]> git.sesse.net Git - stockfish/blobdiff - src/material.cpp
Use self-describing constants instead of numbers
[stockfish] / src / material.cpp
index 2718300d84474ec650e5e6696de05d9dce8707ae..073bef81d98e968da6f2bc8e38635a1bdc5df9a3 100644 (file)
@@ -1,13 +1,14 @@
 /*
-  Glaurung, a UCI chess playing engine.
-  Copyright (C) 2004-2008 Tord Romstad
+  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
+  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
+  Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
 
-  Glaurung is free software: you can redistribute it and/or modify
+  Stockfish is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.
 
-  Glaurung is distributed in the hope that it will be useful,
+  Stockfish is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
 
-
-////
-//// Includes
-////
-
+#include <algorithm>
 #include <cassert>
+#include <cstring>
 
 #include "material.h"
 
-
-////
-//// Local definitions
-////
+using namespace std;
 
 namespace {
 
-  const Value BishopPairMidgameBonus = Value(100);
-  const Value BishopPairEndgameBonus = Value(100);
-
-  Key KPKMaterialKey, KKPMaterialKey;
-  Key KBNKMaterialKey, KKBNMaterialKey;
-  Key KRKPMaterialKey, KPKRMaterialKey;
-  Key KRKBMaterialKey, KBKRMaterialKey;
-  Key KRKNMaterialKey, KNKRMaterialKey;
-  Key KQKRMaterialKey, KRKQMaterialKey;
-  Key KRPKRMaterialKey, KRKRPMaterialKey;
-  Key KRPPKRPMaterialKey, KRPKRPPMaterialKey;
-  Key KNNKMaterialKey, KKNNMaterialKey;
-  Key KBPKBMaterialKey, KBKBPMaterialKey;
-  Key KBPKNMaterialKey, KNKBPMaterialKey;
-  Key KNPKMaterialKey, KKNPMaterialKey;
-  Key KPKPMaterialKey;
+  // Values modified by Joona Kiiski
+  const Value MidgameLimit = Value(15581);
+  const Value EndgameLimit = Value(3998);
 
-}
+  // Scale factors used when one side has no more pawns
+  const int NoPawnsSF[4] = { 6, 12, 32 };
 
+  // Polynomial material balance parameters
+  const Value RedundantQueenPenalty = Value(320);
+  const Value RedundantRookPenalty  = Value(554);
 
