]> git.sesse.net Git - movit/commitdiff
Make ResampleEffect fall back to fp32 as needed.
authorSteinar H. Gunderson <sgunderson@bigfoot.com>
Sat, 21 Feb 2015 17:54:56 +0000 (18:54 +0100)
committerSteinar H. Gunderson <sgunderson@bigfoot.com>
Sat, 21 Feb 2015 17:54:56 +0000 (18:54 +0100)
This should kill all precision issues when zooming. There are still
a few tricks we can do to improve fp16, but that's primarily a
performance issue.

resample_effect.cpp
resample_effect_test.cpp

index 9838cd429f0129b3e8b6bb947bfa3c34d0169e78..f4808c4560437288a327156f10a2f0e794e1f991 100644 (file)
@@ -11,6 +11,7 @@
 #include "effect_chain.h"
 #include "effect_util.h"
 #include "fp16.h"
+#include "init.h"
 #include "resample_effect.h"
 #include "util.h"
 
@@ -56,7 +57,7 @@ unsigned gcd(unsigned a, unsigned b)
 }
 
 template<class DestFloat>
-unsigned combine_samples(Tap<float> *src, Tap<DestFloat> *dst, unsigned src_size, unsigned num_src_samples, unsigned max_samples_saved)
+unsigned combine_samples(const Tap<float> *src, Tap<DestFloat> *dst, unsigned src_size, unsigned num_src_samples, unsigned max_samples_saved)
 {
        unsigned num_samples_saved = 0;
        for (unsigned i = 0, j = 0; i < num_src_samples; ++i, ++j) {
@@ -96,7 +97,7 @@ unsigned combine_samples(Tap<float> *src, Tap<DestFloat> *dst, unsigned src_size
                // but since the artifacts are not really random, they can get quite
                // visible. On the other hand, going to 0.25f, I can see no change at
                // all with 8-bit output, so it would not seem to be worth it.)
-               if (sum_sq_error > 0.5f / (256.0f * 256.0f)) {
+               if (sum_sq_error > 0.5f / (255.0f * 255.0f)) {
                        continue;
                }
 
@@ -112,6 +113,109 @@ unsigned combine_samples(Tap<float> *src, Tap<DestFloat> *dst, unsigned src_size
        return num_samples_saved;
 }
 
