]> git.sesse.net Git - stockfish/blob - src/bitboard.cpp
Restore MS1BTable[]
[stockfish] / src / bitboard.cpp
1 /*
2   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4   Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
5
6   Stockfish is free software: you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation, either version 3 of the License, or
9   (at your option) any later version.
10
11   Stockfish is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with this program.  If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <algorithm>
21 #include <cstring>
22 #include <iostream>
23
24 #include "bitboard.h"
25 #include "bitcount.h"
26 #include "rkiss.h"
27
28 CACHE_LINE_ALIGNMENT
29
30 Bitboard RMasks[64];
31 Bitboard RMagics[64];
32 Bitboard* RAttacks[64];
33 unsigned RShifts[64];
34
35 Bitboard BMasks[64];
36 Bitboard BMagics[64];
37 Bitboard* BAttacks[64];
38 unsigned BShifts[64];
39
40 Bitboard SquareBB[64];
41 Bitboard FileBB[8];
42 Bitboard RankBB[8];
43 Bitboard AdjacentFilesBB[8];
44 Bitboard ThisAndAdjacentFilesBB[8];
45 Bitboard InFrontBB[2][8];
46 Bitboard StepAttacksBB[16][64];
47 Bitboard BetweenBB[64][64];
48 Bitboard SquaresInFrontMask[2][64];
49 Bitboard PassedPawnMask[2][64];
50 Bitboard AttackSpanMask[2][64];
51 Bitboard PseudoAttacks[6][64];
52
53 uint8_t BitCount8Bit[256];
54 int SquareDistance[64][64];
55
56 namespace {
57
58   CACHE_LINE_ALIGNMENT
59
60   int BSFTable[64];
61   int MS1BTable[256];
62   Bitboard RTable[0x19000]; // Storage space for rook attacks
63   Bitboard BTable[0x1480];  // Storage space for bishop attacks
64
65   typedef unsigned (Fn)(Square, Bitboard);
66
67   void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
68                    Bitboard masks[], unsigned shifts[], Square deltas[], Fn index);
69 }
70
71
72 /// print_bitboard() prints a bitboard in an easily readable format to the
73 /// standard output. This is sometimes useful for debugging.
74
75 void print_bitboard(Bitboard b) {
76
77   for (Rank r = RANK_8; r >= RANK_1; r--)
78   {
79       std::cout << "+---+---+---+---+---+---+---+---+" << '\n';
80       for (File f = FILE_A; f <= FILE_H; f++)
81           std::cout << "| " << ((b & make_square(f, r)) ? "X " : "  ");
82
83       std::cout << "|\n";
84   }
85   std::cout << "+---+---+---+---+---+---+---+---+" << std::endl;
86 }
87
88
89 /// first_1() finds the least significant nonzero bit in a nonzero bitboard.
90 /// pop_1st_bit() finds and clears the least significant nonzero bit in a
91 /// nonzero bitboard.
92
93 #if defined(IS_64BIT) && !defined(USE_BSFQ)
94
95 Square first_1(Bitboard b) {
96   return Square(BSFTable[((b & -b) * 0x218A392CD3D5DBFULL) >> 58]);
97 }
98
99 Square pop_1st_bit(Bitboard* b) {
100   Bitboard bb = *b;
101   *b &= (*b - 1);
102   return Square(BSFTable[((bb & -bb) * 0x218A392CD3D5DBFULL) >> 58]);
103 }
104
105 #elif !defined(USE_BSFQ)
106
107 Square first_1(Bitboard b) {
108   b ^= (b - 1);
109   uint32_t fold = unsigned(b) ^ unsigned(b >> 32);
110   return Square(BSFTable[(fold * 0x783A9B23) >> 26]);
111 }
112
113 // Use type-punning
114 union b_union {
115
116     Bitboard dummy;
117     struct {
118 #if defined (BIGENDIAN)
119         uint32_t h;
120         uint32_t l;
121 #else
122         uint32_t l;
123         uint32_t h;
124 #endif
125     } b;
126 };
127
128 Square pop_1st_bit(Bitboard* b) {
129
130    const b_union u = *((b_union*)b);
131
132    if (u.b.l)
133    {
134        ((b_union*)b)->b.l = u.b.l & (u.b.l - 1);
135        return Square(BSFTable[((u.b.l ^ (u.b.l - 1)) * 0x783A9B23) >> 26]);
136    }
137
138    ((b_union*)b)->b.h = u.b.h & (u.b.h - 1);
139    return Square(BSFTable[((~(u.b.h ^ (u.b.h - 1))) * 0x783A9B23) >> 26]);
140 }
141
142 Square last_1(Bitboard b) {
143
144   int result = 0;
145
146   if (b > 0xFFFFFFFF)
147   {
148       b >>= 32;
149       result = 32;
150   }
151
152   if (b > 0xFFFF)
153   {
154       b >>= 16;
155       result += 16;
156   }
157
158   if (b > 0xFF)
159   {
160       b >>= 8;
161       result += 8;
162   }
163
164   return Square(result + MS1BTable[b]);
165 }
166
167 #endif // !defined(USE_BSFQ)
168
169 /// bitboards_init() initializes various bitboard arrays. It is called during
170 /// program initialization.