-////
-//// Functions
-////
-
-/// MaterialInfo::init() is called during program initialization.  It
-/// precomputes material hash keys for a few basic endgames, in order
-/// to make it easy to recognize such endgames when they occur.
-
-void MaterialInfo::init() {
-  KPKMaterialKey = Position::zobMaterial[WHITE][PAWN][1];
-  KKPMaterialKey = Position::zobMaterial[BLACK][PAWN][1];
-  KBNKMaterialKey =
-    Position::zobMaterial[WHITE][BISHOP][1] ^
-    Position::zobMaterial[WHITE][KNIGHT][1];
-  KKBNMaterialKey =
-    Position::zobMaterial[BLACK][BISHOP][1] ^
-    Position::zobMaterial[BLACK][KNIGHT][1];
-  KRKPMaterialKey =
-    Position::zobMaterial[WHITE][ROOK][1] ^
-    Position::zobMaterial[BLACK][PAWN][1];
-  KPKRMaterialKey =
-    Position::zobMaterial[WHITE][PAWN][1] ^
-    Position::zobMaterial[BLACK][ROOK][1];
-  KRKBMaterialKey =
-    Position::zobMaterial[WHITE][ROOK][1] ^
-    Position::zobMaterial[BLACK][BISHOP][1];
-  KBKRMaterialKey =
-    Position::zobMaterial[WHITE][BISHOP][1] ^
-    Position::zobMaterial[BLACK][ROOK][1];
-  KRKNMaterialKey =
-    Position::zobMaterial[WHITE][ROOK][1] ^
-    Position::zobMaterial[BLACK][KNIGHT][1];
-  KNKRMaterialKey =
-    Position::zobMaterial[WHITE][KNIGHT][1] ^
-    Position::zobMaterial[BLACK][ROOK][1];
-  KQKRMaterialKey =
-    Position::zobMaterial[WHITE][QUEEN][1] ^
-    Position::zobMaterial[BLACK][ROOK][1];
-  KRKQMaterialKey =
-    Position::zobMaterial[WHITE][ROOK][1] ^
-    Position::zobMaterial[BLACK][QUEEN][1];
-  KRPKRMaterialKey =
-    Position::zobMaterial[WHITE][ROOK][1] ^
-    Position::zobMaterial[WHITE][PAWN][1] ^
-    Position::zobMaterial[BLACK][ROOK][1];
-  KRKRPMaterialKey =
-    Position::zobMaterial[WHITE][ROOK][1] ^
-    Position::zobMaterial[BLACK][ROOK][1] ^
-    Position::zobMaterial[BLACK][PAWN][1];
-  KRPPKRPMaterialKey =
-    Position::zobMaterial[WHITE][ROOK][1] ^
-    Position::zobMaterial[WHITE][PAWN][1] ^
-    Position::zobMaterial[WHITE][PAWN][2] ^
-    Position::zobMaterial[BLACK][ROOK][1] ^
-    Position::zobMaterial[BLACK][PAWN][1];
-  KRPKRPPMaterialKey =
-    Position::zobMaterial[WHITE][ROOK][1] ^
-    Position::zobMaterial[WHITE][PAWN][1] ^
-    Position::zobMaterial[BLACK][ROOK][1] ^
-    Position::zobMaterial[BLACK][PAWN][1] ^
-    Position::zobMaterial[BLACK][PAWN][2];
-  KNNKMaterialKey =
-    Position::zobMaterial[WHITE][KNIGHT][1] ^
-    Position::zobMaterial[WHITE][KNIGHT][2];
-  KKNNMaterialKey =
-    Position::zobMaterial[BLACK][KNIGHT][1] ^
-    Position::zobMaterial[BLACK][KNIGHT][2];
-  KBPKBMaterialKey =
-    Position::zobMaterial[WHITE][BISHOP][1] ^
-    Position::zobMaterial[WHITE][PAWN][1] ^
-    Position::zobMaterial[BLACK][BISHOP][1];
-  KBKBPMaterialKey =
-    Position::zobMaterial[WHITE][BISHOP][1] ^
-    Position::zobMaterial[BLACK][BISHOP][1] ^
-    Position::zobMaterial[BLACK][PAWN][1];
-  KBPKNMaterialKey =
-    Position::zobMaterial[WHITE][BISHOP][1] ^
-    Position::zobMaterial[WHITE][PAWN][1] ^
-    Position::zobMaterial[BLACK][KNIGHT][1];
-  KNKBPMaterialKey =
-    Position::zobMaterial[WHITE][KNIGHT][1] ^
-    Position::zobMaterial[BLACK][BISHOP][1] ^
-    Position::zobMaterial[BLACK][PAWN][1];
-  KNPKMaterialKey =
-    Position::zobMaterial[WHITE][KNIGHT][1] ^
-    Position::zobMaterial[WHITE][PAWN][1];
-  KKNPMaterialKey =
-    Position::zobMaterial[BLACK][KNIGHT][1] ^
-    Position::zobMaterial[BLACK][PAWN][1];
-  KPKPMaterialKey =
-    Position::zobMaterial[WHITE][PAWN][1] ^
-    Position::zobMaterial[BLACK][PAWN][1];
-}
+  const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
 
+  const int QuadraticCoefficientsSameColor[][PIECE_TYPE_NB] = {
+  { 7, 7, 7, 7, 7, 7 }, { 39, 2, 7, 7, 7, 7 }, { 35, 271, -4, 7, 7, 7 },
+  { 7, 25, 4, 7, 7, 7 }, { -27, -2, 46, 100, 56, 7 }, { 58, 29, 83, 148, -3, -25 } };
 
