0686d245bc77fe956f3a8e15a7f86360e610c38d
[stockfish] / src / position.cpp
1 /*
2   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3   Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
4
5   Stockfish is free software: you can redistribute it and/or modify
6   it under the terms of the GNU General Public License as published by
7   the Free Software Foundation, either version 3 of the License, or
8   (at your option) any later version.
9
10   Stockfish is distributed in the hope that it will be useful,
11   but WITHOUT ANY WARRANTY; without even the implied warranty of
12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13   GNU General Public License for more details.
14
15   You should have received a copy of the GNU General Public License
16   along with this program.  If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include <algorithm>
20 #include <cassert>
21 #include <cstddef> // For offsetof()
22 #include <cstring> // For std::memset, std::memcmp
23 #include <iomanip>
24 #include <sstream>
25
26 #include "bitboard.h"
27 #include "misc.h"
28 #include "movegen.h"
29 #include "position.h"
30 #include "thread.h"
31 #include "tt.h"
32 #include "uci.h"
33 #include "syzygy/tbprobe.h"
34
35 using std::string;
36
37 namespace Stockfish {
38
39 namespace Zobrist {
40
41   Key psq[PIECE_NB][SQUARE_NB];
42   Key enpassant[FILE_NB];
43   Key castling[CASTLING_RIGHT_NB];
44   Key side, noPawns;
45 }
46
47 namespace {
48
49 const string PieceToChar(" PNBRQK  pnbrqk");
50
51 constexpr Piece Pieces[] = { W_PAWN, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING,
52                              B_PAWN, B_KNIGHT, B_BISHOP, B_ROOK, B_QUEEN, B_KING };
53 } // namespace
54
55
56 /// operator<<(Position) returns an ASCII representation of the position
57
58 std::ostream& operator<<(std::ostream& os, const Position& pos) {
59
60   os << "\n +---+---+---+---+---+---+---+---+\n";
61
62   for (Rank r = RANK_8; r >= RANK_1; --r)
63   {
64       for (File f = FILE_A; f <= FILE_H; ++f)
65           os << " | " << PieceToChar[pos.piece_on(make_square(f, r))];
66
67       os << " | " << (1 + r) << "\n +---+---+---+---+---+---+---+---+\n";
68   }
69
70   os << "   a   b   c   d   e   f   g   h\n"
71      << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase
72      << std::setfill('0') << std::setw(16) << pos.key()
73      << std::setfill(' ') << std::dec << "\nCheckers: ";
74
75   for (Bitboard b = pos.checkers(); b; )
76       os << UCI::square(pop_lsb(b)) << " ";
77
78   if (    int(Tablebases::MaxCardinality) >= popcount(pos.pieces())
79       && !pos.can_castle(ANY_CASTLING))
80   {
81       StateInfo st;
82       ASSERT_ALIGNED(&st, Eval::NNUE::CacheLineSize);
83
84       Position p;
85       p.set(pos.fen(), pos.is_chess960(), &st, pos.this_thread());
86       Tablebases::ProbeState s1, s2;
87       Tablebases::WDLScore wdl = Tablebases::probe_wdl(p, &s1);
88       int dtz = Tablebases::probe_dtz(p, &s2);
89       os << "\nTablebases WDL: " << std::setw(4) << wdl << " (" << s1 << ")"
90          << "\nTablebases DTZ: " << std::setw(4) << dtz << " (" << s2 << ")";
91   }
92
93   return os;
94 }
95
96
97 // Marcel van Kervinck's cuckoo algorithm for fast detection of "upcoming repetition"
98 // situations. Description of the algorithm in the following paper:
99 // https://marcelk.net/2013-04-06/paper/upcoming-rep-v2.pdf
100
101 // First and second hash functions for indexing the cuckoo tables
102 inline int H1(Key h) { return h & 0x1fff; }
103 inline int H2(Key h) { return (h >> 16) & 0x1fff; }
104
105 // Cuckoo tables with Zobrist hashes of valid reversible moves, and the moves themselves
106 Key cuckoo[8192];
107 Move cuckooMove[8192];
108
109
110 /// Position::init() initializes at startup the various arrays used to compute hash keys
111
112 void Position::init() {
113
114   PRNG rng(1070372);
115
116   for (Piece pc : Pieces)
117       for (Square s = SQ_A1; s <= SQ_H8; ++s)
118           Zobrist::psq[pc][s] = rng.rand<Key>();
119
120   for (File f = FILE_A; f <= FILE_H; ++f)
121       Zobrist::enpassant[f] = rng.rand<Key>();
122
123   for (int cr = NO_CASTLING; cr <= ANY_CASTLING; ++cr)
124       Zobrist::castling[cr] = rng.rand<Key>();
125
126   Zobrist::side = rng.rand<Key>();
127   Zobrist::noPawns = rng.rand<Key>();
128
129   // Prepare the cuckoo tables
130   std::memset(cuckoo, 0, sizeof(cuckoo));
131   std::memset(cuckooMove, 0, sizeof(cuckooMove));
132   int count = 0;
133   for (Piece pc : Pieces)
134       for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
135           for (Square s2 = Square(s1 + 1); s2 <= SQ_H8; ++s2)
136               if ((type_of(pc) != PAWN) && (attacks_bb(type_of(pc), s1, 0) & s2))
137               {
138                   Move move = make_move(s1, s2);
139                   Key key = Zobrist::psq[pc][s1] ^ Zobrist::psq[pc][s2] ^ Zobrist::side;
140                   int i = H1(key);
141                   while (true)
142                   {
143                       std::swap(cuckoo[i], key);
144                       std::swap(cuckooMove[i], move);
145                       if (move == MOVE_NONE) // Arrived at empty slot?
146                           break;
147                       i = (i == H1(key)) ? H2(key) : H1(key); // Push victim to alternative slot
148                   }
149                   count++;
150              }
151   assert(count == 3668);
152 }
153
154
155 /// Position::set() initializes the position object with the given FEN string.
156 /// This function is not very robust - make sure that input FENs are correct,
157 /// this is assumed to be the responsibility of the GUI.
