]> git.sesse.net Git - stockfish/blobdiff - src/bitboard.cpp
Simplify connected pawn scoring
[stockfish] / src / bitboard.cpp
index f6504aa9098b6aa808cdc89d1957c5da18930c1f..2afd3766babf552bfecf9639ae99e3991bc59dbf 100644 (file)
@@ -2,6 +2,7 @@
   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
+  Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
 
   Stockfish is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
 */
 
 #include <algorithm>
-#include <cstring>   // For std::memset
+#include <bitset>
 
 #include "bitboard.h"
-#include "bitcount.h"
 #include "misc.h"
 
-int SquareDistance[SQUARE_NB][SQUARE_NB];
-
-Bitboard  RookMasks  [SQUARE_NB];
-Bitboard  RookMagics [SQUARE_NB];
-Bitboard* RookAttacks[SQUARE_NB];
-unsigned  RookShifts [SQUARE_NB];
-
-Bitboard  BishopMasks  [SQUARE_NB];
-Bitboard  BishopMagics [SQUARE_NB];
-Bitboard* BishopAttacks[SQUARE_NB];
-unsigned  BishopShifts [SQUARE_NB];
+uint8_t PopCnt16[1 << 16];
+uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
 
 Bitboard SquareBB[SQUARE_NB];
-Bitboard FileBB[FILE_NB];
-Bitboard RankBB[RANK_NB];
-Bitboard AdjacentFilesBB[FILE_NB];
-Bitboard InFrontBB[COLOR_NB][RANK_NB];
-Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB];
-Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
 Bitboard LineBB[SQUARE_NB][SQUARE_NB];
-Bitboard DistanceRingBB[SQUARE_NB][8];
-Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
-Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
-Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
 Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
+Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
 
-namespace {
+Magic RookMagics[SQUARE_NB];
+Magic BishopMagics[SQUARE_NB];
 
-  // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan
-  const uint64_t DeBruijn64 = 0x3F79D71B4CB0A89ULL;
-  const uint32_t DeBruijn32 = 0x783A9B23;
+namespace {
 
-  int MS1BTable[256];           // To implement software msb()
-  Square BSFTable[SQUARE_NB];   // To implement software bitscan
   Bitboard RookTable[0x19000];  // To store rook attacks
   Bitboard BishopTable[0x1480]; // To store bishop attacks
 
-  typedef unsigned (Fn)(Square, Bitboard);
-
-  void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
-                   Bitboard masks[], unsigned shifts[], Square deltas[], Fn index);
-
-  // bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses
-  // Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch.
-
-  FORCE_INLINE unsigned bsf_index(Bitboard b) {
-    b ^= b - 1;
-    return Is64Bit ? (b * DeBruijn64) >> 58
-                   : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26;
-  }
-}
-
-#ifndef USE_BSFQ
-
-/// Software fall-back of lsb() and msb() for CPU lacking hardware support
-
-Square lsb(Bitboard b) {
-  return BSFTable[bsf_index(b)];
-}
-
-Square msb(Bitboard b) {
-
-  unsigned b32;
-  int result = 0;
-
-  if (b > 0xFFFFFFFF)
-  {
-      b >>= 32;
-      result = 32;
-  }
-
-  b32 = unsigned(b);
-
-  if (b32 > 0xFFFF)
-  {
-      b32 >>= 16;
-      result += 16;
-  }
-
-  if (b32 > 0xFF)
-  {
-      b32 >>= 8;
-      result += 8;
-  }
-
-  return Square(result + MS1BTable[b32]);
+  void init_magics(Bitboard table[], Magic magics[], Direction directions[]);
 }
 
-#endif // ifndef USE_BSFQ
-
 
 /// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
 /// to be printed to standard output. Useful for debugging.
@@ -125,9 +54,9 @@ const std::string Bitboards::pretty(Bitboard b) {
   for (Rank r = RANK_8; r >= RANK_1; --r)
   {
       for (File f = FILE_A; f <= FILE_H; ++f)
-          s.append(b & make_square(f, r) ? "| X " : "|   ");
+          s += b & make_square(f, r) ? "| X " : "|   ";
 
