#version 440 #extension GL_NV_gpu_shader5 : enable layout(local_size_x = 1) in; const uint prob_bits = 13; // Note! const uint prob_scale = 1 << prob_bits; const uint RANS_BYTE_L = (1u << 23); const uint BLOCKS_PER_STREAM = 320; const uint STREAM_BUF_SIZE = 1024; // 1 kB per stream ought to be enough for everyone :-) const uint NUM_SYMS = 256; const uint ESCAPE_LIMIT = NUM_SYMS - 1; #define MAPPING(s0, s1, s2, s3, s4, s5, s6, s7) ((s0) | (s1 << 2) | (s2 << 4) | (s3 << 6) | (s4 << 8) | (s5 << 10) | (s6 << 12) | (s7 << 14)) const uint luma_mapping[8] = { MAPPING(0, 0, 1, 1, 2, 2, 3, 3), MAPPING(0, 0, 1, 2, 2, 2, 3, 3), MAPPING(1, 1, 2, 2, 2, 3, 3, 3), MAPPING(1, 1, 2, 2, 2, 3, 3, 3), MAPPING(1, 2, 2, 2, 2, 3, 3, 3), MAPPING(2, 2, 2, 2, 3, 3, 3, 3), MAPPING(2, 2, 3, 3, 3, 3, 3, 3), MAPPING(3, 3, 3, 3, 3, 3, 3, 3), }; layout(std430, binding = 9) buffer layoutName { uint dist[4 * 256]; uvec2 ransdist[4 * 256]; }; layout(std430, binding = 10) buffer outputBuf { uint8_t rans_output[]; }; layout(std430, binding = 11) buffer outputBuf2 { uint rans_start_offset[]; }; struct RansEncoder { uint stream_num; // const uint lut_base; // const uint rans_offset; uint rans; }; layout(r16ui) uniform restrict readonly uimage2D dc_ac7_tex; layout(r16ui) uniform restrict readonly uimage2D ac1_ac6_tex; layout(r16ui) uniform restrict readonly uimage2D ac2_ac5_tex; layout(r8i) uniform restrict readonly iimage2D ac3_tex; layout(r8i) uniform restrict readonly iimage2D ac4_tex; void RansEncInit(uint streamgroup_num, uint coeff_row, uint coeff_col, uint dist_num, out RansEncoder enc) { enc.stream_num = streamgroup_num * 64 + coeff_row * 8 + coeff_col; enc.lut_base = dist_num * 256; enc.rans_offset = enc.stream_num * STREAM_BUF_SIZE + STREAM_BUF_SIZE; // Starts at the end. enc.rans = RANS_BYTE_L; } void RansEncRenorm(inout uint rans, inout uint rans_offset, uint freq, uint prob_bits) { uint x_max = ((RANS_BYTE_L >> prob_bits) << 8) * freq; // this turns into a shift. if (rans >= x_max) { do { rans_output[--rans_offset] = uint8_t(rans & 0xff); rans >>= 8; } while (rans >= x_max); } } void RansEncPut(inout uint rans, inout uint rans_offset, uint start, uint freq, uint prob_bits) { RansEncRenorm(rans, rans_offset, freq, prob_bits); rans = ((rans / freq) << prob_bits) + (rans % freq) + start; } void RansEncFlush(uint rans, inout uint rans_offset) { rans_offset -= 4; rans_output[rans_offset + 0] = uint8_t(rans >> 0); rans_output[rans_offset + 1] = uint8_t(rans >> 8); rans_output[rans_offset + 2] = uint8_t(rans >> 16); rans_output[rans_offset + 3] = uint8_t(rans >> 24); } void encode_coeff(uint coeff, uint bits, inout RansEncoder enc) { // Sign-extend to recover the coefficient. // FIXME: not needed for the bits == 8 case! int signed_k = int(coeff << (32 - bits)) >> (32 - bits); uint k = abs(signed_k); if (k >= ESCAPE_LIMIT) { // ... boring stuff here RansEncPut(enc.rans, enc.rans_offset, k, 1, prob_bits); k = ESCAPE_LIMIT; } uvec2 sym = ransdist[enc.lut_base + (k - 1) & (NUM_SYMS - 1)]; RansEncPut(enc.rans, enc.rans_offset, sym.x, sym.y, prob_bits); // fix some bias stuff here } void encode_end(inout RansEncoder enc) { RansEncFlush(enc.rans, enc.rans_offset); rans_start_offset[enc.stream_num] = enc.rans_offset; } void encode_9_7(uint streamgroup_num, uint coeff_row, layout(r16ui) restrict readonly uimage2D tex, uint col1, uint col2, uint dist1, uint dist2) { RansEncoder enc1, enc2; RansEncInit(streamgroup_num, coeff_row, col1, dist1, enc1); RansEncInit(streamgroup_num, coeff_row, col2, dist2, enc2); for (uint subblock_idx = BLOCKS_PER_STREAM; subblock_idx --> 0; ) { // TODO: Use SSBOs instead of a texture? uint x = (streamgroup_num * BLOCKS_PER_STREAM + subblock_idx) % 160; uint y = (streamgroup_num * BLOCKS_PER_STREAM + subblock_idx) / 160; uint f = imageLoad(tex, ivec2(x, y * 8 + coeff_row)).x; encode_coeff(f & 0x1ffu, 9, enc1); encode_coeff(f >> 9, 7, enc2); } encode_end(enc1); encode_end(enc2); } void encode_8(uint streamgroup_num, uint coeff_row, layout(r8i) restrict readonly iimage2D tex, uint col, uint dist) { RansEncoder enc; RansEncInit(streamgroup_num, coeff_row, col, dist, enc); for (uint subblock_idx = BLOCKS_PER_STREAM; subblock_idx --> 0; ) { // TODO: Use SSBOs instead of a texture? uint x = (streamgroup_num * BLOCKS_PER_STREAM + subblock_idx) % 160; uint y = (streamgroup_num * BLOCKS_PER_STREAM + subblock_idx) / 160; int f = imageLoad(tex, ivec2(x, y * 8 + coeff_row)).x; encode_coeff(f, 8, enc); } encode_end(enc); } void main() { uint streamgroup_num = gl_WorkGroupID.x; uint coeff_row = gl_WorkGroupID.y; // 0..7 uint coeff_colset = gl_WorkGroupID.z; // 0 = dc+ac7, 1 = ac1+ac6, 2 = ac2+ac5, 3 = ac3, 4 = ac5 uint m = luma_mapping[coeff_row]; // TODO: DC coeff pred if (coeff_colset == 0) { uint dist_dc = bitfieldExtract(m, 0, 2); uint dist_ac7 = bitfieldExtract(m, 14, 2); encode_9_7(streamgroup_num, coeff_row, dc_ac7_tex, 0, 7, dist_dc, dist_ac7); } else if (coeff_colset == 1) { uint dist_ac1 = bitfieldExtract(m, 2, 2); uint dist_ac6 = bitfieldExtract(m, 12, 2); encode_9_7(streamgroup_num, coeff_row, ac1_ac6_tex, 1, 6, dist_ac1, dist_ac6); } else if (coeff_colset == 2) { uint dist_ac2 = bitfieldExtract(m, 4, 2); uint dist_ac5 = bitfieldExtract(m, 10, 2); encode_9_7(streamgroup_num, coeff_row, ac2_ac5_tex, 2, 5, dist_ac2, dist_ac5); } else if (coeff_colset == 3) { uint dist_ac3 = bitfieldExtract(m, 6, 2); encode_8(streamgroup_num, coeff_row, ac3_tex, 3, dist_ac3); } else { uint dist_ac4 = bitfieldExtract(m, 8, 2); encode_8(streamgroup_num, coeff_row, ac4_tex, 4, dist_ac4); } }