158
159 Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Thread* th) {
160 /*
161    A FEN string defines a particular position using only the ASCII character set.
162
163    A FEN string contains six fields separated by a space. The fields are:
164
165    1) Piece placement (from white's perspective). Each rank is described, starting
166       with rank 8 and ending with rank 1. Within each rank, the contents of each
167       square are described from file A through file H. Following the Standard
168       Algebraic Notation (SAN), each piece is identified by a single letter taken
169       from the standard English names. White pieces are designated using upper-case
170       letters ("PNBRQK") whilst Black uses lowercase ("pnbrqk"). Blank squares are
171       noted using digits 1 through 8 (the number of blank squares), and "/"
172       separates ranks.
173
174    2) Active color. "w" means white moves next, "b" means black.
175
176    3) Castling availability. If neither side can castle, this is "-". Otherwise,
177       this has one or more letters: "K" (White can castle kingside), "Q" (White
178       can castle queenside), "k" (Black can castle kingside), and/or "q" (Black
179       can castle queenside).
180
181    4) En passant target square (in algebraic notation). If there's no en passant
182       target square, this is "-". If a pawn has just made a 2-square move, this
183       is the position "behind" the pawn. Following X-FEN standard, this is recorded only
184       if there is a pawn in position to make an en passant capture, and if there really
185       is a pawn that might have advanced two squares.
186
187    5) Halfmove clock. This is the number of halfmoves since the last pawn advance
188       or capture. This is used to determine if a draw can be claimed under the
189       fifty-move rule.
190
191    6) Fullmove number. The number of the full move. It starts at 1, and is
192       incremented after Black's move.
193 */
194
195   unsigned char col, row, token;
196   size_t idx;
197   Square sq = SQ_A8;
198   std::istringstream ss(fenStr);
199
200   std::memset(this, 0, sizeof(Position));
201   std::memset(si, 0, sizeof(StateInfo));
202   st = si;
203
204   ss >> std::noskipws;
205
206   // 1. Piece placement
207   while ((ss >> token) && !isspace(token))
208   {
209       if (isdigit(token))
210           sq += (token - '0') * EAST; // Advance the given number of files
211
212       else if (token == '/')
213           sq += 2 * SOUTH;
214
215       else if ((idx = PieceToChar.find(token)) != string::npos) {
216           put_piece(Piece(idx), sq);
217           ++sq;
218       }
219   }
220
221   // 2. Active color
222   ss >> token;
223   sideToMove = (token == 'w' ? WHITE : BLACK);
224   ss >> token;
225
226   // 3. Castling availability. Compatible with 3 standards: Normal FEN standard,
227   // Shredder-FEN that uses the letters of the columns on which the rooks began
228   // the game instead of KQkq and also X-FEN standard that, in case of Chess960,
229   // if an inner rook is associated with the castling right, the castling tag is
230   // replaced by the file letter of the involved rook, as for the Shredder-FEN.
231   while ((ss >> token) && !isspace(token))
232   {
233       Square rsq;
234       Color c = islower(token) ? BLACK : WHITE;
235       Piece rook = make_piece(c, ROOK);
236
237       token = char(toupper(token));
238
239       if (token == 'K')
240           for (rsq = relative_square(c, SQ_H1); piece_on(rsq) != rook; --rsq) {}
241
242       else if (token == 'Q')
243           for (rsq = relative_square(c, SQ_A1); piece_on(rsq) != rook; ++rsq) {}
244
245       else if (token >= 'A' && token <= 'H')
246           rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1));
247
248       else
249           continue;
250
251       set_castling_right(c, rsq);
252   }
253
254   // 4. En passant square.
255   // Ignore if square is invalid or not on side to move relative rank 6.
256   bool enpassant = false;
257
258   if (   ((ss >> col) && (col >= 'a' && col <= 'h'))
259       && ((ss >> row) && (row == (sideToMove == WHITE ? '6' : '3'))))
260   {
261       st->epSquare = make_square(File(col - 'a'), Rank(row - '1'));
262
263       // En passant square will be considered only if
264       // a) side to move have a pawn threatening epSquare
265       // b) there is an enemy pawn in front of epSquare
266       // c) there is no piece on epSquare or behind epSquare
267       enpassant = pawn_attacks_bb(~sideToMove, st->epSquare) & pieces(sideToMove, PAWN)
268                && (pieces(~sideToMove, PAWN) & (st->epSquare + pawn_push(~sideToMove)))
269                && !(pieces() & (st->epSquare | (st->epSquare + pawn_push(sideToMove))));
270   }
271
272   if (!enpassant)
273       st->epSquare = SQ_NONE;
274
275   // 5-6. Halfmove clock and fullmove number
276   ss >> std::skipws >> st->rule50 >> gamePly;
277
278   // Convert from fullmove starting from 1 to gamePly starting from 0,
279   // handle also common incorrect FEN with fullmove = 0.
280   gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK);
281
282   chess960 = isChess960;
283   thisThread = th;
284   set_state(st);
285
286   assert(pos_is_ok());
287
288   return *this;
289 }
290
291
292 /// Position::set_castling_right() is a helper function used to set castling
293 /// rights given the corresponding color and the rook starting square.
294
295 void Position::set_castling_right(Color c, Square rfrom) {
296
297   Square kfrom = square<KING>(c);
298   CastlingRights cr = c & (kfrom < rfrom ? KING_SIDE: QUEEN_SIDE);
299
300   st->castlingRights |= cr;
301   castlingRightsMask[kfrom] |= cr;
302   castlingRightsMask[rfrom] |= cr;
303   castlingRookSquare[cr] = rfrom;
304
305   Square kto = relative_square(c, cr & KING_SIDE ? SQ_G1 : SQ_C1);
306   Square rto = relative_square(c, cr & KING_SIDE ? SQ_F1 : SQ_D1);
307
308   castlingPath[cr] =   (between_bb(rfrom, rto) | between_bb(kfrom, kto))
309                     & ~(kfrom | rfrom);
310 }
311
312
313 /// Position::set_check_info() sets king attacks to detect if a move gives check
314
315 void Position::set_check_info(StateInfo* si) const {
316
317   si->blockersForKing[WHITE] = slider_blockers(pieces(BLACK), square<KING>(WHITE), si->pinners[BLACK]);
318   si->blockersForKing[BLACK] = slider_blockers(pieces(WHITE), square<KING>(BLACK), si->pinners[WHITE]);
319
320   Square ksq = square<KING>(~sideToMove);
321
322   si->checkSquares[PAWN]   = pawn_attacks_bb(~sideToMove, ksq);
323   si->checkSquares[KNIGHT] = attacks_bb<KNIGHT>(ksq);
324   si->checkSquares[BISHOP] = attacks_bb<BISHOP>(ksq, pieces());
325   si->checkSquares[ROOK]   = attacks_bb<ROOK>(ksq, pieces());
326   si->checkSquares[QUEEN]  = si->checkSquares[BISHOP] | si->checkSquares[ROOK];
327   si->checkSquares[KING]   = 0;
328 }
329
330
331 /// Position::set_state() computes the hash keys of the position, and other
332 /// data that once computed is updated incrementally as moves are made.