-      s.append("|\n+---+---+---+---+---+---+---+---+\n");
+      s += "|\n+---+---+---+---+---+---+---+---+\n";
   }
 
   return s;
@@ -139,93 +68,63 @@ const std::string Bitboards::pretty(Bitboard b) {
 
 void Bitboards::init() {
 
-  for (Square s = SQ_A1; s <= SQ_H8; ++s)
-  {
-      SquareBB[s] = 1ULL << s;
-      BSFTable[bsf_index(SquareBB[s])] = s;
-  }
-
-  for (Bitboard b = 1; b < 256; ++b)
-      MS1BTable[b] = more_than_one(b) ? MS1BTable[b - 1] : lsb(b);
-
-  for (File f = FILE_A; f <= FILE_H; ++f)
-      FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB;
-
-  for (Rank r = RANK_1; r <= RANK_8; ++r)
-      RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB;
+  for (unsigned i = 0; i < (1 << 16); ++i)
+      PopCnt16[i] = std::bitset<16>(i).count();
 
-  for (File f = FILE_A; f <= FILE_H; ++f)
-      AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
-
-  for (Rank r = RANK_1; r < RANK_8; ++r)
-      InFrontBB[WHITE][r] = ~(InFrontBB[BLACK][r + 1] = InFrontBB[BLACK][r] | RankBB[r]);
-
-  for (Color c = WHITE; c <= BLACK; ++c)
-      for (Square s = SQ_A1; s <= SQ_H8; ++s)
-      {
-          ForwardBB[c][s]      = InFrontBB[c][rank_of(s)] & FileBB[file_of(s)];
-          PawnAttackSpan[c][s] = InFrontBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)];
-          PassedPawnMask[c][s] = ForwardBB[c][s] | PawnAttackSpan[c][s];
-      }
+  for (Square s = SQ_A1; s <= SQ_H8; ++s)
+      SquareBB[s] = (1ULL << s);
 
   for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
       for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
-          if (s1 != s2)
-          {
               SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
-              DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2;
-          }
 
-  int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },
-                     {}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } };
+  int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } };
 
-  for (Color c = WHITE; c <= BLACK; ++c)
-      for (PieceType pt = PAWN; pt <= KING; ++pt)
+  for (Color c : { WHITE, BLACK })
+      for (PieceType pt : { PAWN, KNIGHT, KING })
           for (Square s = SQ_A1; s <= SQ_H8; ++s)
               for (int i = 0; steps[pt][i]; ++i)
               {
-                  Square to = s + Square(c == WHITE ? steps[pt][i] : -steps[pt][i]);
+                  Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]);
 
                   if (is_ok(to) && distance(s, to) < 3)
-                      StepAttacksBB[make_piece(c, pt)][s] |= to;
+                  {
+                      if (pt == PAWN)
+                          PawnAttacks[c][s] |= to;
+                      else
+                          PseudoAttacks[pt][s] |= to;
+                  }
               }
 
-  Square RookDeltas[] = { DELTA_N,  DELTA_E,  DELTA_S,  DELTA_W  };
-  Square BishopDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW };
+  Direction RookDirections[] = { NORTH, EAST, SOUTH, WEST };
+  Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST };
 
-  init_magics(RookTable, RookAttacks, RookMagics, RookMasks, RookShifts, RookDeltas, magic_index<ROOK>);
-  init_magics(BishopTable, BishopAttacks, BishopMagics, BishopMasks, BishopShifts, BishopDeltas, magic_index<BISHOP>);
+  init_magics(RookTable, RookMagics, RookDirections);
+  init_magics(BishopTable, BishopMagics, BishopDirections);
 
   for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
   {
       PseudoAttacks[QUEEN][s1]  = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
       PseudoAttacks[QUEEN][s1] |= PseudoAttacks[  ROOK][s1] = attacks_bb<  ROOK>(s1, 0);
 
-      for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
-      {
-          Piece pc = (PseudoAttacks[BISHOP][s1] & s2) ? W_BISHOP :
-                     (PseudoAttacks[ROOK][s1]   & s2) ? W_ROOK   : NO_PIECE;
-
-          if (pc == NO_PIECE)
-              continue;
-
-          LineBB[s1][s2] = (attacks_bb(pc, s1, 0) & attacks_bb(pc, s2, 0)) | s1 | s2;
-          BetweenBB[s1][s2] = attacks_bb(pc, s1, SquareBB[s2]) & attacks_bb(pc, s2, SquareBB[s1]);
-      }
+      for (PieceType pt : { BISHOP, ROOK })
+          for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
+              if (PseudoAttacks[pt][s1] & s2)
+                  LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
   }
 }
 
 
 namespace {
 
-  Bitboard sliding_attack(Square deltas[], Square sq, Bitboard occupied) {
+  Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) {
 
     Bitboard attack = 0;
 
     for (int i = 0; i < 4; ++i)
-        for (Square s = sq + deltas[i];
-             is_ok(s) && distance(s, s - deltas[i]) == 1;
-             s += deltas[i])
+        for (Square s = sq + directions[i];
+             is_ok(s) && distance(s, s - directions[i]) == 1;
+             s += directions[i])
         {
             attack |= s;
 
@@ -239,22 +138,17 @@ namespace {
 
   // init_magics() computes all rook and bishop attacks at startup. Magic
   // bitboards are used to look up attacks of sliding pieces. As a reference see
-  // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
-  // use the so called "fancy" approach.
+  // www.chessprogramming.org/Magic_Bitboards. In particular, here we use the so
+  // called "fancy" approach.
 