-/// Constructor for the MaterialInfoTable class.
+  const int QuadraticCoefficientsOppositeColor[][PIECE_TYPE_NB] = {
+  { 41, 41, 41, 41, 41, 41 }, { 37, 41, 41, 41, 41, 41 }, { 10, 62, 41, 41, 41, 41 },
+  { 57, 64, 39, 41, 41, 41 }, { 50, 40, 23, -22, 41, 41 }, { 106, 101, 3, 151, 171, 41 } };
 
-MaterialInfoTable::MaterialInfoTable(unsigned numOfEntries) {
-  size = numOfEntries;
-  entries = new MaterialInfo[size];
-  if(entries == NULL) {
-    std::cerr << "Failed to allocate " << (numOfEntries * sizeof(MaterialInfo))
-              << " bytes for material hash table." << std::endl;
-    exit(EXIT_FAILURE);
-  }
-  this->clear();
-}
+  // Endgame evaluation and scaling functions accessed direcly and not through
+  // the function maps because correspond to more then one material hash key.
+  Endgame<KmmKm> EvaluateKmmKm[] = { Endgame<KmmKm>(WHITE), Endgame<KmmKm>(BLACK) };
+  Endgame<KXK>   EvaluateKXK[]   = { Endgame<KXK>(WHITE),   Endgame<KXK>(BLACK) };
 
+  Endgame<KBPsK>  ScaleKBPsK[]  = { Endgame<KBPsK>(WHITE),  Endgame<KBPsK>(BLACK) };
+  Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
+  Endgame<KPsK>   ScaleKPsK[]   = { Endgame<KPsK>(WHITE),   Endgame<KPsK>(BLACK) };
+  Endgame<KPKP>   ScaleKPKP[]   = { Endgame<KPKP>(WHITE),   Endgame<KPKP>(BLACK) };
 
-/// Destructor for the MaterialInfoTable class.
+  // Helper templates used to detect a given material distribution
+  template<Color Us> bool is_KXK(const Position& pos) {
+    const Color Them = (Us == WHITE ? BLACK : WHITE);
+    return   pos.non_pawn_material(Them) == VALUE_ZERO
+          && pos.piece_count(Them, PAWN) == 0
+          && pos.non_pawn_material(Us)   >= RookValueMg;
+  }
 
-MaterialInfoTable::~MaterialInfoTable() {
-  delete [] entries;
-}
+  template<Color Us> bool is_KBPsKs(const Position& pos) {
+    return   pos.non_pawn_material(Us)   == BishopValueMg
+          && pos.piece_count(Us, BISHOP) == 1
+          && pos.piece_count(Us, PAWN)   >= 1;
+  }
 
+  template<Color Us> bool is_KQKRPs(const Position& pos) {
+    const Color Them = (Us == WHITE ? BLACK : WHITE);
+    return   pos.piece_count(Us, PAWN)    == 0
+          && pos.non_pawn_material(Us)    == QueenValueMg
+          && pos.piece_count(Us, QUEEN)   == 1
+          && pos.piece_count(Them, ROOK)  == 1
+          && pos.piece_count(Them, PAWN)  >= 1;
+  }
 
-/// MaterialInfoTable::clear() clears a material hash table by setting
-/// all entries to 0.
+} // namespace
 
-void MaterialInfoTable::clear() {
-  memset(entries, 0, size * sizeof(MaterialInfo));
-}
 
+/// MaterialTable::probe() takes a position object as input, looks up a MaterialEntry
+/// object, and returns a pointer to it. If the material configuration is not
+/// already present in the table, it is computed and stored there, so we don't
+/// have to recompute everything when the same material configuration occurs again.
 