333 /// The function is only used when a new position is set up, and to verify
334 /// the correctness of the StateInfo data when running in debug mode.
335
336 void Position::set_state(StateInfo* si) const {
337
338   si->key = si->materialKey = 0;
339   si->pawnKey = Zobrist::noPawns;
340   si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO;
341   si->checkersBB = attackers_to(square<KING>(sideToMove)) & pieces(~sideToMove);
342
343   set_check_info(si);
344
345   for (Bitboard b = pieces(); b; )
346   {
347       Square s = pop_lsb(b);
348       Piece pc = piece_on(s);
349       si->key ^= Zobrist::psq[pc][s];
350
351       if (type_of(pc) == PAWN)
352           si->pawnKey ^= Zobrist::psq[pc][s];
353
354       else if (type_of(pc) != KING)
355           si->nonPawnMaterial[color_of(pc)] += PieceValue[MG][pc];
356   }
357
358   if (si->epSquare != SQ_NONE)
359       si->key ^= Zobrist::enpassant[file_of(si->epSquare)];
360
361   if (sideToMove == BLACK)
362       si->key ^= Zobrist::side;
363
364   si->key ^= Zobrist::castling[si->castlingRights];
365
366   for (Piece pc : Pieces)
367       for (int cnt = 0; cnt < pieceCount[pc]; ++cnt)
368           si->materialKey ^= Zobrist::psq[pc][cnt];
369 }
370
371
372 /// Position::set() is an overload to initialize the position object with
373 /// the given endgame code string like "KBPKN". It is mainly a helper to
374 /// get the material key out of an endgame code.
375
376 Position& Position::set(const string& code, Color c, StateInfo* si) {
377
378   assert(code[0] == 'K');
379
380   string sides[] = { code.substr(code.find('K', 1)),      // Weak
381                      code.substr(0, std::min(code.find('v'), code.find('K', 1))) }; // Strong
382
383   assert(sides[0].length() > 0 && sides[0].length() < 8);
384   assert(sides[1].length() > 0 && sides[1].length() < 8);
385
386   std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower);
387
388   string fenStr = "8/" + sides[0] + char(8 - sides[0].length() + '0') + "/8/8/8/8/"
389                        + sides[1] + char(8 - sides[1].length() + '0') + "/8 w - - 0 10";
390
391   return set(fenStr, false, si, nullptr);
392 }
393
394
395 /// Position::fen() returns a FEN representation of the position. In case of
396 /// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function.
397
398 string Position::fen() const {
399
400   int emptyCnt;
401   std::ostringstream ss;
402
403   for (Rank r = RANK_8; r >= RANK_1; --r)
404   {
405       for (File f = FILE_A; f <= FILE_H; ++f)
406       {
407           for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f)
408               ++emptyCnt;
409
410           if (emptyCnt)
411               ss << emptyCnt;
412
413           if (f <= FILE_H)
414               ss << PieceToChar[piece_on(make_square(f, r))];
415       }
416
417       if (r > RANK_1)
418           ss << '/';
419   }
420
421   ss << (sideToMove == WHITE ? " w " : " b ");
422
423   if (can_castle(WHITE_OO))
424       ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE_OO ))) : 'K');
425
426   if (can_castle(WHITE_OOO))
427       ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE_OOO))) : 'Q');
428
429   if (can_castle(BLACK_OO))
430       ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK_OO ))) : 'k');
431
432   if (can_castle(BLACK_OOO))
433       ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK_OOO))) : 'q');
434
435   if (!can_castle(ANY_CASTLING))
436       ss << '-';
437
438   ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " ")
439      << st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2;
440
441   return ss.str();
442 }
443
444
445 /// Position::slider_blockers() returns a bitboard of all the pieces (both colors)
446 /// that are blocking attacks on the square 's' from 'sliders'. A piece blocks a
447 /// slider if removing that piece from the board would result in a position where
448 /// square 's' is attacked. For example, a king-attack blocking piece can be either
449 /// a pinned or a discovered check piece, according if its color is the opposite
450 /// or the same of the color of the slider.
451
452 Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners) const {
453
454   Bitboard blockers = 0;
455   pinners = 0;
456
457   // Snipers are sliders that attack 's' when a piece and other snipers are removed
458   Bitboard snipers = (  (attacks_bb<  ROOK>(s) & pieces(QUEEN, ROOK))
459                       | (attacks_bb<BISHOP>(s) & pieces(QUEEN, BISHOP))) & sliders;
460   Bitboard occupancy = pieces() ^ snipers;
461
462   while (snipers)
463   {
464     Square sniperSq = pop_lsb(snipers);
465     Bitboard b = between_bb(s, sniperSq) & occupancy;
466
467     if (b && !more_than_one(b))
468     {
469         blockers |= b;
470         if (b & pieces(color_of(piece_on(s))))
471             pinners |= sniperSq;
472     }
473   }
474   return blockers;
475 }
476
477
478 /// Position::attackers_to() computes a bitboard of all pieces which attack a
479 /// given square. Slider attacks use the occupied bitboard to indicate occupancy.