-  void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
-                   Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) {
+  void init_magics(Bitboard table[], Magic magics[], Direction directions[]) {
 
+    // Optimal PRNG seeds to pick the correct magics in the shortest time
     int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998,  5731, 95205, 104912, 17020 },
                              {  728, 10316, 55013, 32803, 12281, 15100,  16645,   255 } };
 
     Bitboard occupancy[4096], reference[4096], edges, b;
-    int age[4096], current = 0, i, size;
-
-    std::memset(age, 0, sizeof(age));
-
-    // attacks[s] is a pointer to the beginning of the attacks table for square 's'
-    attacks[SQ_A1] = table;
+    int epoch[4096] = {}, cnt = 0, size = 0;
 
     for (Square s = SQ_A1; s <= SQ_H8; ++s)
     {
@@ -266,28 +160,28 @@ namespace {
         // all the attacks for each possible subset of the mask and so is 2 power
         // the number of 1s of the mask. Hence we deduce the size of the shift to
         // apply to the 64 or 32 bits word to get the index.
-        masks[s]  = sliding_attack(deltas, s, 0) & ~edges;
-        shifts[s] = (Is64Bit ? 64 : 32) - popcount<Max15>(masks[s]);
+        Magic& m = magics[s];
+        m.mask  = sliding_attack(directions, s, 0) & ~edges;
+        m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
+
+        // Set the offset for the attacks table of the square. We have individual
+        // table sizes for each square with "Fancy Magic Bitboards".
+        m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size;
 
         // Use Carry-Rippler trick to enumerate all subsets of masks[s] and
         // store the corresponding sliding attack bitboard in reference[].
         b = size = 0;
         do {
             occupancy[size] = b;
-            reference[size] = sliding_attack(deltas, s, b);
+            reference[size] = sliding_attack(directions, s, b);
 
             if (HasPext)
-                attacks[s][pext(b, masks[s])] = reference[size];
+                m.attacks[pext(b, m.mask)] = reference[size];
 
             size++;
-            b = (b - masks[s]) & masks[s];
+            b = (b - m.mask) & m.mask;
         } while (b);
 
-        // Set the offset for the table of the next square. We have individual
-        // table sizes for each square with "Fancy Magic Bitboards".
-        if (s < SQ_H8)
-            attacks[s + 1] = attacks[s] + size;
-
         if (HasPext)
             continue;
 
@@ -295,28 +189,30 @@ namespace {
 
         // Find a magic for square 's' picking up an (almost) random number
         // until we find the one that passes the verification test.
-        do {
-            do
-                magics[s] = rng.sparse_rand<Bitboard>();
-            while (popcount<Max15>((magics[s] * masks[s]) >> 56) < 6);
+        for (int i = 0; i < size; )
+        {
+            for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; )
+                m.magic = rng.sparse_rand<Bitboard>();
 
             // A good magic must map every possible occupancy to an index that
             // looks up the correct sliding attack in the attacks[s] database.
             // Note that we build up the database for square 's' as a side
-            // effect of verifying the magic.
-            for (++current, i = 0; i < size; ++i)
+            // effect of verifying the magic. Keep track of the attempt count
+            // and save it in epoch[], little speed-up trick to avoid resetting
+            // m.attacks[] after every failed attempt.
+            for (++cnt, i = 0; i < size; ++i)
             {
-                unsigned idx = index(s, occupancy[i]);
+                unsigned idx = m.index(occupancy[i]);
 
-                if (age[idx] < current)
+                if (epoch[idx] < cnt)
                 {
-                    age[idx] = current;
-                    attacks[s][idx] = reference[i];
+                    epoch[idx] = cnt;
+                    m.attacks[idx] = reference[i];
                 }
-                else if (attacks[s][idx] != reference[i])
+                else if (m.attacks[idx] != reference[i])
                     break;
             }
-        } while (i < size);
+        }
     }
   }
 }