#version 450 core in vec3 tc; out vec2 derivatives; out float beta_0; uniform sampler2DArray tex; void main() { float x_m2 = textureOffset(tex, tc, ivec2(-2, 0)).x; float x_m1 = textureOffset(tex, tc, ivec2(-1, 0)).x; float x_p1 = textureOffset(tex, tc, ivec2( 1, 0)).x; float x_p2 = textureOffset(tex, tc, ivec2( 2, 0)).x; float y_m2 = textureOffset(tex, tc, ivec2( 0, -2)).x; float y_m1 = textureOffset(tex, tc, ivec2( 0, -1)).x; float y_p1 = textureOffset(tex, tc, ivec2( 0, 1)).x; float y_p2 = textureOffset(tex, tc, ivec2( 0, 2)).x; derivatives.x = (x_p1 - x_m1) * (2.0/3.0) + (x_m2 - x_p2) * (1.0/12.0); derivatives.y = (y_p1 - y_m1) * (2.0/3.0) + (y_m2 - y_p2) * (1.0/12.0); // The nudge term in the square root in the DeepFlow paper is ζ² = 0.1² = 0.01. // But this is assuming a 0..255 level. Given the nonlinearities in the expression // where β_0 appears, there's no 100% equivalent way to adjust this // constant that I can see, but taking it to (0.1/255)² ~= 1.53e-7 ~= // 1e-7 ought to be good enough. I guess the basic idea is that it // will only matter for near-zero derivatives anyway. I am a tiny // bit worried about fp16 precision when storing these numbers, but OK. beta_0 = 1.0 / (derivatives.x * derivatives.x + derivatives.y * derivatives.y + 1e-7); }