480
481 Bitboard Position::attackers_to(Square s, Bitboard occupied) const {
482
483   return  (pawn_attacks_bb(BLACK, s)       & pieces(WHITE, PAWN))
484         | (pawn_attacks_bb(WHITE, s)       & pieces(BLACK, PAWN))
485         | (attacks_bb<KNIGHT>(s)           & pieces(KNIGHT))
486         | (attacks_bb<  ROOK>(s, occupied) & pieces(  ROOK, QUEEN))
487         | (attacks_bb<BISHOP>(s, occupied) & pieces(BISHOP, QUEEN))
488         | (attacks_bb<KING>(s)             & pieces(KING));
489 }
490
491
492 /// Position::legal() tests whether a pseudo-legal move is legal
493
494 bool Position::legal(Move m) const {
495
496   assert(is_ok(m));
497
498   Color us = sideToMove;
499   Square from = from_sq(m);
500   Square to = to_sq(m);
501
502   assert(color_of(moved_piece(m)) == us);
503   assert(piece_on(square<KING>(us)) == make_piece(us, KING));
504
505   // En passant captures are a tricky special case. Because they are rather
506   // uncommon, we do it simply by testing whether the king is attacked after
507   // the move is made.
508   if (type_of(m) == EN_PASSANT)
509   {
510       Square ksq = square<KING>(us);
511       Square capsq = to - pawn_push(us);
512       Bitboard occupied = (pieces() ^ from ^ capsq) | to;
513
514       assert(to == ep_square());
515       assert(moved_piece(m) == make_piece(us, PAWN));
516       assert(piece_on(capsq) == make_piece(~us, PAWN));
517       assert(piece_on(to) == NO_PIECE);
518
519       return   !(attacks_bb<  ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK))
520             && !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP));
521   }
522
523   // Castling moves generation does not check if the castling path is clear of
524   // enemy attacks, it is delayed at a later time: now!
525   if (type_of(m) == CASTLING)
526   {
527       // After castling, the rook and king final positions are the same in
528       // Chess960 as they would be in standard chess.
529       to = relative_square(us, to > from ? SQ_G1 : SQ_C1);
530       Direction step = to > from ? WEST : EAST;
531
532       for (Square s = to; s != from; s += step)
533           if (attackers_to(s) & pieces(~us))
534               return false;
535
536       // In case of Chess960, verify if the Rook blocks some checks
537       // For instance an enemy queen in SQ_A1 when castling rook is in SQ_B1.
538       return !chess960 || !(blockers_for_king(us) & to_sq(m));
539   }
540
541   // If the moving piece is a king, check whether the destination square is
542   // attacked by the opponent.
543   if (type_of(piece_on(from)) == KING)
544       return !(attackers_to(to, pieces() ^ from) & pieces(~us));
545
546   // A non-king move is legal if and only if it is not pinned or it
547   // is moving along the ray towards or away from the king.
548   return !(blockers_for_king(us) & from)
549       || aligned(from, to, square<KING>(us));
550 }
551
552
553 /// Position::pseudo_legal() takes a random move and tests whether the move is
554 /// pseudo legal. It is used to validate moves from TT that can be corrupted
555 /// due to SMP concurrent access or hash position key aliasing.
556
557 bool Position::pseudo_legal(const Move m) const {
558
559   Color us = sideToMove;
560   Square from = from_sq(m);
561   Square to = to_sq(m);
562   Piece pc = moved_piece(m);
563
564   // Use a slower but simpler function for uncommon cases
565   // yet we skip the legality check of MoveList<LEGAL>().
566   if (type_of(m) != NORMAL)
567       return checkers() ? MoveList<    EVASIONS>(*this).contains(m)
568                         : MoveList<NON_EVASIONS>(*this).contains(m);
569
570   // Is not a promotion, so promotion piece must be empty
571   if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE)
572       return false;
573
574   // If the 'from' square is not occupied by a piece belonging to the side to
575   // move, the move is obviously not legal.
576   if (pc == NO_PIECE || color_of(pc) != us)
577       return false;
578
579   // The destination square cannot be occupied by a friendly piece
580   if (pieces(us) & to)
581       return false;
582
583   // Handle the special case of a pawn move
584   if (type_of(pc) == PAWN)
585   {
586       // We have already handled promotion moves, so destination
587       // cannot be on the 8th/1st rank.
588       if ((Rank8BB | Rank1BB) & to)
589           return false;
590
591       if (   !(pawn_attacks_bb(us, from) & pieces(~us) & to) // Not a capture
592           && !((from + pawn_push(us) == to) && empty(to))       // Not a single push
593           && !(   (from + 2 * pawn_push(us) == to)              // Not a double push
594                && (relative_rank(us, from) == RANK_2)
595                && empty(to)
596                && empty(to - pawn_push(us))))
597           return false;
598   }
599   else if (!(attacks_bb(type_of(pc), from, pieces()) & to))
600       return false;
601
602   // Evasions generator already takes care to avoid some kind of illegal moves
603   // and legal() relies on this. We therefore have to take care that the same
604   // kind of moves are filtered out here.
605   if (checkers())
606   {
607       if (type_of(pc) != KING)
608       {
609           // Double check? In this case a king move is required
610           if (more_than_one(checkers()))
611               return false;
612
613           // Our move must be a blocking interposition or a capture of the checking piece
614           if (!(between_bb(square<KING>(us), lsb(checkers())) & to))
615               return false;
616       }
617       // In case of king moves under check we have to remove king so as to catch
618       // invalid moves like b1a1 when opposite queen is on c1.
619       else if (attackers_to(to, pieces() ^ from) & pieces(~us))
620           return false;
621   }
622
623   return true;
624 }
625
626
627 /// Position::gives_check() tests whether a pseudo-legal move gives a check
628
629 bool Position::gives_check(Move m) const {
630
631   assert(is_ok(m));
632   assert(color_of(moved_piece(m)) == sideToMove);
633
634   Square from = from_sq(m);
635   Square to = to_sq(m);
636
637   // Is there a direct check?
638   if (check_squares(type_of(piece_on(from))) & to)
639       return true;
640
641   // Is there a discovered check?
