X-Git-Url: https://git.sesse.net/?p=movit;a=blobdiff_plain;f=resample_effect.cpp;h=ba8a71c0241443c0730a5ce99d68a2fa7c014ad3;hp=7e44e9ba89424477a33370020039d32f0c37d723;hb=90ac46cdc5845432df13385f946c63b5496c685e;hpb=eb11109d6a074541df9b45be127c70d836bc4872 diff --git a/resample_effect.cpp b/resample_effect.cpp index 7e44e9b..ba8a71c 100644 --- a/resample_effect.cpp +++ b/resample_effect.cpp @@ -1,5 +1,7 @@ // Three-lobed Lanczos, the most common choice. -#define LANCZOS_RADIUS 3.0 +// Note that if you change this, the accuracy for LANCZOS_TABLE_SIZE +// needs to be recomputed. +#define LANCZOS_RADIUS 3.0f #include #include @@ -25,12 +27,6 @@ namespace movit { namespace { -template -struct Tap { - T weight; - T pos; -}; - float sinc(float x) { if (fabs(x) < 1e-6) { @@ -40,15 +36,67 @@ float sinc(float x) } } -float lanczos_weight(float x, float a) +float lanczos_weight(float x) { - if (fabs(x) > a) { + if (fabs(x) > LANCZOS_RADIUS) { return 0.0f; } else { - return sinc(M_PI * x) * sinc(M_PI * x / a); + return sinc(M_PI * x) * sinc((M_PI / LANCZOS_RADIUS) * x); } } +// The weight function can be expensive to compute over and over again +// (which will happen during e.g. a zoom), but it is also easy to interpolate +// linearly. We compute the right half of the function (in the range of +// 0..LANCZOS_RADIUS), with two guard elements for easier interpolation, and +// linearly interpolate to get our function. +// +// We want to scale the table so that the maximum error is always smaller +// than 1e-6. As per http://www-solar.mcs.st-andrews.ac.uk/~clare/Lectures/num-analysis/Numan_chap3.pdf, +// the error for interpolating a function linearly between points [a,b] is +// +// e = 1/2 (x-a)(x-b) f''(u_x) +// +// for some point u_x in [a,b] (where f(x) is our Lanczos function; we're +// assuming LANCZOS_RADIUS=3 from here on). Obviously this is bounded by +// f''(x) over the entire range. Numeric optimization shows the maximum of +// |f''(x)| to be in x=1.09369819474562880, with the value 2.40067758733152381. +// So if the steps between consecutive values are called d, we get +// +// |e| <= 1/2 (d/2)^2 2.4007 +// |e| <= 0.1367 d^2 +// +// Solve for e = 1e-6 yields a step size of 0.0027, which to cover the range +// 0..3 needs 1109 steps. We round up to the next power of two, just to be sure. +// +// You need to call lanczos_table_init_done before the first call to +// lanczos_weight_cached. +#define LANCZOS_TABLE_SIZE 2048 +bool lanczos_table_init_done = false; +float lanczos_table[LANCZOS_TABLE_SIZE + 2]; + +void init_lanczos_table() +{ + for (unsigned i = 0; i < LANCZOS_TABLE_SIZE + 2; ++i) { + lanczos_table[i] = lanczos_weight(float(i) * (LANCZOS_RADIUS / LANCZOS_TABLE_SIZE)); + } + lanczos_table_init_done = true; +} + +float lanczos_weight_cached(float x) +{ + x = fabs(x); + if (x > LANCZOS_RADIUS) { + return 0.0f; + } + float table_pos = x * (LANCZOS_TABLE_SIZE / LANCZOS_RADIUS); + unsigned table_pos_int = int(table_pos); // Truncate towards zero. + float table_pos_frac = table_pos - table_pos_int; + assert(table_pos < LANCZOS_TABLE_SIZE + 2); + return lanczos_table[table_pos_int] + + table_pos_frac * (lanczos_table[table_pos_int + 1] - lanczos_table[table_pos_int]); +} + // Euclid's algorithm, from Wikipedia. unsigned gcd(unsigned a, unsigned b) { @@ -61,9 +109,24 @@ unsigned gcd(unsigned a, unsigned b) } template -unsigned combine_samples(const Tap *src, Tap *dst, unsigned src_size, unsigned num_src_samples, unsigned max_samples_saved) +unsigned combine_samples(const Tap *src, Tap *dst, float num_subtexels, float inv_num_subtexels, unsigned num_src_samples, unsigned max_samples_saved) { + // Cut off near-zero values at both sides. unsigned num_samples_saved = 0; + while (num_samples_saved < max_samples_saved && + num_src_samples > 0 && + fabs(src[0].weight) < 1e-6) { + ++src; + --num_src_samples; + ++num_samples_saved; + } + while (num_samples_saved < max_samples_saved && + num_src_samples > 0 && + fabs(src[num_src_samples - 1].weight) < 1e-6) { + --num_src_samples; + ++num_samples_saved; + } + for (unsigned i = 0, j = 0; i < num_src_samples; ++i, ++j) { // Copy the sample directly; it will be overwritten later if we can combine. if (dst != NULL) { @@ -92,9 +155,9 @@ unsigned combine_samples(const Tap *src, Tap *dst, unsigned sr float pos2 = src[i + 1].pos; assert(pos2 > pos1); - fp16_int_t pos, total_weight; + DestFloat pos, total_weight; float sum_sq_error; - combine_two_samples(w1, w2, pos1, pos2, src_size, &pos, &total_weight, &sum_sq_error); + combine_two_samples(w1, w2, pos1, pos2, num_subtexels, inv_num_subtexels, &pos, &total_weight, &sum_sq_error); // If the interpolation error is larger than that of about sqrt(2) of // a level at 8-bit precision, don't combine. (You'd think 1.0 was enough, @@ -123,12 +186,13 @@ template void normalize_sum(Tap* vals, unsigned num) { for (int normalize_pass = 0; normalize_pass < 2; ++normalize_pass) { - double sum = 0.0; + float sum = 0.0; for (unsigned i = 0; i < num; ++i) { - sum += to_fp64(vals[i].weight); + sum += to_fp32(vals[i].weight); } + float inv_sum = 1.0 / sum; for (unsigned i = 0; i < num; ++i) { - vals[i].weight = from_fp64(to_fp64(vals[i].weight) / sum); + vals[i].weight = from_fp32(to_fp32(vals[i].weight) * inv_sum); } } } @@ -142,25 +206,30 @@ void normalize_sum(Tap* vals, unsigned num) // // The greedy strategy for combining samples is optimal. template -unsigned combine_many_samples(const Tap *weights, unsigned src_size, unsigned src_samples, unsigned dst_samples, Tap **bilinear_weights) +unsigned combine_many_samples(const Tap *weights, unsigned src_size, unsigned src_samples, unsigned dst_samples, unique_ptr[]> *bilinear_weights) { - int src_bilinear_samples = 0; - for (unsigned y = 0; y < dst_samples; ++y) { - unsigned num_samples_saved = combine_samples(weights + y * src_samples, NULL, src_size, src_samples, UINT_MAX); - src_bilinear_samples = max(src_bilinear_samples, src_samples - num_samples_saved); + float num_subtexels = src_size / movit_texel_subpixel_precision; + float inv_num_subtexels = movit_texel_subpixel_precision / src_size; + + unsigned max_samples_saved = UINT_MAX; + for (unsigned y = 0; y < dst_samples && max_samples_saved > 0; ++y) { + unsigned num_samples_saved = combine_samples(weights + y * src_samples, NULL, num_subtexels, inv_num_subtexels, src_samples, max_samples_saved); + max_samples_saved = min(max_samples_saved, num_samples_saved); } // Now that we know the right width, actually combine the samples. - *bilinear_weights = new Tap[dst_samples * src_bilinear_samples]; + unsigned src_bilinear_samples = src_samples - max_samples_saved; + bilinear_weights->reset(new Tap[dst_samples * src_bilinear_samples]); for (unsigned y = 0; y < dst_samples; ++y) { - Tap *bilinear_weights_ptr = *bilinear_weights + y * src_bilinear_samples; + Tap *bilinear_weights_ptr = bilinear_weights->get() + y * src_bilinear_samples; unsigned num_samples_saved = combine_samples( weights + y * src_samples, bilinear_weights_ptr, - src_size, + num_subtexels, + inv_num_subtexels, src_samples, - src_samples - src_bilinear_samples); - assert(int(src_samples) - int(num_samples_saved) == src_bilinear_samples); + max_samples_saved); + assert(num_samples_saved == max_samples_saved); normalize_sum(bilinear_weights_ptr, src_bilinear_samples); } return src_bilinear_samples; @@ -180,10 +249,10 @@ double compute_sum_sq_error(const Tap* weights, unsigned num_weights, // Find the effective range of the bilinear-optimized kernel. // Due to rounding of the positions, this is not necessarily the same // as the intended range (ie., the range of the original weights). - int lower_pos = int(floor(to_fp64(bilinear_weights[0].pos) * size - 0.5)); - int upper_pos = int(ceil(to_fp64(bilinear_weights[num_bilinear_weights - 1].pos) * size - 0.5)) + 2; - lower_pos = min(lower_pos, lrintf(weights[0].pos * size - 0.5)); - upper_pos = max(upper_pos, lrintf(weights[num_weights - 1].pos * size - 0.5)); + int lower_pos = int(floor(to_fp32(bilinear_weights[0].pos) * size - 0.5f)); + int upper_pos = int(ceil(to_fp32(bilinear_weights[num_bilinear_weights - 1].pos) * size - 0.5f)) + 2; + lower_pos = min(lower_pos, lrintf(weights[0].pos * size - 0.5f)); + upper_pos = max(upper_pos, lrintf(weights[num_weights - 1].pos * size - 0.5f) + 1); float* effective_weights = new float[upper_pos - lower_pos]; for (int i = 0; i < upper_pos - lower_pos; ++i) { @@ -192,7 +261,7 @@ double compute_sum_sq_error(const Tap* weights, unsigned num_weights, // Now find the effective weights that result from this sampling. for (unsigned i = 0; i < num_bilinear_weights; ++i) { - const float pixel_pos = to_fp64(bilinear_weights[i].pos) * size - 0.5f; + const float pixel_pos = to_fp32(bilinear_weights[i].pos) * size - 0.5f; const int x0 = int(floor(pixel_pos)) - lower_pos; const int x1 = x0 + 1; const float f = lrintf((pixel_pos - (x0 + lower_pos)) / movit_texel_subpixel_precision) * movit_texel_subpixel_precision; @@ -202,8 +271,8 @@ double compute_sum_sq_error(const Tap* weights, unsigned num_weights, assert(x0 < upper_pos - lower_pos); assert(x1 < upper_pos - lower_pos); - effective_weights[x0] += to_fp64(bilinear_weights[i].weight) * (1.0 - f); - effective_weights[x1] += to_fp64(bilinear_weights[i].weight) * f; + effective_weights[x0] += to_fp32(bilinear_weights[i].weight) * (1.0f - f); + effective_weights[x1] += to_fp32(bilinear_weights[i].weight) * f; } // Subtract the desired weights to get the error. @@ -224,112 +293,6 @@ double compute_sum_sq_error(const Tap* weights, unsigned num_weights, return sum_sq_error; } -// Given a predefined, fixed set of bilinear weight positions, try to optimize -// their weights through some linear algebra. This can do a better job than -// the weight calculation in combine_samples() because it can look at the entire -// picture (an effective weight can sometimes be affected by multiple samples). -// It will also optimize weights for non-combined samples, which is useful when -// a sample happens in-between texels for numerical reasons. -// -// The math goes as follows: The desired result is a weighted sum, where the -// weights are the coefficients in : -// -// y = sum(c_j x_j, j) -// -// We try to approximate this by a different set of coefficients, which have -// weights d_i and are placed at some fraction to the right of a source texel x_j. -// This means it will influence two texels (x_j and x_{j+1}); generalizing this, -// let us define that w_ij means the amount texel influences bilinear weight -// (keeping in mind that w_ij = 0 for all but at most two different