-/// MaterialInfoTable::get_material_info() takes a position object as input,
-/// computes or looks up a MaterialInfo object, and returns a pointer to it.
-/// If the material configuration is not already present in the table, it
-/// is stored there, so we don't have to recompute everything when the
-/// same material configuration occurs again.
+MaterialEntry* MaterialTable::probe(const Position& pos) {
 
-MaterialInfo *MaterialInfoTable::get_material_info(const Position &pos) {
-  Key key = pos.get_material_key();
-  int index = key & (size - 1);
-  MaterialInfo *mi = entries + index;
+  Key key = pos.material_key();
+  MaterialEntry* e = entries[key];
 
-  // If mi->key matches the position's material hash key, it means that we
+  // If e->key matches the position's material hash key, it means that we
   // have analysed this material configuration before, and we can simply
-  // return the information we found the last time instead of recomputing it:
-  if(mi->key == key)
-    return mi;
-
-  // Clear the MaterialInfo object, and set its key:
-  mi->clear();
-  mi->key = key;
-
-  // A special case before looking for a specialized evaluation function:
-  // KNN vs K is a draw:
-  if(key == KNNKMaterialKey || key == KKNNMaterialKey) {
-    mi->factor[WHITE] = mi->factor[BLACK] = 0;
-    return mi;
-  }
+  // return the information we found the last time instead of recomputing it.
+  if (e->key == key)
+      return e;
+
+  memset(e, 0, sizeof(MaterialEntry));
+  e->key = key;
+  e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
+  e->gamePhase = MaterialTable::game_phase(pos);
 
   // Let's look if we have a specialized evaluation function for this
-  // particular material configuration:
-  if(key == KPKMaterialKey) {
-    mi->evaluationFunction = &EvaluateKPK;
-    return mi;
-  }
-  else if(key == KKPMaterialKey) {
-    mi->evaluationFunction = &EvaluateKKP;
-    return mi;
-  }
-  else if(key == KBNKMaterialKey) {
-    mi->evaluationFunction = &EvaluateKBNK;
-    return mi;
+  // particular material configuration. First we look for a fixed
+  // configuration one, then a generic one if previous search failed.
+  if (endgames.probe(key, e->evaluationFunction))
+      return e;
+
+  if (is_KXK<WHITE>(pos))
+  {
+      e->evaluationFunction = &EvaluateKXK[WHITE];
+      return e;
   }
-  else if(key == KKBNMaterialKey) {
-    mi->evaluationFunction = &EvaluateKKBN;
-    return mi;
-  }
-  else if(key == KRKPMaterialKey) {
-    mi->evaluationFunction = &EvaluateKRKP;
-    return mi;
-  }
-  else if(key == KPKRMaterialKey) {
-    mi->evaluationFunction = &EvaluateKPKR;
-    return mi;
-  }
-  else if(key == KRKBMaterialKey) {
-    mi->evaluationFunction = &EvaluateKRKB;
-    return mi;
-  }
-  else if(key == KBKRMaterialKey) {
-    mi->evaluationFunction = &EvaluateKBKR;
-    return mi;
-  }
-  else if(key == KRKNMaterialKey) {
-    mi->evaluationFunction = &EvaluateKRKN;
-    return mi;
-  }
-  else if(key == KNKRMaterialKey) {
-    mi->evaluationFunction = &EvaluateKNKR;
-    return mi;
-  }
-  else if(key == KQKRMaterialKey) {
-    mi->evaluationFunction = &EvaluateKQKR;
-    return mi;
-  }
-  else if(key == KRKQMaterialKey) {
-    mi->evaluationFunction = &EvaluateKRKQ;
-    return mi;
-  }
-  else if(pos.non_pawn_material(BLACK) == Value(0) &&
-          pos.piece_count(BLACK, PAWN) == 0 &&
-          pos.non_pawn_material(WHITE) >= RookValueEndgame) {
-    mi->evaluationFunction = &EvaluateKXK;
-    return mi;
+
+  if (is_KXK<BLACK>(pos))
+  {
+      e->evaluationFunction = &EvaluateKXK[BLACK];
+      return e;
   }
-  else if(pos.non_pawn_material(WHITE) == Value(0) &&
-          pos.piece_count(WHITE, PAWN) == 0 &&
-          pos.non_pawn_material(BLACK) >= RookValueEndgame) {
-    mi->evaluationFunction = &EvaluateKKX;
-    return mi;
+
+  if (!pos.pieces(PAWN) && !pos.pieces(ROOK) && !pos.pieces(QUEEN))
+  {
+      // Minor piece endgame with at least one minor piece per side and
+      // no pawns. Note that the case KmmK is already handled by KXK.
+      assert((pos.pieces(WHITE, KNIGHT) | pos.pieces(WHITE, BISHOP)));
+      assert((pos.pieces(BLACK, KNIGHT) | pos.pieces(BLACK, BISHOP)));
+
+      if (   pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2
+          && pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2)
+      {
+          e->evaluationFunction = &EvaluateKmmKm[pos.side_to_move()];
+          return e;
+      }
   }
 
