Misc coding style fixes
[stockfish] / src / bitboard.h
1 /*
2   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
5   Copyright (C) 2015-2017 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
6
7   Stockfish is free software: you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation, either version 3 of the License, or
10   (at your option) any later version.
11
12   Stockfish is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program.  If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #ifndef BITBOARD_H_INCLUDED
22 #define BITBOARD_H_INCLUDED
23
24 #include <string>
25
26 #include "types.h"
27
28 namespace Bitbases {
29
30 void init();
31 bool probe(Square wksq, Square wpsq, Square bksq, Color us);
32
33 }
34
35 namespace Bitboards {
36
37 void init();
38 const std::string pretty(Bitboard b);
39
40 }
41
42 const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
43
44 const Bitboard FileABB = 0x0101010101010101ULL;
45 const Bitboard FileBBB = FileABB << 1;
46 const Bitboard FileCBB = FileABB << 2;
47 const Bitboard FileDBB = FileABB << 3;
48 const Bitboard FileEBB = FileABB << 4;
49 const Bitboard FileFBB = FileABB << 5;
50 const Bitboard FileGBB = FileABB << 6;
51 const Bitboard FileHBB = FileABB << 7;
52
53 const Bitboard Rank1BB = 0xFF;
54 const Bitboard Rank2BB = Rank1BB << (8 * 1);
55 const Bitboard Rank3BB = Rank1BB << (8 * 2);
56 const Bitboard Rank4BB = Rank1BB << (8 * 3);
57 const Bitboard Rank5BB = Rank1BB << (8 * 4);
58 const Bitboard Rank6BB = Rank1BB << (8 * 5);
59 const Bitboard Rank7BB = Rank1BB << (8 * 6);
60 const Bitboard Rank8BB = Rank1BB << (8 * 7);
61
62 extern int SquareDistance[SQUARE_NB][SQUARE_NB];
63
64 extern Bitboard SquareBB[SQUARE_NB];
65 extern Bitboard FileBB[FILE_NB];
66 extern Bitboard RankBB[RANK_NB];
67 extern Bitboard AdjacentFilesBB[FILE_NB];
68 extern Bitboard InFrontBB[COLOR_NB][RANK_NB];
69 extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
70 extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
71 extern Bitboard DistanceRingBB[SQUARE_NB][8];
72 extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
73 extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
74 extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
75 extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
76 extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
77
78
79 /// Magic holds all magic bitboards relevant data for a single square
80 struct Magic {
81   Bitboard  mask;
82   Bitboard  magic;
83   Bitboard* attacks;
84   unsigned  shift;
85 };
86
87 extern Magic RookMagics[SQUARE_NB];
88 extern Magic BishopMagics[SQUARE_NB];
89
90
91 /// Overloads of bitwise operators between a Bitboard and a Square for testing
92 /// whether a given bit is set in a bitboard, and for setting and clearing bits.
93
94 inline Bitboard operator&(Bitboard b, Square s) {
95   return b & SquareBB[s];
96 }
97
98 inline Bitboard operator|(Bitboard b, Square s) {
99   return b | SquareBB[s];
100 }
101
102 inline Bitboard operator^(Bitboard b, Square s) {
103   return b ^ SquareBB[s];
104 }
105
106 inline Bitboard& operator|=(Bitboard& b, Square s) {
107   return b |= SquareBB[s];
108 }
109
110 inline Bitboard& operator^=(Bitboard& b, Square s) {
111   return b ^= SquareBB[s];
112 }
113
114 inline bool more_than_one(Bitboard b) {
115   return b & (b - 1);
116 }
117
118
119 /// rank_bb() and file_bb() return a bitboard representing all the squares on
120 /// the given file or rank.
121
122 inline Bitboard rank_bb(Rank r) {
123   return RankBB[r];
124 }
125
126 inline Bitboard rank_bb(Square s) {
127   return RankBB[rank_of(s)];
128 }
129
130 inline Bitboard file_bb(File f) {
131   return FileBB[f];
132 }
133
134 inline Bitboard file_bb(Square s) {
135   return FileBB[file_of(s)];
136 }
137
138
139 /// shift() moves a bitboard one step along direction D. Mainly for pawns
140
141 template<Square D>
142 inline Bitboard shift(Bitboard b) {
143   return  D == NORTH      ?  b             << 8 : D == SOUTH      ?  b             >> 8
144         : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == SOUTH_EAST ? (b & ~FileHBB) >> 7
145         : D == NORTH_WEST ? (b & ~FileABB) << 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9
146         : 0;
147 }
148
149
150 /// adjacent_files_bb() returns a bitboard representing all the squares on the
151 /// adjacent files of the given one.
152
153 inline Bitboard adjacent_files_bb(File f) {
154   return AdjacentFilesBB[f];
155 }
156
157
158 /// between_bb() returns a bitboard representing all the squares between the two
159 /// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with
160 /// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, file
161 /// or diagonal, 0 is returned.
162
163 inline Bitboard between_bb(Square s1, Square s2) {
164   return BetweenBB[s1][s2];
165 }
166
167
168 /// in_front_bb() returns a bitboard representing all the squares on all the ranks
169 /// in front of the given one, from the point of view of the given color. For
170 /// instance, in_front_bb(BLACK, RANK_3) will return the squares on ranks 1 and 2.