642   if (   (blockers_for_king(~sideToMove) & from)
643       && !aligned(from, to, square<KING>(~sideToMove)))
644       return true;
645
646   switch (type_of(m))
647   {
648   case NORMAL:
649       return false;
650
651   case PROMOTION:
652       return attacks_bb(promotion_type(m), to, pieces() ^ from) & square<KING>(~sideToMove);
653
654   // En passant capture with check? We have already handled the case
655   // of direct checks and ordinary discovered check, so the only case we
656   // need to handle is the unusual case of a discovered check through
657   // the captured pawn.
658   case EN_PASSANT:
659   {
660       Square capsq = make_square(file_of(to), rank_of(from));
661       Bitboard b = (pieces() ^ from ^ capsq) | to;
662
663       return  (attacks_bb<  ROOK>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, ROOK))
664             | (attacks_bb<BISHOP>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, BISHOP));
665   }
666   default: //CASTLING
667   {
668       // Castling is encoded as 'king captures the rook'
669       Square ksq = square<KING>(~sideToMove);
670       Square rto = relative_square(sideToMove, to > from ? SQ_F1 : SQ_D1);
671
672       return   (attacks_bb<ROOK>(rto) & ksq)
673             && (attacks_bb<ROOK>(rto, pieces() ^ from ^ to) & ksq);
674   }
675   }
676 }
677
678
679 /// Position::do_move() makes a move, and saves all information necessary
680 /// to a StateInfo object. The move is assumed to be legal. Pseudo-legal
681 /// moves should be filtered out before this function is called.
682
683 void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
684
685   assert(is_ok(m));
686   assert(&newSt != st);
687
688   thisThread->nodes.fetch_add(1, std::memory_order_relaxed);
689   Key k = st->key ^ Zobrist::side;
690
691   // Copy some fields of the old state to our new StateInfo object except the
692   // ones which are going to be recalculated from scratch anyway and then switch
693   // our state pointer to point to the new (ready to be updated) state.
694   std::memcpy(&newSt, st, offsetof(StateInfo, key));
695   newSt.previous = st;
696   st = &newSt;
697
698   // Increment ply counters. In particular, rule50 will be reset to zero later on
699   // in case of a capture or a pawn move.
700   ++gamePly;
701   ++st->rule50;
702   ++st->pliesFromNull;
703
704   // Used by NNUE
705   st->accumulator.computed[WHITE] = false;
706   st->accumulator.computed[BLACK] = false;
707   auto& dp = st->dirtyPiece;
708   dp.dirty_num = 1;
709
710   Color us = sideToMove;
711   Color them = ~us;
712   Square from = from_sq(m);
713   Square to = to_sq(m);
714   Piece pc = piece_on(from);
715   Piece captured = type_of(m) == EN_PASSANT ? make_piece(them, PAWN) : piece_on(to);
716
717   assert(color_of(pc) == us);
718   assert(captured == NO_PIECE || color_of(captured) == (type_of(m) != CASTLING ? them : us));
719   assert(type_of(captured) != KING);
720
721   if (type_of(m) == CASTLING)
722   {
723       assert(pc == make_piece(us, KING));
724       assert(captured == make_piece(us, ROOK));
725
726       Square rfrom, rto;
727       do_castling<true>(us, from, to, rfrom, rto);
728
729       k ^= Zobrist::psq[captured][rfrom] ^ Zobrist::psq[captured][rto];
730       captured = NO_PIECE;
731   }
732
733   if (captured)
734   {
735       Square capsq = to;
736
737       // If the captured piece is a pawn, update pawn hash key, otherwise
738       // update non-pawn material.
739       if (type_of(captured) == PAWN)
740       {
741           if (type_of(m) == EN_PASSANT)
742           {
743               capsq -= pawn_push(us);
744
745               assert(pc == make_piece(us, PAWN));
746               assert(to == st->epSquare);
747               assert(relative_rank(us, to) == RANK_6);
748               assert(piece_on(to) == NO_PIECE);
749               assert(piece_on(capsq) == make_piece(them, PAWN));
750           }
751
752           st->pawnKey ^= Zobrist::psq[captured][capsq];
753       }
754       else
755           st->nonPawnMaterial[them] -= PieceValue[MG][captured];
756
757       if (Eval::useNNUE)
758       {
759           dp.dirty_num = 2;  // 1 piece moved, 1 piece captured
760           dp.piece[1] = captured;
761           dp.from[1] = capsq;
762           dp.to[1] = SQ_NONE;
763       }
764
765       // Update board and piece lists
766       remove_piece(capsq);
767
768       if (type_of(m) == EN_PASSANT)
769           board[capsq] = NO_PIECE;
770
771       // Update material hash key and prefetch access to materialTable
772       k ^= Zobrist::psq[captured][capsq];
773       st->materialKey ^= Zobrist::psq[captured][pieceCount[captured]];
774       prefetch(thisThread->materialTable[st->materialKey]);
775
776       // Reset rule 50 counter
777       st->rule50 = 0;
778   }
779
780   // Update hash key
781   k ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to];
782
783   // Reset en passant square
784   if (st->epSquare != SQ_NONE)
785   {
786       k ^= Zobrist::enpassant[file_of(st->epSquare)];
787       st->epSquare = SQ_NONE;
788   }
789
790   // Update castling rights if needed
791   if (st->castlingRights && (castlingRightsMask[from] | castlingRightsMask[to]))
792   {
793       k ^= Zobrist::castling[st->castlingRights];
794       st->castlingRights &= ~(castlingRightsMask[from] | castlingRightsMask[to]);
795       k ^= Zobrist::castling[st->castlingRights];
796   }
797
798   // Move the piece. The tricky Chess960 castling is handled earlier
799   if (type_of(m) != CASTLING)
800   {
801       if (Eval::useNNUE)
802       {
803           dp.piece[0] = pc;
804           dp.from[0] = from;
805           dp.to[0] = to;
806       }
807
808       move_piece(from, to);
809   }
810
811   // If the moving piece is a pawn do some special extra work
812   if (type_of(pc) == PAWN)
813   {