+// Make use of the bilinear filtering in the GPU to reduce the number of samples
+// we need to make. This is a bit more complex than BlurEffect since we cannot combine
+// two neighboring samples if their weights have differing signs, so we first need to
+// figure out the maximum number of samples. Then, we downconvert all the weights to
+// that number -- we could have gone for a variable-length system, but this is simpler,
+// and the gains would probably be offset by the extra cost of checking when to stop.
+//
+// The greedy strategy for combining samples is optimal.
+template<class DestFloat>
+unsigned combine_many_samples(const Tap<float> *weights, unsigned src_size, unsigned src_samples, unsigned dst_samples, Tap<DestFloat> **bilinear_weights)
+{
+       int src_bilinear_samples = 0;
+       for (unsigned y = 0; y < dst_samples; ++y) {
+               unsigned num_samples_saved = combine_samples<DestFloat>(weights + y * src_samples, NULL, src_size, src_samples, UINT_MAX);
+               src_bilinear_samples = max<int>(src_bilinear_samples, src_samples - num_samples_saved);
+       }
+
+       // Now that we know the right width, actually combine the samples.
+       *bilinear_weights = new Tap<DestFloat>[dst_samples * src_bilinear_samples];
+       for (unsigned y = 0; y < dst_samples; ++y) {
+               Tap<DestFloat> *bilinear_weights_ptr = *bilinear_weights + y * src_bilinear_samples;
+               unsigned num_samples_saved = combine_samples(
+                       weights + y * src_samples,
+                       bilinear_weights_ptr,
+                       src_size,
+                       src_samples,
+                       src_samples - src_bilinear_samples);
+               assert(int(src_samples) - int(num_samples_saved) == src_bilinear_samples);
+
+               // Normalize so that the sum becomes one. Note that we do it twice;
+               // this sometimes helps a tiny little bit when we have many samples.
+               for (int normalize_pass = 0; normalize_pass < 2; ++normalize_pass) {
+                       double sum = 0.0;
+                       for (int i = 0; i < src_bilinear_samples; ++i) {
+                               sum += to_fp64(bilinear_weights_ptr[i].weight);
+                       }
+                       for (int i = 0; i < src_bilinear_samples; ++i) {
+                               bilinear_weights_ptr[i].weight = from_fp64<DestFloat>(
+                                       to_fp64(bilinear_weights_ptr[i].weight) / sum);
+                       }
+               }
+       }
+       return src_bilinear_samples;
+}
+
+// Compute the sum of squared errors between the ideal weights (which are
+// assumed to fall exactly on pixel centers) and the weights that result
+// from sampling at <bilinear_weights>. The primary reason for the difference
+// is inaccuracy in the sampling positions, both due to limited precision
+// in storing them (already inherent in sending them in as fp16_int_t)
+// and in subtexel sampling precision (which we calculate in this function).
+template<class T>
+double compute_sum_sq_error(const Tap<float>* weights, unsigned num_weights,
+                            const Tap<T>* bilinear_weights, unsigned num_bilinear_weights,
+                            unsigned size)
+{
+       // Find the effective range of the bilinear-optimized kernel.
+       // Due to rounding of the positions, this is not necessarily the same
+       // as the intended range (ie., the range of the original weights).
+       int lower_pos = int(floor(to_fp64(bilinear_weights[0].pos) * size - 0.5));
+       int upper_pos = int(ceil(to_fp64(bilinear_weights[num_bilinear_weights - 1].pos) * size - 0.5)) + 2;
+       lower_pos = min<int>(lower_pos, lrintf(weights[0].pos * size - 0.5));
+       upper_pos = max<int>(upper_pos, lrintf(weights[num_weights - 1].pos * size - 0.5));
+
+       float* effective_weights = new float[upper_pos - lower_pos];
+       for (int i = 0; i < upper_pos - lower_pos; ++i) {
+               effective_weights[i] = 0.0f;
+       }
+
+       // Now find the effective weights that result from this sampling.
+       for (unsigned i = 0; i < num_bilinear_weights; ++i) {
+               const float pixel_pos = to_fp64(bilinear_weights[i].pos) * size - 0.5f;
+               const int x0 = int(floor(pixel_pos)) - lower_pos;
+               const int x1 = x0 + 1;
+               const float f = lrintf((pixel_pos - (x0 + lower_pos)) / movit_texel_subpixel_precision) * movit_texel_subpixel_precision;
+
+               assert(x0 >= 0);
+               assert(x1 >= 0);
+               assert(x0 < upper_pos - lower_pos);
+               assert(x1 < upper_pos - lower_pos);
+
+               effective_weights[x0] += to_fp64(bilinear_weights[i].weight) * (1.0 - f);
+               effective_weights[x1] += to_fp64(bilinear_weights[i].weight) * f;
+       }
+
+       // Subtract the desired weights to get the error.
+       for (unsigned i = 0; i < num_weights; ++i) {
+               const int x = lrintf(weights[i].pos * size - 0.5f) - lower_pos;
+               assert(x >= 0);
+               assert(x < upper_pos - lower_pos);
+
+               effective_weights[x] -= weights[i].weight;
+       }
+
+       double sum_sq_error = 0.0;
+       for (unsigned i = 0; i < num_weights; ++i) {
+               sum_sq_error += effective_weights[i] * effective_weights[i];
+       }
+
+       delete[] effective_weights;
+       return sum_sq_error;
+}
+
 }  // namespace
 
 ResampleEffect::ResampleEffect()
@@ -397,43 +501,25 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str
        }
 