171
172 inline Bitboard in_front_bb(Color c, Rank r) {
173   return InFrontBB[c][r];
174 }
175
176
177 /// forward_bb() returns a bitboard representing all the squares along the line
178 /// in front of the given one, from the point of view of the given color:
179 ///        ForwardBB[c][s] = in_front_bb(c, rank_of(s)) & file_bb(s)
180
181 inline Bitboard forward_bb(Color c, Square s) {
182   return ForwardBB[c][s];
183 }
184
185
186 /// pawn_attack_span() returns a bitboard representing all the squares that can be
187 /// attacked by a pawn of the given color when it moves along its file, starting
188 /// from the given square:
189 ///       PawnAttackSpan[c][s] = in_front_bb(c, rank_of(s)) & adjacent_files_bb(file_of(s));
190
191 inline Bitboard pawn_attack_span(Color c, Square s) {
192   return PawnAttackSpan[c][s];
193 }
194
195
196 /// passed_pawn_mask() returns a bitboard mask which can be used to test if a
197 /// pawn of the given color and on the given square is a passed pawn:
198 ///       PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s)
199
200 inline Bitboard passed_pawn_mask(Color c, Square s) {
201   return PassedPawnMask[c][s];
202 }
203
204
205 /// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
206 /// straight or on a diagonal line.
207
208 inline bool aligned(Square s1, Square s2, Square s3) {
209   return LineBB[s1][s2] & s3;
210 }
211
212
213 /// distance() functions return the distance between x and y, defined as the
214 /// number of steps for a king in x to reach y. Works with squares, ranks, files.
215
216 template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; }
217 template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
218
219 template<typename T1, typename T2> inline int distance(T2 x, T2 y);
220 template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); }
221 template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); }
222
223
224 /// attacks_bb() returns a bitboard representing all the squares attacked by a
225 /// piece of type Pt (bishop or rook) placed on 's'. The helper magic_index()
226 /// looks up the index using the 'magic bitboards' approach.
227 inline unsigned magic_index(const Magic& m, Bitboard occupied) {
228
229   if (HasPext)
230       return unsigned(pext(occupied, m.mask));
231
232   if (Is64Bit)
233       return unsigned(((occupied & m.mask) * m.magic) >> m.shift);
234
235   unsigned lo = unsigned(occupied) & unsigned(m.mask);
236   unsigned hi = unsigned(occupied >> 32) & unsigned(m.mask >> 32);
237   return (lo * unsigned(m.magic) ^ hi * unsigned(m.magic >> 32)) >> m.shift;
238 }
239
240 template<PieceType Pt>
241 inline Bitboard attacks_bb(Square s, Bitboard occupied) {
242
243   const Magic& M = Pt == ROOK ? RookMagics[s] : BishopMagics[s];
244   return M.attacks[magic_index(M, occupied)];
245 }
246
247 inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) {
248
249   assert(pt != PAWN);
250
251   switch (pt)
252   {
253   case BISHOP: return attacks_bb<BISHOP>(s, occupied);
254   case ROOK  : return attacks_bb<  ROOK>(s, occupied);
255   case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
256   default    : return PseudoAttacks[pt][s];
257   }
258 }
259
260
261 /// popcount() counts the number of non-zero bits in a bitboard
262
263 inline int popcount(Bitboard b) {
264
265 #ifndef USE_POPCNT
266
267   extern uint8_t PopCnt16[1 << 16];
268   union { Bitboard bb; uint16_t u[4]; } v = { b };
269   return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]];
270
271 #elif defined(_MSC_VER) || defined(__INTEL_COMPILER)
272
273   return (int)_mm_popcnt_u64(b);
274
275 #else // Assumed gcc or compatible compiler
276
277   return __builtin_popcountll(b);
278
279 #endif
280 }
281
282
283 /// lsb() and msb() return the least/most significant bit in a non-zero bitboard
284
285 #if defined(__GNUC__)
286
287 inline Square lsb(Bitboard b) {
288   assert(b);
289   return Square(__builtin_ctzll(b));
290 }
291
292 inline Square msb(Bitboard b) {
293   assert(b);
294   return Square(63 ^ __builtin_clzll(b));
295 }
296
297 #elif defined(_WIN64) && defined(_MSC_VER)
298
299 inline Square lsb(Bitboard b) {
300   assert(b);
301   unsigned long idx;
302   _BitScanForward64(&idx, b);
303   return (Square) idx;
304 }
305
306 inline Square msb(Bitboard b) {
307   assert(b);
308   unsigned long idx;
309   _BitScanReverse64(&idx, b);
310   return (Square) idx;
311 }
312
313 #else
314
315 #define NO_BSF // Fallback on software implementation for other cases
316
317 Square lsb(Bitboard b);
318 Square msb(Bitboard b);
319
320 #endif
321
322
323 /// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
324
325 inline Square pop_lsb(Bitboard* b) {
326   const Square s = lsb(*b);
327   *b &= *b - 1;
328   return s;
329 }
330
331
332 /// frontmost_sq() and backmost_sq() return the square corresponding to the
333 /// most/least advanced bit relative to the given color.
334
335 inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); }
336 inline Square  backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); }
337
338 #endif // #ifndef BITBOARD_H_INCLUDED