Provide vectorized NNUE code for SSE2 and MMX targets
[stockfish] / src / nnue / layers / clipped_relu.h
1 /*
2   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3   Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file)
4
5   Stockfish is free software: you can redistribute it and/or modify
6   it under the terms of the GNU General Public License as published by
7   the Free Software Foundation, either version 3 of the License, or
8   (at your option) any later version.
9
10   Stockfish is distributed in the hope that it will be useful,
11   but WITHOUT ANY WARRANTY; without even the implied warranty of
12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13   GNU General Public License for more details.
14
15   You should have received a copy of the GNU General Public License
16   along with this program.  If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 // Definition of layer ClippedReLU of NNUE evaluation function
20
21 #ifndef NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED
22 #define NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED
23
24 #include "../nnue_common.h"
25
26 namespace Eval::NNUE::Layers {
27
28   // Clipped ReLU
29   template <typename PreviousLayer>
30   class ClippedReLU {
31    public:
32     // Input/output type
33     using InputType = typename PreviousLayer::OutputType;
34     using OutputType = std::uint8_t;
35     static_assert(std::is_same<InputType, std::int32_t>::value, "");
36
37     // Number of input/output dimensions
38     static constexpr IndexType kInputDimensions =
39         PreviousLayer::kOutputDimensions;
40     static constexpr IndexType kOutputDimensions = kInputDimensions;
41
42     // Size of forward propagation buffer used in this layer
43     static constexpr std::size_t kSelfBufferSize =
44         CeilToMultiple(kOutputDimensions * sizeof(OutputType), kCacheLineSize);
45
46     // Size of the forward propagation buffer used from the input layer to this layer
47     static constexpr std::size_t kBufferSize =
48         PreviousLayer::kBufferSize + kSelfBufferSize;
49
50     // Hash value embedded in the evaluation file
51     static constexpr std::uint32_t GetHashValue() {
52       std::uint32_t hash_value = 0x538D24C7u;
53       hash_value += PreviousLayer::GetHashValue();
54       return hash_value;
55     }
56
57     // Read network parameters
58     bool ReadParameters(std::istream& stream) {
59       return previous_layer_.ReadParameters(stream);
60     }
61
62     // Forward propagation
63     const OutputType* Propagate(
64         const TransformedFeatureType* transformed_features, char* buffer) const {
65       const auto input = previous_layer_.Propagate(
66           transformed_features, buffer + kSelfBufferSize);
67       const auto output = reinterpret_cast<OutputType*>(buffer);
68
69   #if defined(USE_AVX2)
70       constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
71       const __m256i kZero = _mm256_setzero_si256();
72       const __m256i kOffsets = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
73       const auto in = reinterpret_cast<const __m256i*>(input);
74       const auto out = reinterpret_cast<__m256i*>(output);
75       for (IndexType i = 0; i < kNumChunks; ++i) {
76         const __m256i words0 = _mm256_srai_epi16(_mm256_packs_epi32(
77             _mm256_loadA_si256(&in[i * 4 + 0]),
78             _mm256_loadA_si256(&in[i * 4 + 1])), kWeightScaleBits);
79         const __m256i words1 = _mm256_srai_epi16(_mm256_packs_epi32(
80             _mm256_loadA_si256(&in[i * 4 + 2]),
81             _mm256_loadA_si256(&in[i * 4 + 3])), kWeightScaleBits);
82         _mm256_storeA_si256(&out[i], _mm256_permutevar8x32_epi32(_mm256_max_epi8(
83             _mm256_packs_epi16(words0, words1), kZero), kOffsets));
84       }
85       constexpr IndexType kStart = kNumChunks * kSimdWidth;
86
87   #elif defined(USE_SSE2)
88       constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
89
90   #ifdef USE_SSE41
91       const __m128i kZero = _mm_setzero_si128();
92   #else
93       const __m128i k0x80s = _mm_set1_epi8(-128);
94   #endif
95
96       const auto in = reinterpret_cast<const __m128i*>(input);
97       const auto out = reinterpret_cast<__m128i*>(output);
98       for (IndexType i = 0; i < kNumChunks; ++i) {
99         const __m128i words0 = _mm_srai_epi16(_mm_packs_epi32(
100             _mm_load_si128(&in[i * 4 + 0]),
101             _mm_load_si128(&in[i * 4 + 1])), kWeightScaleBits);
102         const __m128i words1 = _mm_srai_epi16(_mm_packs_epi32(
103             _mm_load_si128(&in[i * 4 + 2]),
104             _mm_load_si128(&in[i * 4 + 3])), kWeightScaleBits);
105         const __m128i packedbytes = _mm_packs_epi16(words0, words1);
106         _mm_store_si128(&out[i],
107
108   #ifdef USE_SSE41
109           _mm_max_epi8(packedbytes, kZero)
110   #else
111           _mm_subs_epi8(_mm_adds_epi8(packedbytes, k0x80s), k0x80s)
112   #endif
113
114         );
115       }
116       constexpr IndexType kStart = kNumChunks * kSimdWidth;
117
118   #elif defined(USE_MMX)
119       constexpr IndexType kNumChunks = kInputDimensions / kSimdWidth;
120       const __m64 k0x80s = _mm_set1_pi8(-128);
121       const auto in = reinterpret_cast<const __m64*>(input);
122       const auto out = reinterpret_cast<__m64*>(output);
123       for (IndexType i = 0; i < kNumChunks; ++i) {
124         const __m64 words0 = _mm_srai_pi16(
125             _mm_packs_pi32(in[i * 4 + 0], in[i * 4 + 1]),
126             kWeightScaleBits);
127         const __m64 words1 = _mm_srai_pi16(
128             _mm_packs_pi32(in[i * 4 + 2], in[i * 4 + 3]),
129             kWeightScaleBits);
130         const __m64 packedbytes = _mm_packs_pi16(words0, words1);
131         out[i] = _mm_subs_pi8(_mm_adds_pi8(packedbytes, k0x80s), k0x80s);
132       }
133       _mm_empty();
134       constexpr IndexType kStart = kNumChunks * kSimdWidth;
135
136   #elif defined(USE_NEON)
137       constexpr IndexType kNumChunks = kInputDimensions / (kSimdWidth / 2);
138       const int8x8_t kZero = {0};
139       const auto in = reinterpret_cast<const int32x4_t*>(input);
140       const auto out = reinterpret_cast<int8x8_t*>(output);
141       for (IndexType i = 0; i < kNumChunks; ++i) {
142         int16x8_t shifted;
143         const auto pack = reinterpret_cast<int16x4_t*>(&shifted);
144         pack[0] = vqshrn_n_s32(in[i * 2 + 0], kWeightScaleBits);
145         pack[1] = vqshrn_n_s32(in[i * 2 + 1], kWeightScaleBits);
146         out[i] = vmax_s8(vqmovn_s16(shifted), kZero);
147       }
148       constexpr IndexType kStart = kNumChunks * (kSimdWidth / 2);
149   #else
150       constexpr IndexType kStart = 0;
151   #endif
152
153       for (IndexType i = kStart; i < kInputDimensions; ++i) {
154         output[i] = static_cast<OutputType>(
155             std::max(0, std::min(127, input[i] >> kWeightScaleBits)));
156       }
157       return output;
158     }
159
160    private:
161     PreviousLayer previous_layer_;
162   };
163
164 }  // namespace Eval::NNUE::Layers
165
166 #endif // NNUE_LAYERS_CLIPPED_RELU_H_INCLUDED