171
172 void bitboards_init() {
173
174   for (int k = 0, i = 0; i < 8; i++)
175       while (k < (2 << i))
176           MS1BTable[k++] = i;
177
178   for (Bitboard b = 0; b < 256; b++)
179       BitCount8Bit[b] = (uint8_t)popcount<Max15>(b);
180
181   for (Square s = SQ_A1; s <= SQ_H8; s++)
182       SquareBB[s] = 1ULL << s;
183
184   FileBB[FILE_A] = FileABB;
185   RankBB[RANK_1] = Rank1BB;
186
187   for (int f = FILE_B; f <= FILE_H; f++)
188   {
189       FileBB[f] = FileBB[f - 1] << 1;
190       RankBB[f] = RankBB[f - 1] << 8;
191   }
192
193   for (int f = FILE_A; f <= FILE_H; f++)
194   {
195       AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
196       ThisAndAdjacentFilesBB[f] = FileBB[f] | AdjacentFilesBB[f];
197   }
198
199   for (int rw = RANK_7, rb = RANK_2; rw >= RANK_1; rw--, rb++)
200   {
201       InFrontBB[WHITE][rw] = InFrontBB[WHITE][rw + 1] | RankBB[rw + 1];
202       InFrontBB[BLACK][rb] = InFrontBB[BLACK][rb - 1] | RankBB[rb - 1];
203   }
204
205   for (Color c = WHITE; c <= BLACK; c++)
206       for (Square s = SQ_A1; s <= SQ_H8; s++)
207       {
208           SquaresInFrontMask[c][s] = in_front_bb(c, s) & file_bb(s);
209           PassedPawnMask[c][s]     = in_front_bb(c, s) & this_and_adjacent_files_bb(file_of(s));
210           AttackSpanMask[c][s]     = in_front_bb(c, s) & adjacent_files_bb(file_of(s));
211       }
212
213   for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++)
214       for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
215           SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2));
216
217   for (int i = 0; i < 64; i++)
218       if (!Is64Bit) // Matt Taylor's folding trick for 32 bit systems
219       {
220           Bitboard b = 1ULL << i;
221           b ^= b - 1;
222           b ^= b >> 32;
223           BSFTable[(uint32_t)(b * 0x783A9B23) >> 26] = i;
224       }
225       else
226           BSFTable[((1ULL << i) * 0x218A392CD3D5DBFULL) >> 58] = i;
227
228   int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },
229                      {}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } };
230
231   for (Color c = WHITE; c <= BLACK; c++)
232       for (PieceType pt = PAWN; pt <= KING; pt++)
233           for (Square s = SQ_A1; s <= SQ_H8; s++)
234               for (int k = 0; steps[pt][k]; k++)
235               {
236                   Square to = s + Square(c == WHITE ? steps[pt][k] : -steps[pt][k]);
237
238                   if (square_is_ok(to) && square_distance(s, to) < 3)
239                       StepAttacksBB[make_piece(c, pt)][s] |= to;
240               }
241
242   Square RDeltas[] = { DELTA_N,  DELTA_E,  DELTA_S,  DELTA_W  };
243   Square BDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW };
244
245   init_magics(RTable, RAttacks, RMagics, RMasks, RShifts, RDeltas, magic_index<ROOK>);
246   init_magics(BTable, BAttacks, BMagics, BMasks, BShifts, BDeltas, magic_index<BISHOP>);
247
248   for (Square s = SQ_A1; s <= SQ_H8; s++)
249   {
250       PseudoAttacks[BISHOP][s] = attacks_bb<BISHOP>(s, 0);
251       PseudoAttacks[ROOK][s]   = attacks_bb<ROOK>(s, 0);
252       PseudoAttacks[QUEEN][s]  = PseudoAttacks[BISHOP][s] | PseudoAttacks[ROOK][s];
253   }
254
255   for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++)
256       for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
257           if (PseudoAttacks[QUEEN][s1] & s2)
258           {
259               Square delta = (s2 - s1) / square_distance(s1, s2);
260
261               for (Square s = s1 + delta; s != s2; s += delta)
262                   BetweenBB[s1][s2] |= s;
263           }
264 }
265
266
267 namespace {
268
269   Bitboard sliding_attack(Square deltas[], Square sq, Bitboard occupied) {
270
271     Bitboard attack = 0;
272
273     for (int i = 0; i < 4; i++)
274         for (Square s = sq + deltas[i];
275              square_is_ok(s) && square_distance(s, s - deltas[i]) == 1;
276              s += deltas[i])
277         {
278             attack |= s;
279
280             if (occupied & s)
281                 break;
282         }
283
284     return attack;
285   }
286
287
288   Bitboard pick_random(Bitboard mask, RKISS& rk, int booster) {
289
290     Bitboard magic;
291
292     // Values s1 and s2 are used to rotate the candidate magic of a
293     // quantity known to be the optimal to quickly find the magics.
