X-Git-Url: https://git.sesse.net/?p=movit;a=blobdiff_plain;f=resample_effect_test.cpp;h=16bd70c552c5627a63caea619fb913822c3628f1;hp=9678aa015cadfff872f0a17950f8c1f537e7c36b;hb=7d67e608f6e4f6d0823e43ef0b16641a67c1cbfb;hpb=f34b1c36acd27944f00885edfc55363432bfec8e diff --git a/resample_effect_test.cpp b/resample_effect_test.cpp index 9678aa0..16bd70c 100644 --- a/resample_effect_test.cpp +++ b/resample_effect_test.cpp @@ -4,12 +4,18 @@ #include #include +#include + #include "effect_chain.h" #include "flat_input.h" +#include "fp16.h" #include "image_format.h" +#include "init.h" #include "resample_effect.h" #include "test_util.h" +using namespace std; + namespace movit { namespace { @@ -158,8 +164,13 @@ TEST(ResampleEffectTest, UpscaleByThreeGetsCorrectPixelCenters) { tester.run(out_data, GL_RED, COLORSPACE_sRGB, GAMMA_LINEAR); // We only bother checking that the middle pixel is still correct, - // and that symmetry holds. - EXPECT_FLOAT_EQ(1.0, out_data[7 * (size * 3) + 7]); + // and that symmetry holds. Note that the middle weight in practice + // becomes something like 0.99999 due to the normalization + // (some supposedly zero weights become 1e-6 or so), and then after + // squaring, the error compounds. Ironically, less texture precision + // here will give a more accurate result, since the weight can get + // rounded towards 1.0. + EXPECT_NEAR(1.0, out_data[7 * (size * 3) + 7], 1e-3); for (unsigned y = 0; y < size * 3; ++y) { for (unsigned x = 0; x < size * 3; ++x) { EXPECT_NEAR(out_data[y * (size * 3) + x], out_data[(size * 3 - y - 1) * (size * 3) + x], 1e-6); @@ -425,4 +436,68 @@ TEST(ResampleEffectTest, Precision) { expect_equal(expected_data, out_data, size, 1); } +#ifdef HAVE_BENCHMARK +template<> inline uint8_t from_fp32(float x) { return lrintf(x * 255.0f); } + +template +void BM_ResampleEffect(benchmark::State &state, GammaCurve gamma_curve, GLenum output_format, const std::string &shader_type) +{ + DisableComputeShadersTemporarily disabler(shader_type == "fragment"); + if (disabler.should_skip(&state)) return; + + unsigned in_width = state.range(0), in_height = state.range(1); + unsigned out_width = state.range(2), out_height = state.range(3); + + unique_ptr data(new T[in_width * in_height * 4]); + unique_ptr out_data(new T[out_width * out_height * 4]); + + for (unsigned i = 0; i < in_width * in_height * 4; ++i) { + data[i] = from_fp32(rand() / (RAND_MAX + 1.0)); + } + + EffectChainTester tester(nullptr, out_width, out_height, FORMAT_BGRA_POSTMULTIPLIED_ALPHA, COLORSPACE_sRGB, gamma_curve, output_format); + tester.add_input(data.get(), FORMAT_BGRA_POSTMULTIPLIED_ALPHA, COLORSPACE_sRGB, gamma_curve, in_width, in_height); + Effect *resample_effect = tester.get_chain()->add_effect(new ResampleEffect()); + + ASSERT_TRUE(resample_effect->set_int("width", out_width)); + ASSERT_TRUE(resample_effect->set_int("height", out_height)); + + tester.benchmark(state, out_data.get(), GL_BGRA, COLORSPACE_sRGB, gamma_curve, OUTPUT_ALPHA_FORMAT_PREMULTIPLIED); +} + +void BM_ResampleEffectHalf(benchmark::State &state, GammaCurve gamma_curve, const std::string &shader_type) +{ + BM_ResampleEffect(state, gamma_curve, GL_RGBA16F, shader_type); +} + +void BM_ResampleEffectInt8(benchmark::State &state, GammaCurve gamma_curve, const std::string &shader_type) +{ + BM_ResampleEffect(state, gamma_curve, GL_RGBA8, shader_type); +} + +BENCHMARK_CAPTURE(BM_ResampleEffectInt8, Int8Upscale, GAMMA_REC_709, "fragment")->Args({640, 360, 1280, 720})->Args({320, 180, 1280, 720})->Args({321, 181, 1280, 720})->UseRealTime()->Unit(benchmark::kMicrosecond); +BENCHMARK_CAPTURE(BM_ResampleEffectHalf, Float16Upscale, GAMMA_LINEAR, "fragment")->Args({640, 360, 1280, 720})->Args({320, 180, 1280, 720})->Args({321, 181, 1280, 720})->UseRealTime()->Unit(benchmark::kMicrosecond); +BENCHMARK_CAPTURE(BM_ResampleEffectInt8, Int8Downscale, GAMMA_REC_709, "fragment")->Args({1280, 720, 640, 360})->Args({1280, 720, 320, 180})->Args({1280, 720, 321, 181})->UseRealTime()->Unit(benchmark::kMicrosecond); +BENCHMARK_CAPTURE(BM_ResampleEffectHalf, Float16Downscale, GAMMA_LINEAR, "fragment")->Args({1280, 720, 640, 360})->Args({1280, 720, 320, 180})->Args({1280, 720, 321, 181})->UseRealTime()->Unit(benchmark::kMicrosecond); + +void BM_ComputeBilinearScalingWeights(benchmark::State &state) +{ + constexpr unsigned src_size = 1280; + constexpr unsigned dst_size = 35; + int old_precision = movit_texel_subpixel_precision; + movit_texel_subpixel_precision = 64; // To get consistent results across GPUs; this is a CPU test. + + // One iteration warmup to make sure the Lanczos table is computed. + calculate_bilinear_scaling_weights(src_size, dst_size, 0.999f, 0.0f); + + for (auto _ : state) { + ScalingWeights weights = calculate_bilinear_scaling_weights(src_size, dst_size, 0.999f, 0.0f); + } + + movit_texel_subpixel_precision = old_precision; +} +BENCHMARK(BM_ComputeBilinearScalingWeights)->Unit(benchmark::kMicrosecond); + +#endif + } // namespace movit