/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #if !defined(VALUE_H_INCLUDED) #define VALUE_H_INCLUDED //// //// Types //// enum ValueType { VALUE_TYPE_NONE = 0, VALUE_TYPE_UPPER = 1, // Upper bound VALUE_TYPE_LOWER = 2, // Lower bound VALUE_TYPE_EXACT = VALUE_TYPE_UPPER | VALUE_TYPE_LOWER }; enum Value { VALUE_ZERO = 0, VALUE_DRAW = 0, VALUE_KNOWN_WIN = 15000, VALUE_MATE = 30000, VALUE_INFINITE = 30001, VALUE_NONE = 30002, VALUE_ENSURE_SIGNED = -1 }; ENABLE_OPERATORS_ON(Value) // Extra operators inline Value operator+ (Value v, int i) { return Value(int(v) + i); } inline Value operator- (Value v, int i) { return Value(int(v) - i); } enum ScaleFactor { SCALE_FACTOR_ZERO = 0, SCALE_FACTOR_NORMAL = 64, SCALE_FACTOR_MAX = 128, SCALE_FACTOR_NONE = 255 }; /// Score enum keeps a midgame and an endgame value in a single /// integer (enum), first LSB 16 bits are used to store endgame /// value, while upper bits are used for midgame value. // Compiler is free to choose the enum type as long as can keep // its data, so ensure Score to be an integer type. enum Score { SCORE_ZERO = 0, SCORE_ENSURE_32_BITS_SIZE_P = (1 << 16), SCORE_ENSURE_32_BITS_SIZE_N = -(1 << 16) }; // Extracting the _signed_ lower and upper 16 bits it not so trivial // because according to the standard a simple cast to short is // implementation defined and so is a right shift of a signed integer. inline Value mg_value(Score s) { return Value(((int(s) + 32768) & ~0xffff) / 0x10000); } // Unfortunatly on Intel 64 bit we have a small speed regression, so use a faster code in // this case, although not 100% standard compliant it seems to work for Intel and MSVC. #if defined(IS_64BIT) && (!defined(__GNUC__) || defined(__INTEL_COMPILER)) inline Value eg_value(Score s) { return Value(int16_t(s & 0xffff)); } #else inline Value eg_value(Score s) { return Value((int)(unsigned(s) & 0x7fffu) - (int)(unsigned(s) & 0x8000u)); } #endif inline Score make_score(int mg, int eg) { return Score((mg << 16) + eg); } // Division must be handled separately for each term inline Score operator/(Score s, int i) { return make_score(mg_value(s) / i, eg_value(s) / i); } // Only declared but not defined. We don't want to multiply two scores due to // a very high risk of overflow. So user should explicitly convert to integer. inline Score operator*(Score s1, Score s2); // Rest of operators are standard: inline Score operator+ (const Score d1, const Score d2) { return Score(int(d1) + int(d2)); } inline Score operator- (const Score d1, const Score d2) { return Score(int(d1) - int(d2)); } inline Score operator* (int i, const Score d) { return Score(i * int(d)); } inline Score operator* (const Score d, int i) { return Score(int(d) * i); } inline Score operator- (const Score d) { return Score(-int(d)); } inline void operator+= (Score& d1, const Score d2) { d1 = d1 + d2; } inline void operator-= (Score& d1, const Score d2) { d1 = d1 - d2; } inline void operator*= (Score& d, int i) { d = Score(int(d) * i); } inline void operator/= (Score& d, int i) { d = Score(int(d) / i); } //// //// Inline functions //// inline Value value_mate_in(int ply) { return VALUE_MATE - ply; } inline Value value_mated_in(int ply) { return -VALUE_MATE + ply; } #endif // !defined(VALUE_H_INCLUDED)