   // OK, we didn't find any special evaluation function for the current
-  // material configuration.  Is there a suitable scaling function?
+  // material configuration. Is there a suitable scaling function?
   //
-  // The code below is rather messy, and it could easily get worse later,
-  // if we decide to add more special cases.  We face problems when there
-  // are several conflicting applicable scaling functions and we need to
-  // decide which one to use.
-
-  if(key == KRPKRMaterialKey) {
-    mi->scalingFunction[WHITE] = &ScaleKRPKR;
-    return mi;
-  }
-  if(key == KRKRPMaterialKey) {
-    mi->scalingFunction[BLACK] = &ScaleKRKRP;
-    return mi;
-  }
-  if(key == KRPPKRPMaterialKey) {
-    mi->scalingFunction[WHITE] = &ScaleKRPPKRP;
-    return mi;
-  }
-  else if(key == KRPKRPPMaterialKey) {
-    mi->scalingFunction[BLACK] = &ScaleKRPKRPP;
-    return mi;
+  // We face problems when there are several conflicting applicable
+  // scaling functions and we need to decide which one to use.
+  EndgameBase<ScaleFactor>* sf;
+
+  if (endgames.probe(key, sf))
+  {
+      e->scalingFunction[sf->color()] = sf;
+      return e;
   }
-  if(key == KBPKBMaterialKey) {
-    mi->scalingFunction[WHITE] = &ScaleKBPKB;
-    return mi;
-  }
-  if(key == KBKBPMaterialKey) {
-    mi->scalingFunction[BLACK] = &ScaleKBKBP;
-    return mi;
-  }
-  if(key == KBPKNMaterialKey) {
-    mi->scalingFunction[WHITE] = &ScaleKBPKN;
-    return mi;
-  }
-  if(key == KNKBPMaterialKey) {
-    mi->scalingFunction[BLACK] = &ScaleKNKBP;
-    return mi;
+
+  // Generic scaling functions that refer to more then one material
+  // distribution. Should be probed after the specialized ones.
+  // Note that these ones don't return after setting the function.
+  if (is_KBPsKs<WHITE>(pos))
+      e->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
+
+  if (is_KBPsKs<BLACK>(pos))
+      e->scalingFunction[BLACK] = &ScaleKBPsK[BLACK];
+
+  if (is_KQKRPs<WHITE>(pos))
+      e->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE];
+
+  else if (is_KQKRPs<BLACK>(pos))
+      e->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK];
+
+  Value npm_w = pos.non_pawn_material(WHITE);
+  Value npm_b = pos.non_pawn_material(BLACK);
+
+  if (npm_w + npm_b == VALUE_ZERO)
+  {
+      if (pos.piece_count(BLACK, PAWN) == 0)
+      {
+          assert(pos.piece_count(WHITE, PAWN) >= 2);
+          e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
+      }
+      else if (pos.piece_count(WHITE, PAWN) == 0)
+      {
+          assert(pos.piece_count(BLACK, PAWN) >= 2);
+          e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
+      }
+      else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1)
+      {
+          // This is a special case because we set scaling functions
+          // for both colors instead of only one.
+          e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
+          e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
+      }
   }
-  if(key == KNPKMaterialKey) {
-    mi->scalingFunction[WHITE] = &ScaleKNPK;
-    return mi;
+
+  // No pawns makes it difficult to win, even with a material advantage
+  if (pos.piece_count(WHITE, PAWN) == 0 && npm_w - npm_b <= BishopValueMg)
+  {
+      e->factor[WHITE] = (uint8_t)
+      (npm_w == npm_b || npm_w < RookValueMg ? 0 : NoPawnsSF[std::min(pos.piece_count(WHITE, BISHOP), 2)]);
   }
-  if(key == KKNPMaterialKey) {
-    mi->scalingFunction[BLACK] = &ScaleKKNP;
-    return mi;
+
+  if (pos.piece_count(BLACK, PAWN) == 0 && npm_b - npm_w <= BishopValueMg)
+  {
+      e->factor[BLACK] = (uint8_t)
+      (npm_w == npm_b || npm_b < RookValueMg ? 0 : NoPawnsSF[std::min(pos.piece_count(BLACK, BISHOP), 2)]);
   }
 