294     int s1 = booster & 63, s2 = (booster >> 6) & 63;
295
296     while (true)
297     {
298         magic = rk.rand<Bitboard>();
299         magic = (magic >> s1) | (magic << (64 - s1));
300         magic &= rk.rand<Bitboard>();
301         magic = (magic >> s2) | (magic << (64 - s2));
302         magic &= rk.rand<Bitboard>();
303
304         if (BitCount8Bit[(mask * magic) >> 56] >= 6)
305             return magic;
306     }
307   }
308
309
310   // init_magics() computes all rook and bishop attacks at startup. Magic
311   // bitboards are used to look up attacks of sliding pieces. As a reference see
312   // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
313   // use the so called "fancy" approach.
314
315   void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
316                    Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) {
317
318     int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 },
319                                { 1059, 3608,  605, 3234, 3326,   38, 2029, 3043 } };
320     RKISS rk;
321     Bitboard occupancy[4096], reference[4096], edges, b;
322     int i, size, booster;
323
324     // attacks[s] is a pointer to the beginning of the attacks table for square 's'
325     attacks[SQ_A1] = table;
326
327     for (Square s = SQ_A1; s <= SQ_H8; s++)
328     {
329         // Board edges are not considered in the relevant occupancies
330         edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
331
332         // Given a square 's', the mask is the bitboard of sliding attacks from
333         // 's' computed on an empty board. The index must be big enough to contain
334         // all the attacks for each possible subset of the mask and so is 2 power
335         // the number of 1s of the mask. Hence we deduce the size of the shift to
336         // apply to the 64 or 32 bits word to get the index.
337         masks[s]  = sliding_attack(deltas, s, 0) & ~edges;
338         shifts[s] = (Is64Bit ? 64 : 32) - popcount<Max15>(masks[s]);
339
340         // Use Carry-Rippler trick to enumerate all subsets of masks[s] and
341         // store the corresponding sliding attack bitboard in reference[].
342         b = size = 0;
343         do {
344             occupancy[size] = b;
345             reference[size++] = sliding_attack(deltas, s, b);
346             b = (b - masks[s]) & masks[s];
347         } while (b);
348
349         // Set the offset for the table of the next square. We have individual
350         // table sizes for each square with "Fancy Magic Bitboards".
351         if (s < SQ_H8)
352             attacks[s + 1] = attacks[s] + size;
353
354         booster = MagicBoosters[Is64Bit][rank_of(s)];
355
356         // Find a magic for square 's' picking up an (almost) random number
357         // until we find the one that passes the verification test.
358         do {
359             magics[s] = pick_random(masks[s], rk, booster);
360             memset(attacks[s], 0, size * sizeof(Bitboard));
361
362             // A good magic must map every possible occupancy to an index that
363             // looks up the correct sliding attack in the attacks[s] database.
364             // Note that we build up the database for square 's' as a side
365             // effect of verifying the magic.
366             for (i = 0; i < size; i++)
367             {
368                 Bitboard& attack = attacks[s][index(s, occupancy[i])];
369
370                 if (attack && attack != reference[i])
371                     break;
372
373                 attack = reference[i];
374             }
375         } while (i != size);
376     }
377   }
378 }