsigned num_samples_saved = 0; @@ -129,7 +129,7 @@ unsigned combine_samples(const Tap *src, Tap *dst, float num_s for (unsigned i = 0, j = 0; i < num_src_samples; ++i, ++j) { // Copy the sample directly; it will be overwritten later if we can combine. - if (dst != NULL) { + if (dst != nullptr) { dst[j].weight = convert_float(src[i].weight); dst[j].pos = convert_float(src[i].pos); } @@ -157,7 +157,7 @@ unsigned combine_samples(const Tap *src, Tap *dst, float num_s DestFloat pos, total_weight; float sum_sq_error; - combine_two_samples(w1, w2, pos1, pos2, num_subtexels, inv_num_subtexels, &pos, &total_weight, &sum_sq_error); + combine_two_samples(w1, w2, pos1, pos1_pos2_diff, inv_pos1_pos2_diff, num_subtexels, inv_num_subtexels, &pos, &total_weight, &sum_sq_error); // If the interpolation error is larger than that of about sqrt(2) of // a level at 8-bit precision, don't combine. (You'd think 1.0 was enough, @@ -169,7 +169,7 @@ unsigned combine_samples(const Tap *src, Tap *dst, float num_s } // OK, we can combine this and the next sample. - if (dst != NULL) { + if (dst != nullptr) { dst[j].weight = total_weight; dst[j].pos = pos; } @@ -210,10 +210,12 @@ unsigned combine_many_samples(const Tap *weights, unsigned src_size, unsi { float num_subtexels = src_size / movit_texel_subpixel_precision; float inv_num_subtexels = movit_texel_subpixel_precision / src_size; + float pos1_pos2_diff = 1.0f / src_size; + float inv_pos1_pos2_diff = src_size; unsigned max_samples_saved = UINT_MAX; for (unsigned y = 0; y < dst_samples && max_samples_saved > 0; ++y) { - unsigned num_samples_saved = combine_samples(weights + y * src_samples, NULL, num_subtexels, inv_num_subtexels, src_samples, max_samples_saved); + unsigned num_samples_saved = combine_samples(weights + y * src_samples, nullptr, num_subtexels, inv_num_subtexels, src_samples, max_samples_saved, pos1_pos2_diff, inv_pos1_pos2_diff); max_samples_saved = min(max_samples_saved, num_samples_saved); } @@ -228,7 +230,9 @@ unsigned combine_many_samples(const Tap *weights, unsigned src_size, unsi num_subtexels, inv_num_subtexels, src_samples, - max_samples_saved); + max_samples_saved, + pos1_pos2_diff, + inv_pos1_pos2_diff); assert(num_samples_saved == max_samples_saved); normalize_sum(bilinear_weights_ptr, src_bilinear_samples); } @@ -249,10 +253,10 @@ double compute_sum_sq_error(const Tap* weights, unsigned num_weights, // Find the effective range of the bilinear-optimized kernel. // Due to rounding of the positions, this is not necessarily the same // as the intended range (ie., the range of the original weights). - int lower_pos = int(floor(to_fp32(bilinear_weights[0].pos) * size - 0.5)); - int upper_pos = int(ceil(to_fp32(bilinear_weights[num_bilinear_weights - 1].pos) * size - 0.5)) + 2; - lower_pos = min(lower_pos, lrintf(weights[0].pos * size - 0.5)); - upper_pos = max(upper_pos, lrintf(weights[num_weights - 1].pos * size - 0.5) + 1); + int lower_pos = int(floor(to_fp32(bilinear_weights[0].pos) * size - 0.5f)); + int upper_pos = int(ceil(to_fp32(bilinear_weights[num_bilinear_weights - 1].pos) * size - 0.5f)) + 2; + lower_pos = min(lower_pos, lrintf(weights[0].pos * size - 0.5f)); + upper_pos = max(upper_pos, lrintf(weights[num_weights - 1].pos * size - 0.5f) + 1); float* effective_weights = new float[upper_pos - lower_pos]; for (int i = 0; i < upper_pos - lower_pos; ++i) { @@ -271,7 +275,7 @@ double compute_sum_sq_error(const Tap* weights, unsigned num_weights, assert(x0 < upper_pos - lower_pos); assert(x1 < upper_pos - lower_pos); - effective_weights[x0] += to_fp32(bilinear_weights[i].weight) * (1.0 - f); + effective_weights[x0] += to_fp32(bilinear_weights[i].weight) * (1.0f - f); effective_weights[x1] += to_fp32(bilinear_weights[i].weight) * f; } @@ -306,18 +310,24 @@ ResampleEffect::ResampleEffect() register_int("height", &output_height); // The first blur pass will forward resolution information to us. - hpass = new SingleResamplePassEffect(this); + hpass_owner.reset(new SingleResamplePassEffect(this)); + hpass = hpass_owner.get(); CHECK(hpass->set_int("direction", SingleResamplePassEffect::HORIZONTAL)); - vpass = new SingleResamplePassEffect(NULL); + vpass_owner.reset(new SingleResamplePassEffect(this)); + vpass = vpass_owner.get(); CHECK(vpass->set_int("direction", SingleResamplePassEffect::VERTICAL)); update_size(); } +ResampleEffect::~ResampleEffect() +{ +} + void ResampleEffect::rewrite_graph(EffectChain *graph, Node *self) { - Node *hpass_node = graph->add_node(hpass); - Node *vpass_node = graph->add_node(vpass); + Node *hpass_node = graph->add_node(hpass_owner.release()); + Node *vpass_node = graph->add_node(vpass_owner.release()); graph->connect_nodes(hpass_node, vpass_node); graph->replace_receiver(self, hpass_node); graph->replace_sender(self, vpass_node); @@ -425,8 +435,8 @@ bool ResampleEffect::set_float(const string &key, float value) { SingleResamplePassEffect::SingleResamplePassEffect(ResampleEffect *parent) : parent(parent), direction(HORIZONTAL), - input_width(1280), - input_height(720), + input_width(1280), + input_height(720), offset(0.0), zoom(1.0), last_input_width(-1), @@ -434,8 +444,7 @@ SingleResamplePassEffect::SingleResamplePassEffect(ResampleEffect *parent) last_output_width(-1), last_output_height(-1), last_offset(0.0 / 0.0), // NaN. - last_zoom(0.0 / 0.0), // NaN. - last_texture_width(-1), last_texture_height(-1) + last_zoom(0.0 / 0.0) // NaN. { register_int("direction", (int *)&direction); register_int("input_width", &input_width); @@ -452,18 +461,11 @@ SingleResamplePassEffect::SingleResamplePassEffect(ResampleEffect *parent) register_uniform_float("sample_x_offset", &uniform_sample_x_offset); register_uniform_float("whole_pixel_offset", &uniform_whole_pixel_offset); - glGenTextures(1, &texnum); - - if (!lanczos_table_init_done) { - // Could in theory race between two threads if we are unlucky, - // but that is harmless, since they'll write the same data. - init_lanczos_table(); - } + call_once(lanczos_table_init_done, init_lanczos_table); } SingleResamplePassEffect::~SingleResamplePassEffect() { - glDeleteTextures(1, &texnum); } string SingleResamplePassEffect::output_fragment_shader() @@ -500,7 +502,7 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str assert(false); } - ScalingWeights weights = calculate_scaling_weights(src_size, dst_size, zoom, offset); + ScalingWeights weights = calculate_bilinear_scaling_weights(src_size, dst_size, zoom, offset); src_bilinear_samples = weights.src_bilinear_samples; num_loops = weights.num_loops; slice_height = 1.0f / weights.num_loops; @@ -508,17 +510,8 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str // Encode as a two-component texture. Note the GL_REPEAT. glActiveTexture(GL_TEXTURE0 + *sampler_num); check_error(); - glBindTexture(GL_TEXTURE_2D, texnum); + glBindTexture(GL_TEXTURE_2D, tex.get_texnum()); check_error(); - if (last_texture_width == -1) { - // Need to set this state the first time. - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); - check_error(); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); - check_error(); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); - check_error(); - } GLenum type, internal_format; void *pixels; @@ -533,27 +526,15 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str pixels = weights.bilinear_weights_fp16.get(); } - if (int(weights.src_bilinear_samples) == last_texture_width && - int(weights.dst_samples) == last_texture_height && - internal_format == last_texture_internal_format) { - // Texture dimensions and type are unchanged; it is more efficient - // to just update it rather than making an entirely new texture. - glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, weights.src_bilinear_samples, weights.dst_samples, GL_RG, type, pixels); - } else { - glTexImage2D(GL_TEXTURE_2D, 0, internal_format, weights.src_bilinear_samples, weights.dst_samples, 0, GL_RG, type, pixels); - last_texture_width = weights.src_bilinear_samples; - last_texture_height = weights.dst_samples; - last_texture_internal_format = internal_format; - } - check_error(); + tex.update(weights.src_bilinear_samples, weights.dst_samples, internal_format, GL_RG, type, pixels); } +namespace { + ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, float zoom, float offset) { - if (!lanczos_table_init_done) { - // Only needed if run from outside ResampleEffect. - init_lanczos_table(); - } + // Only needed if run from outside ResampleEffect. + call_once(lanczos_table_init_done, init_lanczos_table); // For many resamplings (e.g. 640 -> 1280), we will end up with the same // set of samples over and over again in a loop. Thus, we can compute only @@ -626,36 +607,55 @@ ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, f // to compute the destination pixel, and how many depend on the scaling factor. // Thus, the kernel width will vary with how much we scale. float radius_scaling_factor = min(scaling_factor, 1.0f); - int int_radius = lrintf(LANCZOS_RADIUS / radius_scaling_factor); - int src_samples = int_radius * 2 + 1; + const int int_radius = lrintf(LANCZOS_RADIUS / radius_scaling_factor); + const int src_samples = int_radius * 2 + 1; unique_ptr[]> weights(new Tap[dst_samples * src_samples]); float subpixel_offset = offset - lrintf(offset); // The part not covered by whole_pixel_offset. assert(subpixel_offset >= -0.5f && subpixel_offset <= 0.5f); + float inv_scaling_factor = 1.0f / scaling_factor; for (unsigned y = 0; y < dst_samples; ++y) { // Find the point around which we want to sample the source image, // compensating for differing pixel centers as the scale changes. - float center_src_y = (y + 0.5f) / scaling_factor - 0.5f; + float center_src_y = (y + 0.5f) * inv_scaling_factor - 0.5f; int base_src_y = lrintf(center_src_y); // Now sample pixels on each side around that point. + float inv_src_size = 1.0 / float(src_size); for (int i = 0; i < src_samples; ++i) { int src_y = base_src_y + i - int_radius; float weight = lanczos_weight_cached(radius_scaling_factor * (src_y - center_src_y - subpixel_offset)); weights[y * src_samples + i].weight = weight * radius_scaling_factor; - weights[y * src_samples + i].pos = (src_y + 0.5) / float(src_size); + weights[y * src_samples + i].pos = (src_y + 0.5f) * inv_src_size; } } + ScalingWeights ret; + ret.src_bilinear_samples = src_samples; + ret.dst_samples = dst_samples; + ret.num_loops = num_loops; + ret.bilinear_weights_fp16 = nullptr; + ret.bilinear_weights_fp32 = move(weights); + return ret; +} + +} // namespace + +ScalingWeights calculate_bilinear_scaling_weights(unsigned src_size, unsigned dst_size, float zoom, float offset) +{ + ScalingWeights ret = calculate_scaling_weights(src_size, dst_size, zoom, offset); + unique_ptr[]> weights = move(ret.bilinear_weights_fp32); + const int src_samples = ret.src_bilinear_samples; + // Now make use of the bilinear filtering in the GPU to reduce the number of samples // we need to make. Try fp16 first; if it's not accurate enough, we go to fp32. // Our tolerance level for total error is a bit higher than the one for invididual // samples, since one would assume overall errors in the shape don't matter as much. const float max_error = 2.0f / (255.0f * 255.0f); unique_ptr[]> bilinear_weights_fp16; - int src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, dst_samples, &bilinear_weights_fp16); - unique_ptr[]> bilinear_weights_fp32 = NULL; + int src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, ret.dst_samples, &bilinear_weights_fp16); + unique_ptr[]> bilinear_weights_fp32 = nullptr; double max_sum_sq_error_fp16 = 0.0; - for (unsigned y = 0; y < dst_samples; ++y) { + for (unsigned y = 0; y < ret.dst_samples; ++y) { double sum_sq_error_fp16 = compute_sum_sq_error( weights.get() + y * src_samples, src_samples, bilinear_weights_fp16.get() + y * src_bilinear_samples, src_bilinear_samples, @@ -668,13 +668,10 @@ ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, f if (max_sum_sq_error_fp16 > max_error) { bilinear_weights_fp16.reset(); - src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, dst_samples, &bilinear_weights_fp32); + src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, ret.dst_samples, &bilinear_weights_fp32); } - ScalingWeights ret; ret.src_bilinear_samples = src_bilinear_samples; - ret.dst_samples = dst_samples; - ret.num_loops = num_loops; ret.bilinear_weights_fp16 = move(bilinear_weights_fp16); ret.bilinear_weights_fp32 = move(bilinear_weights_fp32); return ret; @@ -706,7 +703,7 @@ void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const strin glActiveTexture(GL_TEXTURE0 + *sampler_num); check_error(); - glBindTexture(GL_TEXTURE_2D, texnum); + glBindTexture(GL_TEXTURE_2D, tex.get_texnum()); check_error(); uniform_sample_tex = *sampler_num; @@ -736,4 +733,44 @@ void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const strin } } +Support2DTexture::Support2DTexture() +{ + glGenTextures(1, &texnum); + check_error(); + glBindTexture(GL_TEXTURE_2D, texnum); + check_error(); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); + check_error(); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); + check_error(); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); + check_error(); +} + +Support2DTexture::~Support2DTexture() +{ + glDeleteTextures(1, &texnum); + check_error(); +} + +void Support2DTexture::update(GLint width, GLint height, GLenum internal_format, GLenum format, GLenum type, const GLvoid * data) +{ + glBindTexture(GL_TEXTURE_2D, texnum); + check_error(); + if (width == last_texture_width && + height == last_texture_height && + internal_format == last_texture_internal_format) { + // Texture dimensions and type are unchanged; it is more efficient + // to just update it rather than making an entirely new texture. + glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, format, type, data); + check_error(); + } else { + glTexImage2D(GL_TEXTURE_2D, 0, internal_format, width, height, 0, format, type, data); + check_error(); + last_texture_width = width; + last_texture_height = height; + last_texture_internal_format = internal_format; + } +} + } // namespace movit