-  if(pos.non_pawn_material(WHITE) == BishopValueMidgame &&
-     pos.piece_count(WHITE, BISHOP) == 1 && pos.piece_count(WHITE, PAWN) >= 1)
-    mi->scalingFunction[WHITE] = &ScaleKBPK;
-  if(pos.non_pawn_material(BLACK) == BishopValueMidgame &&
-     pos.piece_count(BLACK, BISHOP) == 1 && pos.piece_count(BLACK, PAWN) >= 1)
-    mi->scalingFunction[BLACK] = &ScaleKKBP;
-
-  if(pos.piece_count(WHITE, PAWN) == 0 &&
-     pos.non_pawn_material(WHITE) == QueenValueMidgame &&
-     pos.piece_count(WHITE, QUEEN) == 1 &&
-     pos.piece_count(BLACK, ROOK) == 1 && pos.piece_count(BLACK, PAWN) >= 1)
-    mi->scalingFunction[WHITE] = &ScaleKQKRP;
-  else if(pos.piece_count(BLACK, PAWN) == 0 &&
-          pos.non_pawn_material(BLACK) == QueenValueMidgame &&
-          pos.piece_count(BLACK, QUEEN) == 1 &&
-          pos.piece_count(WHITE, ROOK) == 1 && pos.piece_count(WHITE, PAWN) >= 1)
-    mi->scalingFunction[BLACK] = &ScaleKRPKQ;
-
-  if(pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) == Value(0)) {
-    if(pos.piece_count(BLACK, PAWN) == 0) {
-      assert(pos.piece_count(WHITE, PAWN) >= 2);
-      mi->scalingFunction[WHITE] = &ScaleKPsK;
-    }
-    else if(pos.piece_count(WHITE, PAWN) == 0) {
-      assert(pos.piece_count(BLACK, PAWN) >= 2);
-      mi->scalingFunction[BLACK] = &ScaleKKPs;
-    }
-    else if(pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1) {
-      mi->scalingFunction[WHITE] = &ScaleKPKPw;
-      mi->scalingFunction[BLACK] = &ScaleKPKPb;
-    }
+  // Compute the space weight
+  if (npm_w + npm_b >= 2 * QueenValueMg + 4 * RookValueMg + 2 * KnightValueMg)
+  {
+      int minorPieceCount =  pos.piece_count(WHITE, KNIGHT) + pos.piece_count(WHITE, BISHOP)
+                           + pos.piece_count(BLACK, KNIGHT) + pos.piece_count(BLACK, BISHOP);
+
+      e->spaceWeight = minorPieceCount * minorPieceCount;
   }
 
