#version 450 core in vec3 tc, tc_left, tc_down; in vec3 equation_tc_assuming_left, equation_tc_assuming_right; in float element_x_idx, element_sum_idx; out vec2 diff_flow; uniform sampler2DArray diff_flow_tex, diffusivity_tex; uniform usampler2DArray equation_red_tex, equation_black_tex; uniform int phase; uniform int num_nonzero_phases; // See pack_floats_shared() in equations.frag. vec2 unpack_floats_shared(uint c) { // Recover the exponent, and multiply it in. Add one because // we have denormalized mantissas, then another one because we // already reduced the exponent by one. Then subtract 20, because // we are going to shift up the number by 20 below to recover the sign bits. float normalizer = uintBitsToFloat(((c >> 1) & 0x7f800000u) - (18 << 23)); normalizer *= (1.0 / 2047.0); // Shift the values up so that we recover the sign bit, then normalize. float a = int(uint(c & 0x000fffu) << 20) * normalizer; float b = int(uint(c & 0xfff000u) << 8) * normalizer; return vec2(a, b); } float zero_if_outside_border(vec4 val) { if (val.w < 1.0f) { // We hit the border (or more like half-way to it), so zero smoothness. return 0.0f; } else { return val.x; } } void main() { // Red-black SOR: Every other pass, we update every other element in a // checkerboard pattern. This is rather suboptimal for the GPU, as it // just immediately throws away half of the warp, but it helps convergence // a _lot_ (rough testing indicates that five iterations of SOR is as good // as ~50 iterations of Jacobi). We could probably do better by reorganizing // the data into two-values-per-pixel, so-called “twinned buffering”; // seemingly, it helps Haswell by ~15% on the SOR code, but GTX 950 not at all // (at least not on 720p). Presumably the latter is already bandwidth bound. int color = int(round(element_sum_idx)) & 1; if (color != phase) discard; uvec4 equation; vec3 equation_tc; if ((int(round(element_x_idx)) & 1) == 0) { equation_tc = equation_tc_assuming_left; } else { equation_tc = equation_tc_assuming_right; } if (phase == 0) { equation = texture(equation_red_tex, equation_tc); } else { equation = texture(equation_black_tex, equation_tc); } float inv_A11 = uintBitsToFloat(equation.x); float A12 = uintBitsToFloat(equation.y); float inv_A22 = uintBitsToFloat(equation.z); vec2 b = unpack_floats_shared(equation.w); const float omega = 1.8; // Marginally better than 1.6, it seems. if (num_nonzero_phases == 0) { // Simplified version of the code below, assuming diff_flow == 0.0f everywhere. diff_flow.x = omega * b.x * inv_A11; diff_flow.y = omega * b.y * inv_A22; } else { // Subtract the missing terms from the right-hand side // (it couldn't be done earlier, because we didn't know // the values of the neighboring pixels; they change for // each SOR iteration). float smooth_l = zero_if_outside_border(texture(diffusivity_tex, tc_left)); float smooth_r = zero_if_outside_border(textureOffset(diffusivity_tex, tc_left, ivec2(1, 0))); float smooth_d = zero_if_outside_border(texture(diffusivity_tex, tc_down)); float smooth_u = zero_if_outside_border(textureOffset(diffusivity_tex, tc_down, ivec2(0, 1))); b += smooth_l * textureOffset(diff_flow_tex, tc, ivec2(-1, 0)).xy; b += smooth_r * textureOffset(diff_flow_tex, tc, ivec2( 1, 0)).xy; b += smooth_d * textureOffset(diff_flow_tex, tc, ivec2( 0, -1)).xy; b += smooth_u * textureOffset(diff_flow_tex, tc, ivec2( 0, 1)).xy; if (num_nonzero_phases == 1) { diff_flow = vec2(0.0f); } else { diff_flow = texture(diff_flow_tex, tc).xy; } // From https://en.wikipedia.org/wiki/Successive_over-relaxation. float sigma_u = A12 * diff_flow.y; diff_flow.x += omega * ((b.x - sigma_u) * inv_A11 - diff_flow.x); float sigma_v = A12 * diff_flow.x; diff_flow.y += omega * ((b.y - sigma_v) * inv_A22 - diff_flow.y); } }