        // Now make use of the bilinear filtering in the GPU to reduce the number of samples
-       // we need to make. This is a bit more complex than BlurEffect since we cannot combine
-       // two neighboring samples if their weights have differing signs, so we first need to
-       // figure out the maximum number of samples. Then, we downconvert all the weights to
-       // that number -- we could have gone for a variable-length system, but this is simpler,
-       // and the gains would probably be offset by the extra cost of checking when to stop.
-       //
-       // The greedy strategy for combining samples is optimal.
-       src_bilinear_samples = 0;
+       // we need to make. Try fp16 first; if it's not accurate enough, we go to fp32.
+       Tap<fp16_int_t> *bilinear_weights_fp16;
+       src_bilinear_samples = combine_many_samples(weights, src_size, src_samples, dst_samples, &bilinear_weights_fp16);
+       Tap<float> *bilinear_weights_fp32 = NULL;
+       bool fallback_to_fp32 = false;
+       double max_sum_sq_error_fp16 = 0.0;
        for (unsigned y = 0; y < dst_samples; ++y) {
-               unsigned num_samples_saved = combine_samples<fp16_int_t>(weights + y * src_samples, NULL, src_size, src_samples, UINT_MAX);
-               src_bilinear_samples = max<int>(src_bilinear_samples, src_samples - num_samples_saved);
+               double sum_sq_error_fp16 = compute_sum_sq_error(
+                       weights + y * src_samples, src_samples,
+                       bilinear_weights_fp16 + y * src_bilinear_samples, src_bilinear_samples,
+                       src_size);
+               max_sum_sq_error_fp16 = std::max(max_sum_sq_error_fp16, sum_sq_error_fp16);
        }
 
-       // Now that we know the right width, actually combine the samples.
-       Tap<fp16_int_t> *bilinear_weights = new Tap<fp16_int_t>[dst_samples * src_bilinear_samples];
-       for (unsigned y = 0; y < dst_samples; ++y) {
-               Tap<fp16_int_t> *bilinear_weights_ptr = bilinear_weights + y * src_bilinear_samples;
-               unsigned num_samples_saved = combine_samples(
-                       weights + y * src_samples,
-                       bilinear_weights_ptr,
-                       src_size,
-                       src_samples,
-                       src_samples - src_bilinear_samples);
-               assert(int(src_samples) - int(num_samples_saved) == src_bilinear_samples);
-
-               // Normalize so that the sum becomes one. Note that we do it twice;
-               // this sometimes helps a tiny little bit when we have many samples.
-               for (int normalize_pass = 0; normalize_pass < 2; ++normalize_pass) {
-                       double sum = 0.0;
-                       for (int i = 0; i < src_bilinear_samples; ++i) {
-                               sum += fp16_to_fp64(bilinear_weights_ptr[i].weight);
-                       }
-                       for (int i = 0; i < src_bilinear_samples; ++i) {
-                               bilinear_weights_ptr[i].weight = fp64_to_fp16(
-                                       fp16_to_fp64(bilinear_weights_ptr[i].weight) / sum);
-                       }
-               }
+       // Our tolerance level for total error is a bit higher than the one for invididual
+       // samples, since one would assume overall errors in the shape don't matter as much.
+       if (max_sum_sq_error_fp16 > 2.0f / (255.0f * 255.0f)) {
+               fallback_to_fp32 = true;
+               src_bilinear_samples = combine_many_samples(weights, src_size, src_samples, dst_samples, &bilinear_weights_fp32);
        }
 
        // Encode as a two-component texture. Note the GL_REPEAT.
@@ -447,11 +533,16 @@ void SingleResamplePassEffect::update_texture(GLuint glsl_program_num, const str
        check_error();
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        check_error();
-       glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, src_bilinear_samples, dst_samples, 0, GL_RG, GL_HALF_FLOAT, bilinear_weights);
+       if (fallback_to_fp32) {
+               glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, src_bilinear_samples, dst_samples, 0, GL_RG, GL_FLOAT, bilinear_weights_fp32);
+       } else {
+               glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, src_bilinear_samples, dst_samples, 0, GL_RG, GL_HALF_FLOAT, bilinear_weights_fp16);
+       }
        check_error();
 
        delete[] weights;
-       delete[] bilinear_weights;
+       delete[] bilinear_weights_fp16;
+       delete[] bilinear_weights_fp32;
 }
 
 void SingleResamplePassEffect::set_gl_state(GLuint glsl_program_num, const string &prefix, unsigned *sampler_num)
index 5b620fde76f8c13fe80496c92b8fd8d61237cf62..353429ee82a703f5c0f6fcf7c6ef11825ef72c0c 100644 (file)
@@ -402,7 +402,7 @@ TEST(ResampleEffectTest, VerticalZoomFromTop) {
 }
 
 TEST(ResampleEffectTest, Precision) {
-       const int size = 2048;
+       const int size = 1920;  // Difficult non-power-of-two size.
        const int offset = 5;
 
        // Deliberately put the data of interest very close to the right,