-  // Evaluate the material balance.
-
-  Color c;
-  int sign;
-  Value egValue = Value(0), mgValue = Value(0);
-
-  for(c = WHITE, sign = 1; c <= BLACK; c++, sign = -sign) {
-
-    // No pawns makes it difficult to win, even with a material advantage:
-    if(pos.piece_count(c, PAWN) == 0 &&
-       pos.non_pawn_material(c) - pos.non_pawn_material(opposite_color(c))
-       <= BishopValueMidgame) {
-      if(pos.non_pawn_material(c) == pos.non_pawn_material(opposite_color(c)))
-        mi->factor[c] = 0;
-      else if(pos.non_pawn_material(c) < RookValueMidgame)
-        mi->factor[c] = 0;
-      else {
-        switch(pos.piece_count(c, BISHOP)) {
-        case 2:
-          mi->factor[c] = 32; break;
-        case 1:
-          mi->factor[c] = 12; break;
-        case 0:
-          mi->factor[c] = 6; break;
-        }
-      }
-    }
-
-    // Bishop pair:
-    if(pos.piece_count(c, BISHOP) >= 2) {
-      mgValue += sign * BishopPairMidgameBonus;
-      egValue += sign * BishopPairEndgameBonus;
-    }
-
-    // Knights are stronger when there are many pawns on the board.  The
-    // formula is taken from Larry Kaufman's paper "The Evaluation of Material
-    // Imbalances in Chess":
-    // http://mywebpages.comcast.net/danheisman/Articles/evaluation_of_material_imbalance.htm
-    mgValue += sign * Value(pos.piece_count(c, KNIGHT)*(pos.piece_count(c, PAWN)-5)*16);
-    egValue += sign * Value(pos.piece_count(c, KNIGHT)*(pos.piece_count(c, PAWN)-5)*16);
-
-    // Redundancy of major pieces, again based on Kaufman's paper:
-    if(pos.piece_count(c, ROOK) >= 1) {
-      Value v = Value((pos.piece_count(c, ROOK) - 1) * 32 + pos.piece_count(c, QUEEN) * 16);
-      mgValue -= sign * v;
-      egValue -= sign * v;
-    }
+  // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
+  // for the bishop pair "extended piece", this allow us to be more flexible
+  // in defining bishop pair bonuses.
+  const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = {
+  { pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(WHITE, PAWN), pos.piece_count(WHITE, KNIGHT),
+    pos.piece_count(WHITE, BISHOP)    , pos.piece_count(WHITE, ROOK), pos.piece_count(WHITE, QUEEN) },
+  { pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
+    pos.piece_count(BLACK, BISHOP)    , pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } };
+
+  e->value = (int16_t)((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
+  return e;
+}
+
+
+/// MaterialTable::imbalance() calculates imbalance comparing piece count of each
+/// piece type for both colors.
+
+template<Color Us>
+int MaterialTable::imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
+
+  const Color Them = (Us == WHITE ? BLACK : WHITE);
+
+  int pt1, pt2, pc, v;
+  int value = 0;
+
+  // Redundancy of major pieces, formula based on Kaufman's paper
+  // "The Evaluation of Material Imbalances in Chess"
+  if (pieceCount[Us][ROOK] > 0)
+      value -=  RedundantRookPenalty * (pieceCount[Us][ROOK] - 1)
+              + RedundantQueenPenalty * pieceCount[Us][QUEEN];
 
+  // Second-degree polynomial material imbalance by Tord Romstad
+  for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
+  {
+      pc = pieceCount[Us][pt1];
+      if (!pc)
+          continue;
+
+      v = LinearCoefficients[pt1];
+
+      for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
+          v +=  QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
+              + QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
+
+      value += pc * v;
   }
+  return value;
+}
+
+
+/// MaterialTable::game_phase() calculates the phase given the current
+/// position. Because the phase is strictly a function of the material, it
+/// is stored in MaterialEntry.
+
+Phase MaterialTable::game_phase(const Position& pos) {
 
-  mi->mgValue = int16_t(mgValue);
-  mi->egValue = int16_t(egValue);
+  Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
 
-  return mi;
+  return  npm >= MidgameLimit ? PHASE_MIDGAME
+        : npm <= EndgameLimit ? PHASE_ENDGAME
+        : Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
 }