814       // Set en passant square if the moved pawn can be captured
815       if (   (int(to) ^ int(from)) == 16
816           && (pawn_attacks_bb(us, to - pawn_push(us)) & pieces(them, PAWN)))
817       {
818           st->epSquare = to - pawn_push(us);
819           k ^= Zobrist::enpassant[file_of(st->epSquare)];
820       }
821
822       else if (type_of(m) == PROMOTION)
823       {
824           Piece promotion = make_piece(us, promotion_type(m));
825
826           assert(relative_rank(us, to) == RANK_8);
827           assert(type_of(promotion) >= KNIGHT && type_of(promotion) <= QUEEN);
828
829           remove_piece(to);
830           put_piece(promotion, to);
831
832           if (Eval::useNNUE)
833           {
834               // Promoting pawn to SQ_NONE, promoted piece from SQ_NONE
835               dp.to[0] = SQ_NONE;
836               dp.piece[dp.dirty_num] = promotion;
837               dp.from[dp.dirty_num] = SQ_NONE;
838               dp.to[dp.dirty_num] = to;
839               dp.dirty_num++;
840           }
841
842           // Update hash keys
843           k ^= Zobrist::psq[pc][to] ^ Zobrist::psq[promotion][to];
844           st->pawnKey ^= Zobrist::psq[pc][to];
845           st->materialKey ^=  Zobrist::psq[promotion][pieceCount[promotion]-1]
846                             ^ Zobrist::psq[pc][pieceCount[pc]];
847
848           // Update material
849           st->nonPawnMaterial[us] += PieceValue[MG][promotion];
850       }
851
852       // Update pawn hash key
853       st->pawnKey ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to];
854
855       // Reset rule 50 draw counter
856       st->rule50 = 0;
857   }
858
859   // Set capture piece
860   st->capturedPiece = captured;
861
862   // Update the key with the final value
863   st->key = k;
864
865   // Calculate checkers bitboard (if move gives check)
866   st->checkersBB = givesCheck ? attackers_to(square<KING>(them)) & pieces(us) : 0;
867
868   sideToMove = ~sideToMove;
869
870   // Update king attacks used for fast check detection
871   set_check_info(st);
872
873   // Calculate the repetition info. It is the ply distance from the previous
874   // occurrence of the same position, negative in the 3-fold case, or zero
875   // if the position was not repeated.
876   st->repetition = 0;
877   int end = std::min(st->rule50, st->pliesFromNull);
878   if (end >= 4)
879   {
880       StateInfo* stp = st->previous->previous;
881       for (int i = 4; i <= end; i += 2)
882       {
883           stp = stp->previous->previous;
884           if (stp->key == st->key)
885           {
886               st->repetition = stp->repetition ? -i : i;
887               break;
888           }
889       }
890   }
891
892   assert(pos_is_ok());
893 }
894
895
896 /// Position::undo_move() unmakes a move. When it returns, the position should
897 /// be restored to exactly the same state as before the move was made.
898
899 void Position::undo_move(Move m) {
900
901   assert(is_ok(m));
902
903   sideToMove = ~sideToMove;
904
905   Color us = sideToMove;
906   Square from = from_sq(m);
907   Square to = to_sq(m);
908   Piece pc = piece_on(to);
909
910   assert(empty(from) || type_of(m) == CASTLING);
911   assert(type_of(st->capturedPiece) != KING);
912
913   if (type_of(m) == PROMOTION)
914   {
915       assert(relative_rank(us, to) == RANK_8);
916       assert(type_of(pc) == promotion_type(m));
917       assert(type_of(pc) >= KNIGHT && type_of(pc) <= QUEEN);
918
919       remove_piece(to);
920       pc = make_piece(us, PAWN);
921       put_piece(pc, to);
922   }
923
924   if (type_of(m) == CASTLING)
925   {
926       Square rfrom, rto;
927       do_castling<false>(us, from, to, rfrom, rto);
928   }
929   else
930   {
931       move_piece(to, from); // Put the piece back at the source square
932
933       if (st->capturedPiece)
934       {
935           Square capsq = to;
936
937           if (type_of(m) == EN_PASSANT)
938           {
939               capsq -= pawn_push(us);
940
941               assert(type_of(pc) == PAWN);
942               assert(to == st->previous->epSquare);
943               assert(relative_rank(us, to) == RANK_6);
944               assert(piece_on(capsq) == NO_PIECE);
945               assert(st->capturedPiece == make_piece(~us, PAWN));
946           }
947
948           put_piece(st->capturedPiece, capsq); // Restore the captured piece
949       }
950   }
951
952   // Finally point our state pointer back to the previous state
953   st = st->previous;
954   --gamePly;
955
956   assert(pos_is_ok());
957 }
958
959
960 /// Position::do_castling() is a helper used to do/undo a castling move. This
961 /// is a bit tricky in Chess960 where from/to squares can overlap.
962 template<bool Do>
963 void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) {
964
965   bool kingSide = to > from;
966   rfrom = to; // Castling is encoded as "king captures friendly rook"
967   rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);
968   to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
969
970   if (Do && Eval::useNNUE)
971   {
972       auto& dp = st->dirtyPiece;
973       dp.piece[0] = make_piece(us, KING);
974       dp.from[0] = from;
975       dp.to[0] = to;
976       dp.piece[1] = make_piece(us, ROOK);
977       dp.from[1] = rfrom;
978       dp.to[1] = rto;
979       dp.dirty_num = 2;
980   }
981
982   // Remove both pieces first since squares could overlap in Chess960
983   remove_piece(Do ? from : to);
984   remove_piece(Do ? rfrom : rto);
985   board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do this for us
986   put_piece(make_piece(us, KING), Do ? to : from);
987   put_piece(make_piece(us, ROOK), Do ? rto : rfrom);
988 }
989
990
991 /// Position::do_null_move() is used to do a "null move": it flips
992 /// the side to move without executing any move on the board.