j). -// This means the actually computed result is: -// -// y' = sum(d_i w_ij x_j, j) -// -// We assume w_ij fixed and wish to find {d_i} so that y' gets as close to y -// as possible. Specifically, let us consider the sum of squred errors of the -// coefficients: -// -// ε² = sum((sum( d_i w_ij, i ) - c_j)², j) -// -// The standard trick, which also applies just fine here, is to differentiate -// the error with respect to each variable we wish to optimize, and set each -// such expression to zero. Solving this equation set (which we can do efficiently -// by letting Eigen invert a sparse matrix for us) yields the minimum possible -// error. To see the form each such equation takes, pick any value k and -// differentiate the expression by d_k: -// -// ∂(ε²)/∂(d_k) = sum(2(sum( d_i w_ij, i ) - c_j) w_kj, j) -// -// Setting this expression equal to zero, dropping the irrelevant factor 2 and -// rearranging yields: -// -// sum(w_kj sum( d_i w_ij, i ), j) = sum(w_kj c_j, j) -// -// where again, we remember where the sums over j are over at most two elements, -// since w_ij is nonzero for at most two values of j. -template -void optimize_sum_sq_error(const Tap* weights, unsigned num_weights, - Tap* bilinear_weights, unsigned num_bilinear_weights, - unsigned size) -{ - // Find the range of the desired weights. - int c_lower_pos = lrintf(weights[0].pos * size - 0.5); - int c_upper_pos = lrintf(weights[num_weights - 1].pos * size - 0.5) + 1; - - SparseMatrix A(num_bilinear_weights, num_bilinear_weights); - SparseVector b(num_bilinear_weights); - - // Convert each bilinear weight to the (x, frac) form for less junk in the code below. - int* pos = new int[num_bilinear_weights]; - float* fracs = new float[num_bilinear_weights]; - for (unsigned i = 0; i < num_bilinear_weights; ++i) { - const float pixel_pos = to_fp64(bilinear_weights[i].pos) * size - 0.5f; - const float f = pixel_pos - floor(pixel_pos); - pos[i] = int(floor(pixel_pos)); - fracs[i] = lrintf(f / movit_texel_subpixel_precision) * movit_texel_subpixel_precision; - } - - // The index ordering is a bit unusual to fit better with the - // notation in the derivation above. - for (unsigned k = 0; k < num_bilinear_weights; ++k) { - for (int j = pos[k]; j <= pos[k] + 1; ++j) { - const float w_kj = (j == pos[k]) ? (1.0f - fracs[k]) : fracs[k]; - for (unsigned i = 0; i < num_bilinear_weights; ++i) { - float w_ij; - if (j == pos[i]) { - w_ij = 1.0f - fracs[i]; - } else if (j == pos[i] + 1) { - w_ij = fracs[i]; - } else { - // w_ij = 0 - continue; - } - A.coeffRef(i, k) += w_kj * w_ij; - } - float c_j; - if (j >= c_lower_pos && j < c_upper_pos) { - c_j = weights[j - c_lower_pos].weight; - } else { - c_j = 0.0f; - } - b.coeffRef(k) += w_kj * c_j; - } - } - delete[] pos; - delete[] fracs; - - A.makeCompressed(); - SparseQR, COLAMDOrdering > qr(A); - assert(qr.info() == Success); - SparseMatrix new_weights = qr.solve(b); - assert(qr.info() == Success); - - for (unsigned i = 0; i < num_bilinear_weights; ++i) { - bilinear_weights[i].weight = from_fp64(new_weights.coeff(i, 0)); - } - normalize_sum(bilinear_weights, num_bilinear_weights); -} - } // namespace ResampleEffect::ResampleEffect() @@ -471,7 +434,8 @@ SingleResamplePassEffect::SingleResamplePassEffect(ResampleEffect *parent) last_output_width(-1), last_output_height(-1), last_offset(0.0 / 0.0), // NaN. - last_zoom(0.0 / 0.0) // NaN. + last_zoom(0.0 / 0.0), // NaN. + last_texture_width(-1), last_texture_height(-1) { register_int("direction", (int *)&direction); register_int("input_width", &input_width); @@ -480,8 +444,21 @@ SingleResamplePassEffect::SingleResamplePassEffect(ResampleEffect *parent) register_int("output_height", &output_height); register_float("offset", &offset); register_float("zoom", &zoom); + register_uniform_sampler2d("sample_tex", &uniform_sample_tex); + register_uniform_int("num_samples", &uniform_num_samples); + register_uniform_float("num_loops", &uniform_num_loops); + register_uniform_float("slice_height", &uniform_slice_height); + register_uniform_float("sample_x_scale", &uniform_sample_x_scale); + register_uniform_float("sample_x_offset", &uniform_sample_x_offset); + register_uniform_float("whole_pixel_offset", &uniform_whole_pixel_offset); glGenTextures(1, &texnum); + + if (!lanczos_table_init_done) { + // Could in theory race between two threads if we are unlucky, + // but that is harmless, since they'll write the same data. + init_lanczos_table(); + } } SingleResamplePassEffect::~SingleResamplePassEffect() @@ -523,12 +500,68 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str assert(false); } + ScalingWeights weights = calculate_scaling_weights(src_size, dst_size, zoom, offset); + src_bilinear_samples = weights.src_bilinear_samples; + num_loops = weights.num_loops; + slice_height = 1.0f / weights.num_loops; + + // Encode as a two-component texture. Note the GL_REPEAT. + glActiveTexture(GL_TEXTURE0 + *sampler_num); + check_error(); + glBindTexture(GL_TEXTURE_2D, texnum); + check_error(); + if (last_texture_width == -1) { + // Need to set this state the first time. + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); + check_error(); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); + check_error(); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); + check_error(); + } + + GLenum type, internal_format; + void *pixels; + assert((weights.bilinear_weights_fp16 == nullptr) != (weights.bilinear_weights_fp32 == nullptr)); + if (weights.bilinear_weights_fp32 != nullptr) { + type = GL_FLOAT; + internal_format = GL_RG32F; + pixels = weights.bilinear_weights_fp32.get(); + } else { + type = GL_HALF_FLOAT; + internal_format = GL_RG16F; + pixels = weights.bilinear_weights_fp16.get(); + } + + if (int(weights.src_bilinear_samples) == last_texture_width && + int(weights.dst_samples) == last_texture_height && + internal_format == last_texture_internal_format) { + // Texture dimensions and type are unchanged; it is more efficient + // to just update it rather than making an entirely new texture. + glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, weights.src_bilinear_samples, weights.dst_samples, GL_RG, type, pixels); + } else { + glTexImage2D(GL_TEXTURE_2D, 0, internal_format, weights.src_bilinear_samples, weights.dst_samples, 0, GL_RG, type, pixels); + last_texture_width = weights.src_bilinear_samples; + last_texture_height = weights.dst_samples; + last_texture_internal_format = internal_format; + } + check_error(); +} + +ScalingWeights calculate_scaling_weights(unsigned src_size, unsigned dst_size, float zoom, float offset) +{ + if (!lanczos_table_init_done) { + // Only needed if run from outside ResampleEffect. + init_lanczos_table(); + } + // For many resamplings (e.g. 640 -> 1280), we will end up with the same // set of samples over and over again in a loop. Thus, we can compute only // the first such loop, and then ask the card to repeat the texture for us. // This is both easier on the texture cache and lowers our CPU cost for // generating the kernel somewhat. float scaling_factor; + int