993
994 void Position::do_null_move(StateInfo& newSt) {
995
996   assert(!checkers());
997   assert(&newSt != st);
998
999   std::memcpy(&newSt, st, offsetof(StateInfo, accumulator));
1000
1001   newSt.previous = st;
1002   st = &newSt;
1003
1004   st->dirtyPiece.dirty_num = 0;
1005   st->dirtyPiece.piece[0] = NO_PIECE; // Avoid checks in UpdateAccumulator()
1006   st->accumulator.computed[WHITE] = false;
1007   st->accumulator.computed[BLACK] = false;
1008
1009   if (st->epSquare != SQ_NONE)
1010   {
1011       st->key ^= Zobrist::enpassant[file_of(st->epSquare)];
1012       st->epSquare = SQ_NONE;
1013   }
1014
1015   st->key ^= Zobrist::side;
1016   prefetch(TT.first_entry(key()));
1017
1018   ++st->rule50;
1019   st->pliesFromNull = 0;
1020
1021   sideToMove = ~sideToMove;
1022
1023   set_check_info(st);
1024
1025   st->repetition = 0;
1026
1027   assert(pos_is_ok());
1028 }
1029
1030
1031 /// Position::undo_null_move() must be used to undo a "null move"
1032
1033 void Position::undo_null_move() {
1034
1035   assert(!checkers());
1036
1037   st = st->previous;
1038   sideToMove = ~sideToMove;
1039 }
1040
1041
1042 /// Position::key_after() computes the new hash key after the given move. Needed
1043 /// for speculative prefetch. It doesn't recognize special moves like castling,
1044 /// en passant and promotions.
1045
1046 Key Position::key_after(Move m) const {
1047
1048   Square from = from_sq(m);
1049   Square to = to_sq(m);
1050   Piece pc = piece_on(from);
1051   Piece captured = piece_on(to);
1052   Key k = st->key ^ Zobrist::side;
1053
1054   if (captured)
1055       k ^= Zobrist::psq[captured][to];
1056
1057   return k ^ Zobrist::psq[pc][to] ^ Zobrist::psq[pc][from];
1058 }
1059
1060
1061 /// Position::see_ge (Static Exchange Evaluation Greater or Equal) tests if the
1062 /// SEE value of move is greater or equal to the given threshold. We'll use an
1063 /// algorithm similar to alpha-beta pruning with a null window.
1064
1065 bool Position::see_ge(Move m, Value threshold) const {
1066
1067   assert(is_ok(m));
1068
1069   // Only deal with normal moves, assume others pass a simple SEE
1070   if (type_of(m) != NORMAL)
1071       return VALUE_ZERO >= threshold;
1072
1073   Square from = from_sq(m), to = to_sq(m);
1074
1075   int swap = PieceValue[MG][piece_on(to)] - threshold;
1076   if (swap < 0)
1077       return false;
1078
1079   swap = PieceValue[MG][piece_on(from)] - swap;
1080   if (swap <= 0)
1081       return true;
1082
1083   assert(color_of(piece_on(from)) == sideToMove);
1084   Bitboard occupied = pieces() ^ from ^ to;
1085   Color stm = sideToMove;
1086   Bitboard attackers = attackers_to(to, occupied);
1087   Bitboard stmAttackers, bb;
1088   int res = 1;
1089
1090   while (true)
1091   {
1092       stm = ~stm;
1093       attackers &= occupied;
1094
1095       // If stm has no more attackers then give up: stm loses
1096       if (!(stmAttackers = attackers & pieces(stm)))
1097           break;
1098
1099       // Don't allow pinned pieces to attack as long as there are
1100       // pinners on their original square.
1101       if (pinners(~stm) & occupied)
1102           stmAttackers &= ~blockers_for_king(stm);
1103
1104       if (!stmAttackers)
1105           break;
1106
1107       res ^= 1;
1108
1109       // Locate and remove the next least valuable attacker, and add to
1110       // the bitboard 'attackers' any X-ray attackers behind it.
1111       if ((bb = stmAttackers & pieces(PAWN)))
1112       {
1113           if ((swap = PawnValueMg - swap) < res)
1114               break;
1115
1116           occupied ^= least_significant_square_bb(bb);
1117           attackers |= attacks_bb<BISHOP>(to, occupied) & pieces(BISHOP, QUEEN);
1118       }
1119
1120       else if ((bb = stmAttackers & pieces(KNIGHT)))
1121       {
1122           if ((swap = KnightValueMg - swap) < res)
1123               break;
1124
1125           occupied ^= least_significant_square_bb(bb);
1126       }
1127
1128       else if ((bb = stmAttackers & pieces(BISHOP)))
1129       {
1130           if ((swap = BishopValueMg - swap) < res)
1131               break;
1132
1133           occupied ^= least_significant_square_bb(bb);
1134           attackers |= attacks_bb<BISHOP>(to, occupied) & pieces(BISHOP, QUEEN);
1135       }
1136
1137       else if ((bb = stmAttackers & pieces(ROOK)))
1138       {
1139           if ((swap = RookValueMg - swap) < res)
1140               break;
1141
1142           occupied ^= least_significant_square_bb(bb);
1143           attackers |= attacks_bb<ROOK>(to, occupied) & pieces(ROOK, QUEEN);
1144       }
1145
1146       else if ((bb = stmAttackers & pieces(QUEEN)))
1147       {
1148           if ((swap = QueenValueMg - swap) < res)
1149               break;
1150
1151           occupied ^= least_significant_square_bb(bb);
1152           attackers |=  (attacks_bb<BISHOP>(to, occupied) & pieces(BISHOP, QUEEN))
1153                       | (attacks_bb<ROOK  >(to, occupied) & pieces(ROOK  , QUEEN));
1154       }
1155
1156       else // KING
1157            // If we "capture" with the king but opponent still has attackers,
1158            // reverse the result.
1159           return (attackers & ~pieces(stm)) ? res ^ 1 : res;
1160   }
1161
1162   return bool(res);
1163 }
1164
1165
1166 /// Position::is_draw() tests whether the position is drawn by 50-move rule
1167 /// or by repetition. It does not detect stalemates.
1168
1169 bool Position::is_draw(int ply) const {
1170
1171   if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size()))
1172       return true;
1173
1174   // Return a draw score if a position repeats once earlier but strictly
1175   // after the root, or repeats twice before or at the root.
1176   return st->repetition && st->repetition < ply;
1177 }
1178
1179
1180 // Position::has_repeated() tests whether there has been at least one repetition
1181 // of positions since the last capture or pawn move.