num_loops; if (fabs(zoom - 1.0f) < 1e-6) { num_loops = gcd(src_size, dst_size); scaling_factor = float(dst_size) / float(src_size); @@ -541,7 +574,6 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str num_loops = 1; scaling_factor = zoom * float(dst_size) / float(src_size); } - slice_height = 1.0f / num_loops; unsigned dst_samples = dst_size / num_loops; // Sample the kernel in the right place. A diagram with a triangular kernel @@ -596,7 +628,7 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str float radius_scaling_factor = min(scaling_factor, 1.0f); int int_radius = lrintf(LANCZOS_RADIUS / radius_scaling_factor); int src_samples = int_radius * 2 + 1; - Tap *weights = new Tap[dst_samples * src_samples]; + unique_ptr[]> weights(new Tap[dst_samples * src_samples]); float subpixel_offset = offset - lrintf(offset); // The part not covered by whole_pixel_offset. assert(subpixel_offset >= -0.5f && subpixel_offset <= 0.5f); for (unsigned y = 0; y < dst_samples; ++y) { @@ -606,67 +638,47 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str int base_src_y = lrintf(center_src_y); // Now sample pixels on each side around that point. + float inv_src_size = 1.0 / float(src_size); for (int i = 0; i < src_samples; ++i) { int src_y = base_src_y + i - int_radius; - float weight = lanczos_weight(radius_scaling_factor * (src_y - center_src_y - subpixel_offset), LANCZOS_RADIUS); + float weight = lanczos_weight_cached(radius_scaling_factor * (src_y - center_src_y - subpixel_offset)); weights[y * src_samples + i].weight = weight * radius_scaling_factor; - weights[y * src_samples + i].pos = (src_y + 0.5) / float(src_size); + weights[y * src_samples + i].pos = (src_y + 0.5f) * inv_src_size; } } // Now make use of the bilinear filtering in the GPU to reduce the number of samples // we need to make. Try fp16 first; if it's not accurate enough, we go to fp32. - Tap *bilinear_weights_fp16; - src_bilinear_samples = combine_many_samples(weights, src_size, src_samples, dst_samples, &bilinear_weights_fp16); - Tap *bilinear_weights_fp32 = NULL; - bool fallback_to_fp32 = false; + // Our tolerance level for total error is a bit higher than the one for invididual + // samples, since one would assume overall errors in the shape don't matter as much. + const float max_error = 2.0f / (255.0f * 255.0f); + unique_ptr[]> bilinear_weights_fp16; + int src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, dst_samples, &bilinear_weights_fp16); + unique_ptr[]> bilinear_weights_fp32 = NULL; double max_sum_sq_error_fp16 = 0.0; for (unsigned y = 0; y < dst_samples; ++y) { - optimize_sum_sq_error( - weights + y * src_samples, src_samples, - bilinear_weights_fp16 + y * src_bilinear_samples, src_bilinear_samples, - src_size); double sum_sq_error_fp16 = compute_sum_sq_error( - weights + y * src_samples, src_samples, - bilinear_weights_fp16 + y * src_bilinear_samples, src_bilinear_samples, + weights.get() + y * src_samples, src_samples, + bilinear_weights_fp16.get() + y * src_bilinear_samples, src_bilinear_samples, src_size); max_sum_sq_error_fp16 = std::max(max_sum_sq_error_fp16, sum_sq_error_fp16); - } - - // Our tolerance level for total error is a bit higher than the one for invididual - // samples, since one would assume overall errors in the shape don't matter as much. - if (max_sum_sq_error_fp16 > 2.0f / (255.0f * 255.0f)) { - fallback_to_fp32 = true; - src_bilinear_samples = combine_many_samples(weights, src_size, src_samples, dst_samples, &bilinear_weights_fp32); - for (unsigned y = 0; y < dst_samples; ++y) { - optimize_sum_sq_error( - weights + y * src_samples, src_samples, - bilinear_weights_fp32 + y * src_bilinear_samples, src_bilinear_samples, - src_size); + if (max_sum_sq_error_fp16 > max_error) { + break; } } - // Encode as a two-component texture. Note the GL_REPEAT. - glActiveTexture(GL_TEXTURE0 + *sampler_num); - check_error(); - glBindTexture(GL_TEXTURE_2D, texnum); - check_error(); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); - check_error(); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); - check_error(); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); - check_error(); - if (fallback_to_fp32) { - glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, src_bilinear_samples, dst_samples, 0, GL_RG, GL_FLOAT, bilinear_weights_fp32); - } else { - glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, src_bilinear_samples, dst_samples, 0, GL_RG, GL_HALF_FLOAT, bilinear_weights_fp16); + if (max_sum_sq_error_fp16 > max_error) { + bilinear_weights_fp16.reset(); + src_bilinear_samples = combine_many_samples(weights.get(), src_size, src_samples, dst_samples, &bilinear_weights_fp32); } - check_error(); - delete[] weights; - delete[] bilinear_weights_fp16; - delete[] bilinear_weights_fp32; + ScalingWeights ret; + ret.src_bilinear_samples = src_bilinear_samples; + ret.dst_samples = dst_samples; + ret.num_loops = num_loops; + ret.bilinear_weights_fp16 = move(bilinear_weights_fp16); + ret.bilinear_weights_fp32 = move(bilinear_weights_fp32); + return ret; } void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num) @@ -698,31 +710,31 @@ void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const strin glBindTexture(GL_TEXTURE_2D, texnum); check_error(); - set_uniform_int(glsl_program_num, prefix, "sample_tex", *sampler_num); + uniform_sample_tex = *sampler_num; ++*sampler_num; - set_uniform_int(glsl_program_num, prefix, "num_samples", src_bilinear_samples); - set_uniform_float(glsl_program_num, prefix, "num_loops", num_loops); - set_uniform_float(glsl_program_num, prefix, "slice_height", slice_height); + uniform_num_samples = src_bilinear_samples; + uniform_num_loops = num_loops; + uniform_slice_height = slice_height; // Instructions for how to convert integer sample numbers to positions in the weight texture. - set_uniform_float(glsl_program_num, prefix, "sample_x_scale", 1.0f / src_bilinear_samples); - set_uniform_float(glsl_program_num, prefix, "sample_x_offset", 0.5f / src_bilinear_samples); + uniform_sample_x_scale = 1.0f / src_bilinear_samples; + uniform_sample_x_offset = 0.5f / src_bilinear_samples; - float whole_pixel_offset; if (direction == SingleResamplePassEffect::VERTICAL) { - whole_pixel_offset = lrintf(offset) / float(input_height); + uniform_whole_pixel_offset = lrintf(offset) / float(input_height); } else { - whole_pixel_offset = lrintf(offset) / float(input_width); + uniform_whole_pixel_offset = lrintf(offset) / float(input_width); } - set_uniform_float(glsl_program_num, prefix, "whole_pixel_offset", whole_pixel_offset); // We specifically do not want mipmaps on the input texture; // they break minification. Node *self = chain->find_node_for_effect(this); - glActiveTexture(chain->get_input_sampler(self, 0)); - check_error(); - glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); - check_error(); + if (chain->has_input_sampler(self, 0)) { + glActiveTexture(chain->get_input_sampler(self, 0)); + check_error(); + glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); + check_error(); + } } } // namespace movit