1182
1183 bool Position::has_repeated() const {
1184
1185     StateInfo* stc = st;
1186     int end = std::min(st->rule50, st->pliesFromNull);
1187     while (end-- >= 4)
1188     {
1189         if (stc->repetition)
1190             return true;
1191
1192         stc = stc->previous;
1193     }
1194     return false;
1195 }
1196
1197
1198 /// Position::has_game_cycle() tests if the position has a move which draws by repetition,
1199 /// or an earlier position has a move that directly reaches the current position.
1200
1201 bool Position::has_game_cycle(int ply) const {
1202
1203   int j;
1204
1205   int end = std::min(st->rule50, st->pliesFromNull);
1206
1207   if (end < 3)
1208     return false;
1209
1210   Key originalKey = st->key;
1211   StateInfo* stp = st->previous;
1212
1213   for (int i = 3; i <= end; i += 2)
1214   {
1215       stp = stp->previous->previous;
1216
1217       Key moveKey = originalKey ^ stp->key;
1218       if (   (j = H1(moveKey), cuckoo[j] == moveKey)
1219           || (j = H2(moveKey), cuckoo[j] == moveKey))
1220       {
1221           Move move = cuckooMove[j];
1222           Square s1 = from_sq(move);
1223           Square s2 = to_sq(move);
1224
1225           if (!((between_bb(s1, s2) ^ s2) & pieces()))
1226           {
1227               if (ply > i)
1228                   return true;
1229
1230               // For nodes before or at the root, check that the move is a
1231               // repetition rather than a move to the current position.
1232               // In the cuckoo table, both moves Rc1c5 and Rc5c1 are stored in
1233               // the same location, so we have to select which square to check.
1234               if (color_of(piece_on(empty(s1) ? s2 : s1)) != side_to_move())
1235                   continue;
1236
1237               // For repetitions before or at the root, require one more
1238               if (stp->repetition)
1239                   return true;
1240           }
1241       }
1242   }
1243   return false;
1244 }
1245
1246
1247 /// Position::flip() flips position with the white and black sides reversed. This
1248 /// is only useful for debugging e.g. for finding evaluation symmetry bugs.
1249
1250 void Position::flip() {
1251
1252   string f, token;
1253   std::stringstream ss(fen());
1254
1255   for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement
1256   {
1257       std::getline(ss, token, r > RANK_1 ? '/' : ' ');
1258       f.insert(0, token + (f.empty() ? " " : "/"));
1259   }
1260
1261   ss >> token; // Active color
1262   f += (token == "w" ? "B " : "W "); // Will be lowercased later
1263
1264   ss >> token; // Castling availability
1265   f += token + " ";
1266
1267   std::transform(f.begin(), f.end(), f.begin(),
1268                  [](char c) { return char(islower(c) ? toupper(c) : tolower(c)); });
1269
1270   ss >> token; // En passant square
1271   f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3"));
1272
1273   std::getline(ss, token); // Half and full moves
1274   f += token;
1275
1276   set(f, is_chess960(), st, this_thread());
1277
1278   assert(pos_is_ok());
1279 }
1280
1281
1282 /// Position::pos_is_ok() performs some consistency checks for the
1283 /// position object and raises an asserts if something wrong is detected.
1284 /// This is meant to be helpful when debugging.
1285
1286 bool Position::pos_is_ok() const {
1287
1288   constexpr bool Fast = true; // Quick (default) or full check?
1289
1290   if (   (sideToMove != WHITE && sideToMove != BLACK)
1291       || piece_on(square<KING>(WHITE)) != W_KING
1292       || piece_on(square<KING>(BLACK)) != B_KING
1293       || (   ep_square() != SQ_NONE
1294           && relative_rank(sideToMove, ep_square()) != RANK_6))
1295       assert(0 && "pos_is_ok: Default");
1296
1297   if (Fast)
1298       return true;
1299
1300   if (   pieceCount[W_KING] != 1
1301       || pieceCount[B_KING] != 1
1302       || attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove))
1303       assert(0 && "pos_is_ok: Kings");
1304
1305   if (   (pieces(PAWN) & (Rank1BB | Rank8BB))
1306       || pieceCount[W_PAWN] > 8
1307       || pieceCount[B_PAWN] > 8)
1308       assert(0 && "pos_is_ok: Pawns");
1309
1310   if (   (pieces(WHITE) & pieces(BLACK))
1311       || (pieces(WHITE) | pieces(BLACK)) != pieces()
1312       || popcount(pieces(WHITE)) > 16
1313       || popcount(pieces(BLACK)) > 16)
1314       assert(0 && "pos_is_ok: Bitboards");
1315
1316   for (PieceType p1 = PAWN; p1 <= KING; ++p1)
1317       for (PieceType p2 = PAWN; p2 <= KING; ++p2)
1318           if (p1 != p2 && (pieces(p1) & pieces(p2)))
1319               assert(0 && "pos_is_ok: Bitboards");
1320
1321   StateInfo si = *st;
1322   ASSERT_ALIGNED(&si, Eval::NNUE::CacheLineSize);
1323
1324   set_state(&si);
1325   if (std::memcmp(&si, st, sizeof(StateInfo)))
1326       assert(0 && "pos_is_ok: State");
1327
1328   for (Piece pc : Pieces)
1329       if (   pieceCount[pc] != popcount(pieces(color_of(pc), type_of(pc)))
1330           || pieceCount[pc] != std::count(board, board + SQUARE_NB, pc))
1331           assert(0 && "pos_is_ok: Pieces");
1332
1333   for (Color c : { WHITE, BLACK })
1334       for (CastlingRights cr : {c & KING_SIDE, c & QUEEN_SIDE})
1335       {
1336           if (!can_castle(cr))
1337               continue;
1338
1339           if (   piece_on(castlingRookSquare[cr]) != make_piece(c, ROOK)
1340               || castlingRightsMask[castlingRookSquare[cr]] != cr
1341               || (castlingRightsMask[square<KING>(c)] & cr) != cr)
1342               assert(0 && "pos_is_ok: Castling");
1343       }
1344
1345   return true;
1346 }
1347
1348 } // namespace Stockfish